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Abstract

The birth and evolution of Peer-to-Peer (P2P) protocols
have, for the most part, been about peer discovery. Napster,
one of the first P2P protocols, was basically FTP/HTTP
plus a way of finding hosts willing to send you the file. Since
then, both the transfer and peer discovery mechanisms have
improved, but only recently have we seen a real push to
completely decentralized peer discovery to increase scal-
ability and resilience.
Most such efforts are based on Distributed Hash Tables

(DHTs), with Kademlia being a popular choice of DHT im-
plementation. While sound in theory, and performing well
in simulators and testbeds, the real-world performance of-
ten falls short of expectations.
Our hypothesis is that the connectivity artifacts caused

by guarded hosts (i.e., hosts behind firewalls and NATs) are
the major cause for such poor performance.
In this paper, the first steps towards testing this hypoth-

esis are developed. First, we present a taxonomy of con-
nectivity properties which will become the language used
to accurately describe connectivity artifacts. Second, based
on experiments “in the wild”, we analyze the connectivity
properties of over 3 million hosts. Finally, we match those
properties to guarded host behavior and identify the poten-
tial effects on the DHT.

1 Introduction

The BitTorrent protocol [6] is widely used in Peer-to-
Peer (P2P) file sharing applications. Millions of users1 col-
laborate in the distribution of digital content every day. As
traditional broadcasters transition to Internet distribution,
we can expect this number to increase significantly, which

1The Pirate Bay alone tracks more than 20 million peers at any given
time.

raises some concerns about the scalability and resilience of
the technology.
Our work is part of the P2P-Next[1] project, which is

supported by many partners including the EBU2 who claims
to have more than 650 million viewers weekly. In the face
of such load, scalability and resilience become vital compo-
nents of the underlying technology.
In BitTorrent, content is distributed in terms of objects,

consisting of one or more files, and these objects are de-
scribed by a torrent-file. The clients (peers) participating in
the distribution of one such object form a swarm.
A swarm is coordinated by a tracker, which keeps track

of every peer in the swarm. In order to join a swarm, a peer
must contact the tracker, which registers the new peer and
returns a list of other peers. The peer then contacts the peers
in the swarm and trades pieces of data with them.
The original BitTorrent design used centralized trackers,

but to improve scalability and resilience, distributed track-
ers have been deployed and currently exist in two flavors:
Mainline DHT and Azureus DHT. Both of them are based
on Kademlia[11], a distributed hash table (DHT). Kadem-
lia is also the basis of Kad[17], used by the competing P2P
application eMule3.
Kademlia’s properties and performance have been thor-

oughly analyzed theoretically as well as in lab settings.
Kademlia’s simplicity is one of its strengths, making the-
oretical analysis simpler than that of other DHTs. Further-
more, simulations such as [9] show that Kademlia is robust
in the face of churn4.
When we analyze previous measurements on three

Kademlia–based DHTs, we find that Kad, eMule’s im-
plementation of Kademlia, has demonstrated good per-
formance [17], while the two Kademlia-based BitTorrent
DHTs (Mainline DHT and Azureus DHT) show very poor
performance [7]. While lookups are performed within 5

2European Broadcasting Union
3http://www.emule-project.net/ (last accessed April 2009)
4Defined in Section 3
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seconds 90% of the time in Emule’s Kad, the median lookup
time is around a minute in both BitTorrent DHTs.
One of the main differences between Kad and the other

two implementations is how they manage nodes running be-
hind NAT or firewall devices. Kad attempts to exclude such
nodes from the DHT. On the other hand, neither of the Bit-
Torrent’s DHT implementations have such mechanisms.
Evidence suggests that some connectivity artifacts on de-

ployed networks were not foreseen by DHT designers. For
instance, Freedman et al. [8] show how non-transitivity in
PlanetLab degrades DHT’s performance (includingKadem-
lia). These connectivity artifacts exist on the Internet as
well, as our experiments will show.
Guarded hosts, hosts behind NATs and firewalls [19],

are well-known in the peer-to-peer community for caus-
ing connectivity issues. Different devices and configu-
rations produce different connectivity artifacts, including
non-transitivity.
This evidence leads us to believe that DHT implementa-

tions which consider and counteract guarded hosts’ effects
are expected to perform better than those that do not.
The ultimate test of this hypothesis would be checking

whether guarded host’s connectivity artifacts significantly
affect Kademlia’s lookup performance. In order to do this,
we need to understand the characteristics of these connec-
tivity artifacts and their potential effects on the DHT rout-
ing. Then, we would be able to carry out an experiment
looking for these effects on the actual lookups.
In this paper, we focus on the definition and analysis

of these connectivity properties. We also underlay the po-
tential effects on the DHT performance. Although we do
not attempt to test whether guarded hosts actually degrade
lookup performance, an outline of the future work is pro-
vided in Section 6.
Mainline DHT, used for BitTorrent peer discovery, was

integrated into Tribler[13] —the integral component of the
P2P-Next project. The ultimate goal of this ongoing re-
search is to adapt the Mainline DHT to the non-ideal In-
ternet environment, while keeping backward compatibility
with the millions of nodes already deployed. Thus, we focus
our experiments on the Mainline BitTorrent DHT nodes.
We model nodes’ connectivity according to three prop-

erties: reciprocity, transitivity, and persistence. This taxon-
omy in itself is one of the contributions of this paper, since
it provides the language needed to reason about and spec-
ify the connectivity assumptions made by DHT designers
and deployers. For every property, we discuss the possible
cause and its potential effects on Kademlia.
In our experiments, the connectivity properties of more

than 3 million DHT nodes are studied. We find that most
of the connectivity patterns observed correlate to common
NAT and firewall configurations.
The following section provides an overview of Kademlia

and guarded hosts. In Section 3 the potential effects of the
connectivity artifacts are discussed. We present our exper-
iment in Section 4, discuss the results in Section 5, outline
the future work in Section 6 and conclude in Section 7.

2 Background

In this section we give the background needed to under-
stand the experiments and the results. We provide basic in-
formation regarding Kademlia’s routing table management
and its lookup routing algorithm. In the second part, we
overview the generic behavior found on most common con-
figurations of NATs and firewalls.

2.1 Kademlia

Kademlia[11] is a DHT design which has been widely
deployed in BitTorrent and other file sharing applications.
When used as a BitTorrent distributed tracker, Kademlia’s
objectIDs are torrent identifiers and values are lists of peers
in the torrent’s swarm.
Each node participating in Kademlia obtains a nodeID,

whereas each object has an objectID. Both identifiers con-
sist of a 160-bit string. The value associated to a given
objectID is stored on nodes whose nodeIDs are closest to
the objectID, where closeness is determined by perform-
ing a XOR bitwise operation on the nodeIDs and objectID
strings.
Every node maintains a routing table. The routing table

is organized in k-buckets, each covering a certain region of
the 160-bit key space. Each k-bucket contains up to k nodes,
which share some common prefix of their identifiers. New
nodes are discovered opportunistically and inserted into the
appropriate buckets as a side-effect of incoming queries and
outgoing lookup messages.
Kademlia makes use of iterative routing to locate the

value associated to the objectID, which is stored on the
nodes whose nodeIDs are closest to the objectID. The node
performing the lookup queries nodes in its routing table —
those whose nodeIDs are closest to the objectID. Each of
those nodes returns a list of nodes whose nodeIDs are closer
to the objectID. The node continues to query newly discov-
ered nodes until the result returned is the value associated
to the objectID. This value, when using Kademlia as a Bit-
Torrent tracker, is a list of peers.

2.2 Guarded Hosts

NATs and firewalls are important components of the net-
work infrastructure and are likely to continue to be de-
ployed. According to a recent paper [12], two thirds of all
peers are behind NATs or firewalls in open BitTorrent com-
munities. Despite the fact that different firewalls and NATs
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can have different configurations, the most common types
are overviewed in this subsection.
Note that we just focus on UDP connectivity since the

Mainline BitTorrent DHT uses UDP as transport protocol.

2.2.1 Firewalls

A guarded host located behind a firewall is able to send
outgoing packets but may be unable to receive incoming
packets. Though several firewall configurations are de-
ployed, in this paper, we consider the simplest case where
outgoing packets are forwarded but the incoming packets
are dropped. In such a scenario, the connectivity is non-
reciprocal, and the internal host is able to send but not re-
ceive any packet.

2.2.2 NAT Behavior

NAT behavior is more complex. A host behind a NAT is
able to send packets to hosts on the other side of the NAT.
The NAT device, in turn, keeps track of the packets sent by
the internal host in its table, in the form of entries that expire
within a certain timeout. When the external host replies, the
NAT box checks the reply against its address translation ta-
ble, before routing the reply back to the internal host. For as
long as the entry remains in the NAT table, the two hosts are
able to communicate, and the communication, according to
our property definitions in Section 3, is said to be persistent.
The entries in the NAT table are either removed when

they timeout or when new entries replace the old ones.
Since the DHT nodes contact many other nodes, it is ex-
pected that NAT tables can fill up rather quickly.

2.2.3 NAT Timeouts

Recent measurements of NAT/firewall characteristics in the
Tribler system5 reveal that the average NAT timeout value
is 2 minutes for more than 60% of the NATed hosts stud-
ied. Moreover, the IETF RFC 4787 [3] specifies that a NAT
UDP entry should not expire in less than two minutes; it also
recommends a default value of 5 minutes or more for each
entry. However, since NAT behavior is not really standard-
ized, applications must be extremely conservative, in order
to cope with the large variation of (observed) behaviors.
When the entries are removed from the table, the external

hosts are unable to reach the internal host, since NAT boxes
discard all incoming packets for which they find no match
in their table entries. From the perspective of an external
host, the internal host is no longer reachable, while in fact,
the internal host continues to listen behind the NAT box.
Consequently, the size-limited tables or short timeouts of
NAT devices may break persistence.

5https://www.tribler.org/trac/wiki/NATMeasurements (last accessed
June 2009)

2.2.4 NAT Configuration

Usually, the NAT (or firewall) device behind which the node
is sitting is under the control of the user. Most of the issues
created by them can be resolved, or at least mitigated to a
large extent, by proper configuration. In many cases, this
is as simple as enabling Universal Plug and Play-support[2]
(UPnP) in the NAT-box, and have the DHT implement a
UPnP-client to correctly setup forwarding.
Alternatively, the DHT application could provide the in-

formation needed by the user to manually configure the
NAT to forward UDP traffic.

2.2.5 STUN

When participating in the DHT, a node will keep a routing
table with pointers to other DHT nodes. Additionally, it
will be a tracker for a small number of BitTorrent objects.
The role of a node in DHT is to receive queries from other
nodes —either updating routing information or performing
DHT lookups. In either case, this is a very light weight
computational operation.
Session Traversal Utilities for NAT[16] (STUN) may ini-

tially seem like an option for dealing with NAT traversal.
STUN is certainly possible to implement, and perfectly rea-
sonable for setting up VoIP streams and other long-term
communications. However, unlikeVoIP streams, DHTmes-
sages are very short-term communications (usually a single
query/response) and the number of connections to different
nodes is high (commonly a few hundred).
For the DHT as a whole, we argue that the cost of using

STUN to reach an otherwise unreachable node exceeds the
benefit gained by having that node participate in the DHT.

3 Dissecting Churn — Property Definitions

In a DHT, any node can join or leave the DHT at any
moment. Churn is measured as the number of nodes joining
and leaving the DHT during a given period of time, and is
thus an indicator of how dynamic a DHT network is.
Since each node needs to keep its routing table updated

and accurate, a maintenance overhead is associated with
churn. That is why counteracting churn is so important
when designing and deploying a DHT.
Much research has been done on DHT performance in

presence of churn [15, 18]. Our hypothesis, however, is
that a large fraction of the reported churn in deployed DHTs
is caused by connectivity artifacts. Unlike real churn, this
apparent churn follows certain patterns which may be used
to identify it and, potentially, eliminate it.
Although we have not attempted to perform similar ex-

periments on other Kademlia-based implementations, we
expect that our findings hold for all implementations which
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Figure 1. Non-reciprocal connectivity

do not have explicit mechanisms in place to mitigate
guarded nodes’ effects on the DHT.
In the next subsections, we define the three connectivity

properties we have identified, along with the percentage of
DHT nodes exhibiting them in the measurements we have
performed. We also examine plausible reasons why a large
fraction of nodes are missing one or more of these proper-
ties, and how this will impact the performance of the DHT.
Throughout the subsections, the numbers accompanying

the protocol descriptions refer to the message exchange or-
der and match the numbers in the corresponding figures.

3.1 Non-reciprocal Connectivity May
Create Apparent Churn

On the open Internet, it is assumed that if node A can
establish a connection to node B, then node B can establish
a connection to node A, i.e., connectivity is reciprocal. Our
experiments, however, reveal that just 80% of the nodes
exhibit reciprocal connectivity. Firewalls and NATs which
forward outgoing, but drop incoming, packets are the likely
cause.
Figure 1 depicts the non-reciprocity of the connectivity

between A and B. In this scenario, A is the node behind a
firewall and the one to initiate the connection with B (1). B
assumes the connectivity to be reciprocal and thus inserts A
in its routing table.
After a while, when refreshing the buckets in the routing

table, node B finds that A no longer replies to its queries.
After several failed attempts to reach A (2), B regards A as
unreachable and therefore removes it from the routing table.
After being removed from the routing table, A may send

a new query to B. As before, B would consider A a good
candidate for its routing table and therefore start the process
over again.

3.2 Non-transitive Connectivity May
Break Lookup Routes

On the Internet, there is a general assumption of transi-
tivity, meaning that if node A can reach node B, then any
node that can reach B will also be able to reach A. NATs
and firewalls break this assumption, and in fact, less than
40% of the nodes analyzed have transitive connectivity.

 







Figure 2. Non-transitive connectivity
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Figure 3. Non-persistent connectivity

Figure 2 illustrates the case, where node A, which is
located behind a NAT, causes non-transitive connectivity.
When node A sends a query to B (1), B replies back and
adds A to its routing table. Later, when node C is perform-
ing a lookup, it queries B (2) and B replies with a reference
node from its routing table (3), which in this case is A. On
the next lookup step, node C sends a query to A (4), but re-
ceives no reply. If the connectivity were transitive, C would
have been able to reach A, but in this case, C will eventually
wait for a timeout—confirming that A is unreachable—and
attempt to use an alternate node. Or, formally expressed: C
can reach B (2), B can reach A (reply to 1), but C is not able
to reach A.
DHTs employing iterative routing, such as Kademlia, are

affected by non-transitive connectivity. Concretely, non-
transitive connectivity breaks lookup routes.

3.3 Non-persistent Connectivity May
Create Apparent Churn

Persistence is a more vague concept. We say that A node
exhibits persistent connectivity if it can be reached all the
way from the moment it joins until it leaves the DHT.
As explained in Section 2.2, NATs are known to cause

ephemeral connectivity. In Figure 3, the connectivity be-
tween node A and B is a non-persistent one, where A is
located behind a NAT.
Immediately after node A sends a message to B (1), node

A is able to receive messages from B (2). Assuming that A
does not leave the DHT, B should be able to reach A at any
given time. In this case, however, the connection breaks
down and node B is unable to reach A (3).
This behavior could be explained in terms of generic

NAT behavior, as described in Section 2.2. The NAT en-
ables connectivity between A and B, but only for the period
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of time when the entry in the NAT table is valid, after which
the connection is effectively broken.
In our experiments, slightly less than 44% of the nodes

were reachable during, at least, a five minute window.
Please note that some of the unreachable nodes could be
legitimately unreachable, i.e., due to actually leaving. Sim-
ilarly, some of the reachable nodes may have been reach-
able only because of communication from other nodes “re-
freshed” the relevant NAT table entry.

4 Experiment Description

In this experiment, DHT nodes’ reachability is analyzed
from three different vantage points. Every time a node sends
a query to one of our instrumented DHT nodes, queries are
sent from (1) the same IP and port number, (2) same IP but
different port number, and (3) a different IP.6 The process is
repeated after a period of 5 minutes.
The pieces of software developed are described in the

following subsections. Both source code and result logs are
available online.7
The setup consists of one PC running Ubuntu

GNU/Linux. This computer is assigned 17 IP ad-
dresses which are managed through virtual interfaces. re-
motechecker is associated with one of the virtual interfaces.
While an instrumented DHT node and a localchecker are
associated with each of the rest of virtual interfaces.
Our DHT nodes’ identifiers are chosen in a way that the

first four bits are different from each other. This “spreads
out” our nodes in the identifier space. The aim of this con-
figuration is to broaden the DHT identifier space coverage
in order to discover as many nodes as possible.
Figure 4 illustrates the reachability analysis process.

Numbers in the arrows indicate chronological order and are
referenced throughout the following subsections.

4.1 Rechability Checker

We have developed a piece of software called Reachabil-
ity Checker (RChecker). Rchecker checks and logs reacha-
bility information regarding a given DHT node.
Nodes are identified by their IP address and nodeID.

Nodes with different nodeIDs and same IP could be dif-
ferent nodes running on the same host or on different hosts
behind a common NAT. Nodes with the same nodeID and
different IP should not exist on the DHT. The latter nodes
exist, albeit in small numbers, and are considered in the re-
sults. When two queries are received from the same IP and
nodeID but different port, they are considered as coming
from the same node, and just the first instance is considered.

6The reference point is our modified DHT node (IP address and port).
7http://tslab.ssvl.kth.se/raul/p2p09/
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Figure 4. Experiment setup

Subsequent queries from nodes that were already checked
are discarded.
Every time a node is to be checked, RChecker sends a

burst of queries to the node. Queries are sent every 5 sec-
onds, up to 5 times. Once RChecker receives a reply, a
reachable status is recorded and no more queries are sent.
This multiple querying should avoid recording reachable
nodes as unreachable due to temporary network conditions.
If no reply is received within one minute, an unreachable

status is recorded. Note that most of the BitTorrent Kadem-
lia implementations have a 20 seconds timeout. Some have
argued that 20 seconds is already too long and actually
harms lookup performance [7]. In this experiment, how-
ever, we have chosen such a long timeout because we want
to be able to detect network connectivity; even when the
round trip time is longer than a DHT implementation’s time-
out would be.
A second burst, identical to the one described above, is

sent 5 minutes later.

4.2 Instrumented DHT Node

We have instrumented Tribler’s implementation of
Kademlia8. The original code is modified to call RChecker
as needed. Additionally, the socket used by Kademlia is
passed to RChecker, so the queries are sent using the same
source IP and port.
Everytime a query is received (1) and the node has not

been already checked, the node’s information (IP, port,
ID) is sent to localchecker and remotechecker (2). Then,
RChecker is called in order to check the node’s reachability
using the same IP and port as the DHT node (3).

4.3 Localchecker

Every localchecker is listening to the instrumented DHT
node sharing the same virtual interface —i.e., both have the
same IP address. Every time localchecker receives informa-
tion from the instrumented DHT node (2), it calls RChecker
to check the node’s reachability from the same IP address as
the DHT node but different port (4).

8http://svn.tribler.org/khashmir/ (last accessed June 2009)
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Table 1. Experiment results and possible
causes

Pattern Nodes (%) Possible cause(s)
UUU-UUU 10.6 Firewall
RUU-UUU 31.3 Port restricted cone
RUU-RUU 2.8 and symmetric NAT
RRU-UUU 0.8 Restricted cone NAT
RRU-RRU 2.0
RRR-UUU 2.7 Full cone NAT

and real churn
RRR-RRR 35.5 Open Internet
UUU-RRR 7.6 Behavior not matched
RRU-RRR 1.7
Other 5 Rest of the cases

4.4 Remotechecker

The single remotechecker listens to every instrumented
DHT node. Every time remotechecker receives informa-
tion from the DHT node (2), it calls RChecker to check the
node’s reachability from an IP address which is different
from the one used by the instrumented DHT node (5).

5 Experiment Results

During 24 hours of running the experiment, 3,683,524
unique nodes were observed. Table 1 shows the observed
connectivity patterns along with the NAT or firewall types,
matching the pattern and the percentage of nodes.
The notation used throughout this section is XXX-XXX,

where the X can be either R (reachable) or U (unreachable).
The connectivity fingerprint of each checked node can be
represented by this 6-character string.
The first character accounts for the reachability of the

node from the instrumented DHT node (same IP and same
port). The second character represents the reachability of
the node from localchecker (same IP but different port).
Likewise, the third one indicates wheather the node is reach-
able or not from the remotechecker (different IP).
The last three characters follow the same structure, how-

ever, they represent node’s connectivity after a 5 minute pe-
riod.

5.1 Analysis

More than 10% of the nodes are globally unreachable
(UUU-UUU). They are able to send messages — our modi-
fied DHT node received at least one query from them. They
are, however, unable to receive messages from any of our

vantage points. This connectivity pattern matches the fire-
wall behavior, configured to let outgoing messages through
but drop incoming messages.
A large percentage of the nodes in the DHT population

are only partially reachable. Typically, they can be reached
only under certain circumstances. We argue that NATs are
the main cause of this partial reachability of nodes.
As explained in Section 2.2, NAT devices have a time-

out parameter which make stale entries expire after a given
period of time. In table 1, NAT types have two associated
observed patterns. The former matches the case when the
NAT entry expires within 5 minutes, therefore, the node is
unreachable the second time it is checked. In the latter, the
NAT timeout is longer than 5 minutes. Notice that a full
cone NAT, whose entry has not expired, matches the open
internet behavior.
More than 34% of the nodes are reachable from our

modified DHT node, but neither from localchecker nor
remotechecker (RUU-RUU and RUU-UUU). This behavior
matches port restricted cone and symmetric NAT types.
These NAT types register outgoing connections that are ini-
tiated by an internal host. An incoming packet is only for-
warded to the internal host if both the IP and port of the
external host match the NAT’s entry. Packets coming from
the same IP but different port (localchecker) or a different
IP (remotechecker) are discarded by the NAT device.
About 3% of the nodes are reachable from our modi-

fied DHT node and the localchecker but not from the re-
motechecker (RRU-UUU and RRU-RRU). The plausible ex-
planation is that the node is behind a restricted coneNAT, in
which case, the incoming packets are forwarded only when
the IP address of the external host matches the NAT’s entry.
Therefore, packets coming from our modified DHT node
and the localchecker (same IP) are received by the analyzed
node, while those from the remotechecker are dropped.
Less than 3% of the nodes in the DHT are reachable

from the instrumented DHT, the localchecker and the re-
motechecker during the first time when testing their con-
nectivity (RRR-UUU). However, the nodes are globally un-
reachable when checked after a period of 5 minutes. The
probable cause of this pattern is a full cone NAT, whose
corresponding entries in the NAT table have expired within
the testing period. This case will be further discussed in this
section.
Approximately 35.5% of the DHT nodes are globally

reachable. They are reachable from all of our vantage points
before, as well as, after the 5 minute waiting period.
Finally, we show two patterns that do not match any of

the expected behaviors but represent more than 1% each.
They are UUU-RRR (7.6%) and RRU-RRR (1.7%). These
cases remain open for further research.
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Figure 5. Properties Chart

5.2 Correlation between Transitivity and
Persistence

Figure 5 depicts transitivity (RXR-XXX) and persistence
(RXX-XXX) as subsets of reciprocity (RXX-XXX). We also
notice the significant overlap between transitivity and per-
sistence. This overlap was indeed expected since NAT
devices commonly cause both non-transitivity and non-
persistence, as previously discussed. Furthermore, some of
the cases exhibiting persistence and non-transitivity might
be due to long NAT table timeouts or casual messages –
“refreshing” the right NAT table entry.
Based on the above observations, we can formulate the

heuristic that if a node’s connectivity is known to be transi-
tive, it is very likely to be persistent as well, and vice versa.
By applying this heuristic, we may be able to use a less ex-
pensivemethod of testing connectivity, without a significant
loss of accuracy.

5.3 Apparent & Real Churn

Since we identify the nodes’ properties from an out-
sider’s point of view, we do not know what connectivity
properties a given node actually has. This fact complicates
the task of differentiating apparent churn from nodes effec-
tively leaving the DHT (i.e., real churn).
We can certainly say that any node which replies to one

or more of our venture points after the 5 minute period,
has not left the DHT. Therefore, connectivity patterns in
the XXX-UUU category might be caused by nodes actually
leaving the DHT. This category accounts for 45.6% of the
nodes.
The UUU-UUU pattern (10.6%) belongs to this category.

These nodes fail to reply to us immediately after they have
sent us a query9. Since the time is so short (a UDP round
trip) we can assume that very few nodes, if any, would have
left the DHT within such extremely short period. Instead,
we argue that this is apparent churn caused by firewalls.
Another interesting pattern is RRR-UUU (2.7%). This

pattern may be caused by full coneNAT which forwards the
traffic to the internal host regardless of the source’s IP ad-
dress, but the NAT entry would expire within the 5-minutes

9The query triggers the reachability check.

window. However, according to our observations, DHT
nodes constantly receive and send messages which refresh
the NAT entries, thus making the connections effectively
open, given a long enough NAT timeout. This fact makes
us believe that a good part of these cases corresponds to real
churn —i.e., nodes in the open Internet which have left the
DHT within the 5-minutes window.
The case which accounts for most of the nodes in the

XXX-UUU category is RUU-UUU (31.3%). The fact that
these nodes have limited connectivity in the first place
makes them unfit to carry out DHT tasks. Therefore, DHT
implementations that avoid adding nodes with limited con-
nectivity into the routing tables, will most likely not experi-
ence the churn issues caused by NATs, notoriously reducing
DHT’s churn.

6 Related and Future Work

6.1 Dealing with Limited Connectivity
Nodes

As previously stated, our hypothesis is that limited con-
nectivity often is a result of an improperly configured
NAT/firewall. The very first step towards dealing with lim-
ited connectivity should thus be to properly document the
requirements of the client, and to make it easy to configure
and test port forwarding in the NAT/firewall for the client.
Still, the DHT must be able to cope with the prob-

lems limited connectivity nodes pose, and we have seen in
Emule’s Kad [17] that fairly simple modifications to exist-
ing DHT implementations can go a long way towards miti-
gating the effects of limited connectivity.
Many of the proposals and perfomed simulations have

mainly tried to mitigate the negative effects and improve
the overall performance of the DHT, but none has addressed
the underlying problem. Moreover, their benefits come at
the cost of other performance factors, mainly bandwidth
consumption. We find examples of such improvements in
[7, 4, 9]:

• Check node’s reachability before adding it to the rout-
ing table.

• Reduce timeout value or implement adaptive timeouts.

• Increase lookup parallelism.

• Increase the refresh rate, such that dead nodes are dis-
covered earlier.

• Implement an “extended table” or bigger size routing
tables, such that the probability of having fresh entries
in the routing table increases.
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• Maintain small and fresh routing tables, by removing
neighbors whose estimated probability of being alive
is below some calculated threshold [10].

The above parameter fine-tunings should be considered
in the widely-deployed Kademlia DHT, where millions of
users simultaneously participate today and tens of millions
of users may participate in the near future. The increase
in user participation implies larger routing tables, and a po-
tentially exponential growth in the number of maintenance
messages. The proposed tweaks requiring additional mes-
sages would exacerbate this growth, and may prove an ob-
stacle to DHT scalability. Tweaks that only require local re-
sources, i.e., memory and processing, are much more likely
to scale, and will benefit from Moore’s Law.
Another approach is to try to determine the specific prop-

erties of hosts before adding them to the routing table, see
the discussion in Section 3. Rhea proposes a set of mea-
surements in order to counteract the effects of non-transitive
connectivity on OpenDHT [14].
As our experiment demonstrates, the connectivity prop-

erties essential to a DHT of a given node can be determined.
Reciprocity is easily detected by sending a single query,
while checking transitivity is more complex to detect. The
strategy used in our experiments relied on multiple IP ad-
dresses being available to the test host, but we can’t expect
a normal DHT node to have access to more than a single IP
address.
While one DHT node could use another node as re-

motechecker, letting it relay queries and report the reach-
ability status, this opens a whole new can of worms. For
example, this mechanism could be exploited for DDoS10
attacks.
Nevertheless, localchecker can be easily implemented

and deployed without the need of several IP addresses per
host or additional trust. In fact, localchecker is able to cor-
rectly identify most of the non-transitive connectivity cases.
Based on our results, only 4.6% of them are detected by re-
motechecker but not by localchecker. Thus, if only the local
mechanisms were to be applied, we would still vastly im-
prove the quality of nodes in the routing table. Furthermore,
we would avoid introducing excessive complexity and secu-
rity vulnerabilities.
An additional mechanism that would improve the qual-

ity of the routing table content is to quarantine new nodes
before adding them to the routing table. This gives enough
time to perform a second reachability check in order to de-
termine whether the candidate node’s connectivity is persis-
tent, similarly to the approach used in our experiment.
As seen previously in Figure 5, transitivity and persis-

tence are correlated but do not completely overlap. There-
fore, either localchecker or quarantine alone would identify
10DDoS stands for Distributed denial of service.

most of the limited connectivity nodes, but a combination
of both would correctly classify the vast majority of nodes,
thus increasing the detection effectiveness.
The mechanisms described above can be combined with

a policy that is consistent with our discussion in 2.2.5 —
where guarded nodes are not allowed to join the DHT. In
Kad, however, the node will instead find a DHT node to use
as a proxy. While this approach has been used in a fairly
large deployment, it moves load and responsibility to nodes
already in the DHT, thus adding complexity by requiring a
separate proxy mechanism/protocol.
A policy similar to the one used in StealthDHT[5] might

be more appropriate. According to StealthDHT, nodes par-
ticipating in the DHT are separated in two categories: ser-
vice nodes and stealth nodes. Service nodes perform routing
and value storage tasks, while stealth nodes are not involved
in any active task but are able to maintain their own routing
tables and perform lookups.
We would like to take a further step and add concep-

tual as well as practical separation. Nodes which are able
to, will be part of the DHT and act as a service node, han-
dling routing and storage of values. Nodes with limited con-
nectivity will only be clients. As such, they will perform
their own lookups using DHT nodes, and they may even
cache information locally, but they will never be contacted
by other nodes. Finally, notice that, due to Kademlia’s it-
erative routing, service nodes only need to reply to simple
queries, while DHT clients can initiate and keep track of the
lookup’s state on their own.

6.2 Future Work

We have argued that the large percentage of DHT nodes
having limited connectivity has repercussions on the DHT
performance. They become passive participants of the rout-
ing tables, only causing delays and stale entries.
At the most basic level, Emule’s Kad implementation

tries to detect nodes that don’t reply to queries, and com-
pletely excludes them from the DHT. However, since we
can find no references to how or why this was done, we are
unable to determine whether this was an ad hoc solution, or
it was the result of careful design based on a study similar
to ours.
In this paper, we have studied the connectivity properties

of nodes by deploying a set of DHT nodes and studying the
properties of nodes which exchange messages with them.
However, the fact that guarded hosts exist, and are active in
the DHT, is not a problem per se. It is only when routing
tables are effectively poisoned that lookup performance de-
clines. A logical next step would thus be to take inventory
of the routing tables of DHT nodes “in the wild”, and find
out to what extent guarded nodes actually end up in routing
tables.
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Furthermore, our ultimate goal is to use the knowledge
we have gained from this research to repair and improve the
DHT performance. As dissussed in the previous subsec-
tion, that would include designing mechanisms that iden-
tify/remove limited connectivity nodes from the routing ta-
ble, and prevent such nodes from being added in the first
place.
Finally, it could be instructive to compare the “pollution

rate”11 in the routing tables of different DHTs, such as the
Mainline and Azureus DHT, as well as eMule’s Kad.

7 Conclusion

In this paper, we have defined a set of properties which
provides the language needed to spell out the assumptions
made by DHT designers and deployers. These proper-
ties were not explicitly considered in the original Kadem-
lia design. Instead, their effects were only discovered when
DHTs were deployed and faced with the non-ideal connec-
tivity artifacts in the real world.
We have studied over 3 million BitTorrent Mainline

DHT nodes’ connectivity according to these properties. The
results point to the generalized presence of NAT and firewall
devices causing connectivity issues in the DHT. In fact, only
around one third of the nodes analyzed have “good connec-
tivity” —i.e. reciprocal, transitive, and persistent.
Finally, we do not propose a stopgap solution for poor

DHT performance. Instead, we offer the taxonomy to ex-
plicitly specify the DHT’s connectivity assumptions and the
toolkit to determine whether those assumptions are met.
Our long-term ambition is to enable ourselves and others
to design and implement DHTs where the underlying prob-
lems are addressed, instead of just tweaking parameters and
adding kludges to handle the symptoms.
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