ON THE DEFINITION OF BOLIC SPACES

MICHELLE BUCHER AND ANDERS KARLSSON

ABSTRACT. We discuss notions of bolic metric spaces introduced by
Kasparov and Skandalis. We make some observations which clarify the
involved metric axioms and explain all the known basic examples.

1. INTRODUCTION

Bolic metric spaces were introduced by Kasparov and Skandalis in [KS94]
and [KS00] in relation with conjectures of Baum-Connes and Novikov. This
class of metric spaces, which includes Gromov hyperbolic geodesic spaces
and non-positively curved spaces, was also considered by V. Lafforgue in
[La01]. Further works with some discussion on bolicity include [Tu99],
[MYO01] and [BCMO1].

In view of the importance of the above mentioned works and the potential
usefulness of these notions in geometric group theory more generally, it seems
worthwhile to try to clarify and examplify the various metric space axioms
involved. This is the purpose of this note.

We show that the condition B2 implies B1, hence this latter condition is
superfluous in the definition of a J-bolic space (for all terminology see the
next section). In view of this, it is immediate that every CAT(0)-space is
d-bolic for any § > 0 (for complete spaces the converse holds as well).

We introduce d-uniformly convex and d-uniformly smooth metric spaces
generalizing standard notions in Banach space theory. We prove that uni-
form smoothness implies B1 and that uniform convexity implies B2’. This
shows that LP-spaces for 1 < p < oo are weakly d-bolic for every § > 0.
Furthermore, spaces which satisfy B2 (e.g. d-hyperbolic geodesic spaces)
are both §-uniformly smooth and J-uniformly convex. This suggests an al-
ternative and probably not significantly more stringent definition of weak
bolicity obtained by replacing 6-B1 by d-uniform smoothness and §-B2’ by
(1,0)-uniform convexity.

2. DEFINITIONS

Here follow two collections of metric space axioms. Examples are given in
the last section of this paper.

Bolic and weakly bolic spaces. We recall the definition of Kasparov and
Skandalis:

Definition. Let § be a positive number. A metric space (X,d) is called

d-bolic if the following two conditions hold:
1
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e )-Bl
Vr>0,3 R= R(r,6) > 0 such that ¥V z1,z2,y1,y2 € X, if
d(z1,22) +d(y1,y2) <,
d(z1, 1) + d(z2,y2) > R,
then d(z1,y1) + d(z2,y2) < d(w1,y2) + d(z2,91) + 20.
e 0-B2
dm: X x X — X such that V z,y,z € X,
2d(m(z,y),z) < \/2d(x, 2)2 + 2d(y, 2)? — d(z,y)? + 49.

The conditions that Kasparov and Skandalis in fact need for their work
on the Novikov conjecture are the following:
Definition. Let § be a positive number. A metric space (X,d) is called
weakly &-bolic if the following two conditions hold:

e )-Bl

e )-B2

(1) there exists a d-middle point map m : X x X — X, that is, for
every ,y € X,

2d(z, m(z,y)) — d(z,y)| < 26,
2d(y, m(z,y)) — d(z,y)| < 24,
(2) for every z,y,z € X,
d(m(x,y), z) < max(d(zx, z),d(y, z)) + 29,
(3) for every p € Ry, there exists N(p) € Ry such that for every
N > N(p), if
d(xz,z) < N, d(y,z) < N and d(x,y) > N,
then
d(m(z,y),z) < N —p.

By a (weakly) bolic space we mean a metric space which is (weakly) d-bolic
for some § > 0.

In Lafforgue’s work on the Baum-Connes conjecture it is of importance
for the bolic spaces to satisfy 6-B1 for every § > 0. This is sometimes refered
to as strong bolicity.

Uniform smoothness and convexity. The following are possible defi-
nitions of uniform smoothness and uniform convexity for arbitrary metric
spaces generalizing the corresponding concepts in Banach space theory to
be found for example in [Di75].

For a § > 0 we shall call a §-midpoint map a symmetric map m : X x X —
X such that for every z,y € X,

[2d(z,m(z,y)) — d(z,y)| < 20,
‘2d(y7 m(a:, y)) - d($, y)‘ < 26.

For example, geodesic spaces have 0-midpoint maps.
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Definitions.
(1) A metric space (X, d) is 0-uniformly smooth, if there exists a J-midpoint
map m and for every £ > 0 there exists 7 = n(¢) > 0 such that for every

x,y,2 € X satisfying % < 7 the following inequality holds

dim(z,y),z) + %d(w,y) <d(x,z)+ed(y, z) + 20.

(2) A metric space (X, d) is 0-uniformly conver, if there exists a d-midpoint
map m and for every € > 0 there exists p = p(e) > 0 such that for any
x,y,z in X satisfying d(z,y) > emax{d(z,z2),d(y,z)} the following
inequality holds

dim(z,y),z) < (1 — p)max{d(z, z),d(y, z)} + 24.

We call a space uniformly convex (smooth) if the corresponding condition
holds with 6 = 0. We call a metric space (1,9)-uniformly convez if the
condition of uniform convexity is only required to hold for every € > 1.

These conditions hold for LP-spaces, 1 < p < 00, see section 4.

Asisindicated in the next section, Bl is a midpoint-free version of uniform
smoothness. Compare this with the standard definitions of a d-hyperbolic
space: one definition is formulated in terms of geodesics (thin triangles)
while the other, which is recalled in section 4, is more general in that it is
“midpoint-free”.

Any subset A of a metric space (X,d) is a metric space by restriction
of the metric. For example, when a group G acts freely on X, one gets a
metric on G by identifying it with an orbit Gz. If (X, d) satisfies a certain
condition, then (A, d) will automatically satisfy the midpoint-free version of
that same condition.

3. RELATIONS BETWEEN THE AXIOMS

Uniform smoothness implies B1. We will show:

Proposition 1. If a metric space is §-uniformly smooth, then it satisfies
(26 + K)-B1 for any k > 0.

Proof. Pick k > 0 and r > 0. Set ¢ = = and R = WLE) Let z,y,2 € X be

such that d(z,z) > R and d(y,z) < r. Then ggzg < & = n(e) so that by

uniform smoothness
1
dm(e,y),2) < d(z,2) — d(.y) +edly,2) +20

1
< d(ac,z) - §d(.%',y) + K426

In view of Lemma 2 below we are done. |

The following lemma gives a criterium (with midpoints) slightly stronger
than 6-B1, but which is easier to handle.

Lemma 2. Let (X,d) be a metric space, m : X x X — X a map, and
d > 0. If for every v’ > 0 there exists R = R'(r',8) > 0 such that for every
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x,y,z € X satisfying
d(x7 Z) Z RI7 d(y7 Z) S 7"/
the following inequality holds

1
d(m(a,).2) < d(a,2) — Ld(x,y) + 6,
then (X, d) satisfies 6-B1.

Proof. Pick r > 0 and set R = R(r,0) = 2R'(r,§)+2r. Let 1, z2,y1,y2 € X
be such that they satisfy the hypothesis of B1. Then clearly d(z1,z2),
d(y1,y2) < r and at least one of d(x1,y1) and d(x2,ys2) is greater or equal to
R/2. Therefore by the triangle inequality

d(ml,y]) > g —-r= RI(Ta 5)

for any i, j € {1,2}. Therefore ys, 2, x1 and z2, yo, y1 satisfy the conditions
of the assumed criterium. Now it remains to compute

d(zi,y1) < d(z,m(x,y2)) + d(m(ze,y2),y1)
1 1
< d(y2, 1) — §d($2,y2) +0 +d(x2,y1) — §d($2,y2) + 0.
Hence (X, d) satisfies 6-B1. O

B2 implies B1. The following shows that one can drop the Bl-condition
in the definition of d-bolic spaces.

Proposition 3. If a metric space is §-B2 for some § > 0, then it is 0-
uniformly smooth.

Proof. Given € > 0, pick n = 2¢. Let z,y,z € X be such that d(y,z) <
nd(z, z). Then using §-B2 and the inequalities
1
22 —u? < (2t —u)?,

for t > 0, we obtain

2d(m(z,y),z) < +/2d(x,2)%+2d(y, 2)? — d(z,y)% + 46
< 2d(z,2)4 1+ (%2)2 — d(z,y) + 46
< 2d(z,2) + CZ((Z;’ZZ); — d(z,y) + 46
< 2d(w,2) — yd(z,y) +ed(y, ) +20),
as required. 0

From Propositions 1 and 3 we hence get:

Corollary 4. If a metric space is 6-B2 for some § > 0 then it is (20 +k)-B1
for any k > 0, hence it is 3§-bolic.
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Uniform convexity implies B2'.

Proposition 5. If a metric space is §-uniformly convex (or more generally,
(1, 6)-uniformly convex), then 6-B2 holds.

Proof. We only need to check condition (3). Let p € Ry. Take N(p) >
(p 4+ 20)/p(1), where p(1) corresponds to € = 1 in the uniform convexity
definition, and N > N(p). Suppose d(x,y) < N, d(y,z) < N and d(z,y) >
N. Then we get

d(m(z,y).2) < (1—p(1))max{d(z,2),d(y, =)} + 20

N —N(p)p(1)+26 < N —p.

[VANVAN

B2 implies B2'. We now show that, as expected (see [KS94]), bolic spaces
are weakly bolic.

Proposition 6. If a metric space satisfies §-B2, then it is §-uniformly con-
ver.

Proof. The map m in 6-B2 is actually a §-midpoint map. Indeed, for every
T,y € X,

2d(x,m(z,y) < /2d(y,x)2 —d(z,y)2 + 46

= d(x,y) +46.
Similarly, 2d(y, m(z,y)) < d(x,y) + 40, so that

and hence
‘2d(x7m(xa y)) - d(i’,y)‘ < 26.
Let R = max{d(z, z),d(y, z)}, from B2 we now get

dim(z,y),z) < %\/RQ—d(x,y)Q—l—Qé

— R 1—<d(;—g‘/)>2+25

— RyJ1- <§)2+25.

This shows the condition (2) and the J-uniform convexity which implies
condition (3) in view of the previous proposition. O

Propositions 5 and 6 imply:

Corollary 7. A §-bolic metric space is weakly §-bolic.



6 MICHELLE BUCHER AND ANDERS KARLSSON

B1 versus B2'. Note that there exist metric spaces which satisfy B2’ but
not B1l. Indeed, define in R? a norm which is given by its unit sphere: a
regular octagon. Proposition 5 (or a remark in [KS00]) implies that this
space satisfies B2', but on the other hand this space does not satisfy Bl as
follows similarly as for L', see Section 4.

Conversely, there also exist metric spaces which satisfy B1 but not B2':
the induced metric space obtained by mapping Z into the real line with
its usual distance by sending n to (for example) n?, yields a discrete met-
ric space without a J-midpoint map and which clearly satisfies B1. (Note
moreover that this metric space is d-hyperbolic).

4. EXAMPLES

Non-positive curvature. Let us recall the beautiful characterization of
non-positive curvature due to Bruhat and Tits (see e.g. [L99]): a complete
metric space (X,d) is CAT(0) if and only if for any z,y there is a point m
for which

d(z,y)? + 4d(m, 2)? < 2d(z, 2)? + 2d(y, 2)?
holds for every z in X. With this in mind it is now clear that all the
conditions in Section 2 are satisfied for such spaces.

Corollary 8. A metric space is §-B2 for every § > 0 if and only if it is
d-bolic for every § > 0, which is equivalent to being CAT(0) if the space is
complete.

Proof. It remains to show that 6-B2 for every 6 > 0 implies CAT(0). Sup-
pose a complete metric space (X, d) is d-bolic ¥V 6 > 0. We get a sequence of
d-midpoint maps which converge to a limit m, since writing ms := ms(z,y),
mg = mg(x,y), we obtain

2d(m5/ 5 m5) < \/2d($, m5)2 + Qd(y7 m5)2 - d(l‘, y)2 + 45,

IN

2
= \/46(d(z,y) + ) + 4¢,

\/Q(Ed(x, y)+6)° + 2(%d(w, y) +06)% — d(z,y)? + 46’

which is arbitrarily small for §,¢’ small enough. The limit map so obtained
is a midpoint map and makes the inequality of B2 hold with § = 0, so that
X is CAT(0). 0

In [KS94] and [KS00] it was shown that every non-positively curved simply
connected Riemanian manifold and every Euclidean building is d-bolic for
every & > 0.

Normed vector spaces. For normed vector spaces the concepts of uni-
form convexity and smoothness coincide with the standard ones. These two
properties are dual to each other in the sense that a normed space is uni-
formly convex (respectively smooth) if and only if its dual space is uniformly
smooth (respectively convex). Every LP-space for 1 < p < oo is uniformly
convex, due to Clarkson [Cl136], and hence by duality also uniformly smooth,
see [Di75].
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The proof of the following proposition provides a simple argument showing
that a Banach space is CAT(0) if and only if it is a Hilbert space.

Proposition 9. If a normed vector space satisfies 5-B2 for some § > 0,
then it is a pre-Hilbert space.

Proof. First note that ¢ can be set to 0. Indeed, if three points x, y, 0 satisfy
2d(m(z,y),0) > v/2d(x,0)? + 2d(y,0)? — d(z,y)? + &%,

then by multiplying the inequality by a number ¢ such that te is much larger
than § and using the normed linear structure we see that the §-B2 inequality
would fail.

We now have for any vectors « and y using B2 twice:

lo+yllP +llz —yll* < 2/l +2|lyl]”

2 2
< 2P 2 (2o [ w2y -3
-5 =)
2 2

o+ ylI* + [lo =yl

which shows that we in fact have equality everywhere. Hence the parallelo-
gram law holds which was to be proved. O

Proposition 10. The LP-spaces are 6-bolic for every 6 > 0 if and only if
p = 2. They are weakly d-bolic for every § > 0 if and only if 1 < p < oco.
(We exclude the 1-dimensional spaces LP({x}).)

Proof. In view of Propositions 1, 3, 5 and 9, it remains to check that L'
and L are not 6-B1. For L!'({x,y}), given r > 0 consider the four points
x1 = (0,0), zo = (0,7/2), y1 = (R,7r/2) and y3 = (R,0). Then we get on
one hand

d(z1, 1) + d(z2,y2) = R+,
and on the other hand

d(.%'hyQ) + d(a:.Qayl) = R7

and it is clear that no matter which § and R we pick, for r > 24, §-B1 fails.
One can argue similarly for L*°. O

Remarks.

e It can be shown that for Banach spaces, uniform smoothness is equiv-
alent to 6-B1 for every § > 0, and 4-B2’ is equivalent to (1,0)-uniform
convexity.

e It is proven in [KS00] that a finite dimensional normed space whose
dual’s unit ball is strictly convex satisfies §-B1 for every § > 0. This is
a particular case of Proposition 5 since (for normed spaces) the notions
of uniform smoothness and uniform convexity are dual to each other.

e The following can be found in [KS00]. Let E be a finite dimensional
normed space. If there are no segments of length 1 in the unit sphere of
E, then E satisfies §-B2’ for every 6 > 0. This is essentially contained
in Proposition 5 above.
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Hyperbolic spaces. A metric space (X, d) is called d-hyperbolic if for every
z,y,z,win X

d(z,y) + d(z,w) < max{d(z, z) + d(y,w),d(z,w) + d(y, z)} + 20.

This is equivalent to the usual definition by expanding the terms of the
Gromov products.

Proposition 11. A é-hyperbolic space with §-midpoints is 39 /2-uniformly
smooth, 39/2-uniformly convezx, and 39/2-bolic.

Proof. We reproduce the proof in [KS00]. Applying the defining inequality
to w = m(x,y) we get

dim(x,y),z) < —%d(w,y) + max{d(z, z),d(y, z)} + 39.

The 3d/2-uniform smoothness is now clear: 7 can be taken to be 1 for any
g, since then d(y,z) < d(z,z). (Uniform convexity is also clear from this
inequaility.) The condition §-B1 is immediate from the definition.

Now, if s,¢,u are nonnegative numbers such that |t — u| < s, we have

(2t —u)? +u? =262 + 2(t — u)? < 2t 4 252

Setting s = min{d(z, 2),d(y, 2)}, t = max{d(x, z),d(y,2)} and v = d(x,y),
we find

2 max{d(a:, Z)a d(ya Z)} - d(x’ y) < (Qd(ﬂf, Z)2 + 2d(y7 2)2 - d(.’ﬁ, y)2)1/25
which combined with the first inequality completes the proof of B2. O

The central issue in [MYO01] is to find a left-invariant metric on a hyper-
bolic group which is quasi-isometric to the word metric and for which not
only 9-B2 holds for some d, but also §-B1 for every ¢ > 0.

Products. Following [KS94] and [KS00] we note that the class of bolic
spaces is closed under metric products:

Proposition 12. The product of two bolic spaces endowed with the distance
such that d((z,y), (z',y'))? = d(z,2")? + d(y,y')? is bolic.

Proof. Let x1,y1,21 € X1 and 9,992, 29 € Xao. Put
Ay = \/2d(2i, 2)% + 2d(yi, 2i)? — d(xi,y:)%

We have
(A1 +40)? + (Ag + 46)?
((A2 + A2 4+ 4v/26)?,

and the condition B2 (hence also B1) follows. (The last inequality can
be verified straightforwardly for any positive numbers by expanding the
squares, simplify and square.) (I

Ad(ma(z1,y1), 21)° + 4d(ma (22, y2), 22)° <
<

For a more systematic investigation of what properties of metric spaces
are preserved under various products, we refer to [BFS02].



[BFS02]
[BCMO1]
[C136]
[DiT5]
[KS94]
[KS00]
[La01]
[L99]
[MYO01]

[Tu99]

ON THE DEFINITION OF BOLIC SPACES 9

REFERENCES

A. Bernig, T. Foertsch and V. Schroeder, Non standard metric products,
Preprint 2002.

A.J. Berrick, I. Chatterji and G. Mislin, From acyclic groups to the Bass con-
jecture for amenable groups, FIM-preprint 2001.

J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936),
no. 3, 396-414.

J. Diestel, Geometry of Banach spaces - selected topics, Lecture Notes in Math-
ematics, Vol. 485, Springer-Verlag, 1975.

G. Kasparov and G. Skandalis, Groupes “boliques” et conjecture de Novikov, C.
R. Acad. Sci. Paris Sér. I Math. 319, 1994, no.8, 815-820.

G. Kasparov and G. Skandalis, Groups acting properly on “bolic” spaces and
the Novikov conjecture, preprint 2000.

V. Lafforgue, K-théorie bivariante pour les algebres de Banach et conjecture de
Baum-Connes, preprint 2001

S. Lang, Fundamentals of Differential Geometry, New York: Springer-Verlag,
1999

I. Mineyev and G. Yu, The Baum-Connes conjecture for hyperbolic groups,
MSRI Preprint 2001. To appear in Invent. Math.

J.L. Tu, La conjecture de Novikov pour les feuilletages hyperboliques, K-Theory,
16 (1999), 129-184

DEPARTMENT OF MATHEMATICS, ETH-ZENTRUM, CH-8092 ZURICH, SWITZERLAND
E-mail address: bucher@math.ethz.ch
E-mail address: karlsson@math.ethz.ch



