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Statistical Approach for Fast
Impairment-Aware Provisioning in

Dynamic All-Optical Networks
L. Velasco, A. Jirattigalachote, M. Ruiz, P. Monti, L. Wosinska, and G. Junyent

Abstract—Physical layer impairments (PLIs) need to be
considered in the routing and wavelength assignment (RWA)
process of all-optical networks to ensure the provisioning of
good quality optical connections (i.e., lightpaths). A convenient
way to model the impact of PLIs on the signal quality
is to use the so-called Q-factor. In a dynamic provisioning
environment, impairment-aware RWA (IA-RWA) algorithms
include Q-factor evaluation in their on-line decisions on
whether to accept a connection request or not. The Q-factor
can be computed in either an approximated or an exact way.
IA-RWA algorithms using an approximated Q-factor estimation
(i.e., worst case) can be very fast and allow for a short
setup delay. However, connection request blocking can be
unnecessarily high because of the worst-case assumption
for the Q-factor parameters. In contrast, an exact Q-factor
computation results in a better blocking performance at
the expense of a longer setup delay, mainly due to the
time spent for the Q-factor computation itself. Moreover,
an exact Q-factor approach requires extensions of the gen-
eralized multi-protocol label switching suite. To overcome
these problems, we propose a statistical approach for fast
impairment-aware RWA (SAFIR) computation. The evaluation
results reveal that SAFIR improves the blocking probability
performance compared to the worst-case scenario without
adding extra computational complexity and, consequently,
without increasing the connection setup delay.

Index Terms—All-optical networks; Cross-phase modulation
(XPM); Impairment-aware RWA.

I. INTRODUCTION

T he rapidly increasing traffic demand in communication
networks requires further improvement of spectral effi-

ciency in transparent dense wavelength division multiplexing
(DWDM) networks where the signal is transmitted from source
to destination through all-optical channels called lightpaths.
With the absence of optical-to-electrical-to-optical (O/E/O)
conversion at intermediate nodes, the optical signal might be
degraded due to physical layer impairments (PLIs) induced
by the transmission through optical fibers and components.
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PLIs can be divided into non-linear and linear impairments.
Non-linear impairments affect not only each wavelength chan-
nel individually, but also cause disturbance and interference
among channels traversing the same fiber link. The most
important non-linear effects are self-phase modulation (SPM),
cross-phase modulation (XPM), and four-wave mixing (FWM).
Non-linear impairments become in general apparent as the
signal power increases in long-haul links. On the other hand,
linear impairments do not depend on the signal power. The
most important linear impairments are fiber attenuation, am-
plifier spontaneous emission (ASE) noise, chromatic dispersion
(CD) (or group velocity dispersion (GVD)), and polarization
mode dispersion (PMD). Linear and non-linear PLIs of a
lightpath can be quantified by using the quality factor Q [1].

To provide good quality lightpaths, PLI information needs to
be taken into account while solving the routing and wavelength
assignment (RWA) problem. RWA consists in finding a physical
route and in assigning a wavelength to a given connection
request. The incorporation of PLI information into the RWA
problem for transparent optical networks has recently received
a lot of attention, resulting in the development of a number of
impairment-aware RWA (IA-RWA) algorithms [1–10]. IA-RWA
algorithms can be used either in the network planning
phase, when the set of connection requests is known in
advance (off-line algorithms) [2], or in the dynamic lightpath
provisioning upon arrival of connection requests (dynamic
algorithms). In dynamic IA-RWA algorithms, the Q-factor of
candidate lightpaths is computed during the lightpath setup
process, and only those lightpaths with a Q-factor above a
pre-defined threshold are established. Two main approaches
for dynamic IA-RWA can be considered, i.e., centralized and
distributed. A distributed approach offers a shorter setup
delay than a centralized one, but at the expense of a higher
blocking probability [3,4]. In this paper, we focus on dynamic
IA-RWA algorithm to be used in the distributed control plane
of automatically switched optical networks (ASONs) [11].

When non-linear impairments are considered for RWA
computation at each controller node of a distributed control
plane, the information of the current network state (i.e., which
wavelength channels are used on the fiber links) is needed
for calculating the Q-factor of each wavelength that is
end-to-end available for every candidate route. This translates
into the need for standardized extensions of the generalized
multi-protocol label switching (GMPLS) protocol set [12] in
order to provide the necessary information for a distributed
and accurate IA-RWA computation.
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Fig. 1. (Color online) Example of Q-factor re-computation (Q_Check)
when a new lightpath is established in the network.

Extensions of the signaling protocol to collect information
about the already-established lightpaths along the route of a
new lightpath during its setup signaling phase are studied
in [9,10]. Before establishing a new lightpath, the Q-factor of
the already-established lightpaths sharing common links with
the new one is re-computed to ensure that their signal qualities
will not be degraded below a specified threshold if the new
lightpath were to be established. Figure 1 shows an example of
Q-factor re-computation after the arrival of a new connection
request. Assume that three lightpaths (2–5, 3–7, and 7–6)
are already established in the optical data plane. When a
new request for a connection between nodes 1 and 6 arrives,
the RWA algorithm at the source node in the control plane
(controller 1) computes a route through the links 1–2, 2–4, 4–5,
and 5–6. Note that the new lightpath shares some of those
links with the already-established lightpaths, i.e., lightpaths
2–5, 3–7, and 7–6. Since establishing a new lightpath might
affect the signal quality of the already-established ones, the
information about these lightpaths needs to be collected during
the new connection setup signaling. At the destination node
(controller 6), the Q-factor of both the new and all affected
lightpaths is computed, requiring a new protocol to request
Q-factor re-computation to be standardized. Moreover, if any
of these lightpaths have a Q-factor lower than a pre-defined
threshold, an error needs to be generated followed by a
new route re-computation at the source node, and a new
signaling process is started. As a consequence, all these
processes, i.e., collecting lightpath information and Q-factor
re-computation, not only add complexity and control overhead,
but also increase the lightpath setup delay.

Several approaches have been proposed to prevent the
prohibitively high control overhead of the (accurate) dis-
tributed approach while reducing the lightpath setup delay.
The authors of [8] consider impairments as fixed penalties for
each link assuming a fully loaded system, referred to as the
worst-case approach. Advantages of this approach are (i) very
short lightpath setup time (impairments of each link can be
pre-computed), and (ii) GMPLS protocol extensions are not

needed. However, the blocking probability obtained using this
approach might be unnecessarily high.

With respect to the Q-factor, XPM is the dominant
non-linear impairment, the value of the XPM variance being
several times greater than that of FWM [13]. For example, for
a path with a Q-factor of 7.3 (bit error rate (BER) ≈ 1.44e−13),
the values of the variance of XPM and FWM are 1.58e−4 and
5.66e−6, respectively. Thus, in this case, the XPM variance is
more than 27 times greater than the FWM variance. Therefore,
several works present not only analytical models to compute
the XPM, but also ways to accelerate that computation. The
authors in [14] studied the spectral characteristics of XPM in
multi-span optical systems and found that per span dispersion
compensation is the most effective way to minimize the effect
of XPM. In [15], a generalized model of the XPM degradation in
fiber links consisting of multiple fiber segments with different
characteristics and optical amplifiers is presented. Although
this original model was subsequently simplified in other works
(e.g., [16]), Q-factor computation times were still of the order of
seconds and thus impractical when used in the control plane,
even using ad hoc hardware-accelerated computation [17].
Other approaches to minimizing setup times in an on-line
provisioning paradigm resort to the use of guard bands,
i.e., leaving unused wavelength channels between lightpaths
in order to reduce the effect of XPM [18].

To overcome the deficiencies of the existing IA-RWA
approaches, this paper proposes (i) a statistical model for
fast and accurate estimation of XPM noise-like variance
which allows one to obtain the Q-factor of a given lightpath
with computation times several orders of magnitude lower
without employing additional hardware, and (ii) a novel prob-
abilistic approach, called SAFIR (statistical approach for fast
impairment-aware RWA), which uses the proposed statistical
XPM model and wavelength channel usage values (obtained
by network characterization) to calculate the Q-factor of
a lightpath without requiring Q-factor re-computation of
already-established lightpaths or GMPLS extensions. Keeping
in mind the lesson learnt from the guard band concept, our
approach defines a parameter called the channel-interference
negligible distance (η), which determines the range of neigh-
boring wavelength channels that significantly interfere with
the one under study. In contrast with guard bands, channels in
the η range with respect to a given reference channel can be
used as long as they can provide a Q value better than a given
Q threshold. Simulation results show that SAFIR drastically
improves the network efficiency, achieving performance similar
to that of the accurate distributed approach, with a shorter
computation time.

The remainder of this paper is organized as follows.
Section II introduces the general impairments model and
presents the proposed statistical XPM model. Section III
describes the SAFIR approach based on network characteri-
zation used to apply probability to the IA-RWA process. The
derived statistical XPM model and the probabilistic IA-RWA
algorithm are subsequently applied to different reference
network topologies in Section IV. Finally, Section V gives some
concluding remarks.
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II. IMPAIRMENTS MODEL

This section first presents a description of how the Q-factor
is computed, and then it describes in detail the proposed
statistical model for an approximation of the XPM value.

A. Q-factor Computation

As stated above, the effect of both linear and non-linear PLIs
can be quantified by using the quality factor Q.

In [1] the authors present a Q-factor estimation model that
includes the effects of ASE noise, the combined SPM/GVD
and optical filtering effects, XPM, and FWM. Here, we extend
that model to include also the power penalty due to PMD.
ASE, FWM, and XPM are calculated assuming that they
follow a Gaussian distribution. The combined SPM/GVD and
optical filtering effects are quantified through an eye closure
metric calculated on the most degraded bit pattern. The
power penalty due to PMD is calculated based on the length
of a lightpath, the bit rate, and the fiber PMD parameter.
Based on these assumptions, in this paper, the Q-factor of
a lightpath is calculated according to the following equation,
where Ptransmitter is the transmitted signal power, peneye
is the relative eye closure penalty attributed to SPM/GVD
and optical filtering effects, penPMD is the power penalty
due to PMD, and σ2

ASE, σ2
XPM, and σ2

FWM are the electrical
variance of ASE noise, XPM, and FWM, respectively. A detailed
analytical expression of each term in Eq. (1) can be found in [1].

Q = peneye ·Ptransmitter

penPMD ·
√
σ2

ASE +σ2
XPM +σ2

FWM

. (1)

peneye, penPMD, and σ2
ASE can be computed beforehand,

since their values do not vary with the load of the network
(i.e., the number of currently used wavelength channels).
Nonetheless, the values of σ2

XPM and σ2
FWM vary with the

load, and they need to be computed for every end-to-end
unused wavelength of a candidate route. We computed the
value of σ2

XPM for several link distances and number of
wavelengths scenarios on a dual-core-based computer with
4 Gbytes of RAM, and the computation time took 50 ms
on average. As will be demonstrated, the lightpath setup
process with a distributed control plane based on an IA-RWA
algorithm would be of the order of seconds (which is in
line with [17]). As explained in the previous section, the
Q-factor of each candidate lightpath needs to be evaluated
to choose the best performing lightpath and the Q-factor of
each already-established lightpath needs to be re-computed
to guarantee that the signal quality of already-established
lightpaths is not affected after establishing a new one. This
strategy is obviously impractical in the control plane of ASONs.

To overcome this deficiency, we propose next a statistical
model for accurate and fast σ2

XPM computation. Since σ2
XPM

is dominant over σ2
FWM, the worst-case value of σ2

FWM is
assumed in this paper, and thus it can be computed in advance.

B. Statistical XPM Model

Let G(N, E, W) represent a graph of an optical network,
where N is the set of nodes, E is the set of fiber links, and W
is the set of wavelengths in ascending order of their respective
frequencies. Every wavelength in W is assigned a wavelength
channel labeled from 1 to |W |. Let α(e) be the number of
amplifiers along every link e ∈ E. σ2

XPM(e,λ) represents the
XPM noise variance on reference channel λ of the link e, which
suffers from interference with every other wavelength channel
of link e used. σ2

XPM(e,λ, i) is the XPM noise variance on
reference channel λ as a consequence of the interference with
channel i of link e.

Aiming at empirically describing the relation between
σ2

XPM(e,λ) and σ2
XPM(e,λ, i), we developed a factorial ex-

periment [19] consisting of thousands of XPM variance
computations using the analytical model proposed in [16].
Each computation is characterized by a unique combination of
experimental variables: the number of in-line amplifiers along
a link, the number of wavelengths on a link, the reference
channel, and the status of the other channels (i.e., busy or
free). Note that, when the number of busy channels is equal
to one, the σ2

XPM(e,λ) value obtained matches a specific case of

σ2
XPM(e,λ, i). The results obtained using statistical correlation

are in perfect accordance with the following equation, deduced
from [15,16], where δ i(e) is a binary variable which is equal to
1 if channel i is busy, and 0 otherwise.

σ2
XPM (e,λ)=

∑
i∈W
i 6=λ

δi(e) ·σ2
XPM (e,λ, i) . (2)

In conclusion, each channel occupied by an active lightpath
adds some interference to the XPM variance of the reference
channel regardless of the status of the rest of the channels. Due
to this additive behavior, it is possible to find an alternative
model to calculate σ2

XPM(e,λ) based on the modeling of

σ2
XPM(e,λ, i). Note that the value of σ2

XPM(e,λ, i) is computed
using the equation presented in [1], where the effects of signal
power, fiber effective area, fiber length, fiber attenuation,
non-linear index coefficient, dispersion coefficient, and the
walk-off parameter between the reference channel λ and
channel i are taken into account.

The first and most straightforward approach (hereafter,
the full deterministic approach) consists in pre-computing
and storing the whole set of possible σ2

XPM(e,λ, i) values.

σ2
XPM(e,λ, i) depends on three discrete variables (i.e., α(e),λ,

and i), which in turn create the set of finite and countable
σ2

XPM(e,λ, i) values. In fact, the size of this set is equal to |W |∗
(|W | − 1)∗maxAmp, where maxAmp = max{α(e), e ∈ E}. This
shows that the application of the full deterministic approach
provides an alternative valid method to obtain exact XPM
variance values in an on-line IA-RWA algorithm. However, the
size of σ2

XPM(e,λ, i) might become an issue in real networks.

As will be shown in Section IV, the size of the σ2
XPM(e,λ, i) set

grows to the impractical value of 158,000 for 80 wavelengths.

To overcome the drawback of the full deterministic
approach, we propose a two-step approach, referred to as the
restricted approximated approach, to reduce the size of the set
of possible values necessary to model σ2

XPM(e,λ). The restricted



Velasco et al. VOL. 4, NO. 2/FEBRUARY 2012/J. OPT. COMMUN. NETW. 133

approximated approach aims at (i) reducing the range of
neighboring channels interfering with the reference channel,
and (ii) obtaining polynomial models to describe σ2

XPM(e,λ, i).

To determine the range of neighboring channels that
significantly interfere with a reference channel, we defined the
channel-interference negligible distance (η) as the parameter
representing half of that range. Those channels at a distance
greater that η from the reference channel are assumed to
have negligible XPM interference on the reference channel.
Equation (2) is modified to take into account the channel-
interference negligible distance η as follows:

σ2
XPM (e,λ)=

min(λ+η,|W |)∑
i=max(1,λ−η)

δi(e) ·σ2
XPM (e,λ, i)+εlink, i 6=λ,

(3)

where εlink represents the error caused by ignoring the effect of
the channels at a distance greater than η from λ. Equation (3)
describes an intermediate step between the full deterministic
and the restricted approximated models. Note that when η =
|W | − 1 the interference of every wavelength in the optical
spectrum is considered, and the model in Eq. (3) is equal to the
full deterministic model, i.e., εlink = 0. By using the σ2

XPM(e,λ)

model shown in Eq. (3), the number of σ2
XPM(e,λ, i) values to

be computed in the worst case is reduced to 2η∗|W |∗maxAmp
(from λ−η to λ+η), which, depending on the value of η, can be
significantly smaller than the number of σ2

XPM(e,λ, i) values
needed in the full deterministic approach.

The second step of the restricted approximated approach is
to find a model that is able to estimate the impact (i.e., interfer-
ence) of each channel in the range [λ−η,λ+η] on the value of
σ2

XPM(e,λ). Let s2
XPM(e,λ, i) represent an approximate model of

σ2
XPM(e,λ, i), such that σ2

XPM(e,λ, i)≈ s2
XPM(e,λ, i). Keeping in

mind that σ2
XPM(e,λ, i), λ, and α(e) are non-linearly related (as

shown in Section IV), we propose a polynomial model of degree
γ obtained by least squares interpolation [19] using α(e) and λ

as variables. The mathematical formulation of the polynomial
is as follows:

s2
XPM (e,λ, i)=

∑
j∈[1,γ]

ui j ·λ j + ∑
k∈[1,γ]

vik ·α(e)k

+ ∑
j∈[1,γ]

∑
k∈[1,γ]

wi jk ·λ j ·α(e)k +bi ±εpair , (4)

where u, v, w, and b are the polynomial coefficients.
The superscripts on the variables in Eq. (4) indicate the
corresponding powers of the polynomial model. The number of
coefficients of each σ2

XPM(e,λ, i) model is (γ2+2γ+1). Note that
some of these coefficients could be zero. Moreover, for the sake
of simplicity, we modeled every σ2

XPM(e,λ, i) with the same
parameter γ obtained by adjusting the error of each model to
a given target. Thus, the total number of coefficients for the
restricted approximated model (Eqs. (3) and (4)) is bounded to
2η∗ (γ2 +2γ+1).

The next section presents a provisioning approach that uses
this approximated PLI model, including the XPM model and
the worst case for FWM.

III. THE SAFIR APPROACH

This section presents SAFIR (Statistical Approach for Fast
Impairment-aware RWA), a provisioning approach that bases
its decisions on a probabilistic value of the Q-factor of the
lightpaths. SAFIR consists of three phases. First, before the
network is put into operation, the network is characterized
by obtaining an on-average usage distribution of each channel
for a given traffic matrix and intensity. In the second phase,
i.e., during network operation, a probabilistic IA-RWA is
used to accommodate dynamic connection requests. This
probabilistic provisioning strategy takes advantage of the
approximated impairments model described in the previous
section. During this phase, the actual traffic distribution
is monitored to detect deviations from the expected traffic
distribution used in the first phase. When a significant
discrepancy is detected, a network re-characterization phase
(the third one) is triggered and the new channel usage data is
disseminated to every node in the network. It is worth noting
that the network design problem is out of the scope of this
paper. In this regard, we assume that the traffic matrix used
as a reference has been appropriately designed to cope with
short-term traffic fluctuations, see, e.g., [20], giving as a result
an expected traffic distribution and intensity.

A. Before Operation: Network Characterization

Before putting the network into operation, its potential
behavior under the expected traffic distribution and intensity
needs to be studied and characterized. The objective of this
characterization process is to obtain an on-average usage
distribution of each wavelength channel for the predicted
traffic distribution and intensity. To this end, a number of
simulations are run using a modified first-fit (FF) heuristic
for the wavelength assignment, where the assignment order
is modified to mimic the XPM behavior described in Section II
with a given η value (i.e., the XPM noise variance is neglected
for channels at a distance greater than the given η), and
without blocking any connection request due to a low value of
the Q-factor.

The complete set of links of the given network is divided
into several subsets as a function of their usage degree. We
consider two subsets: subset 1, consisting of the most used
links, i.e., mainly links with short physical distance; and subset
2, consisting of the least used links. Figure 2 shows an example
of the cumulative distribution function of the usage probability
obtained for three channels on links of subset 1 and subset
2 of the European Optical Network—Basic Topology, EON-BT
(presented in Section IV). As shown in the figure, channels in
subset 1 have a higher usage probability than the channels
in subset 2. For instance, channel #9 is expected to be used
with a probability of roughly 90% on links in subset 1 and with
a probability of around 60% on links in subset 2. Note that
a worst-case approach, which assumes that every channel is
in use on every link [8], can be replaced with a probabilistic
worst case using these probabilities. This already entails a
significant improvement of the proposed probabilistic approach
with respect to the worst-case one.
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Fig. 2. (Color online) Cumulative distribution function of usage
probability for three wavelength channels in links of subsets 1 and 2.
Accuracy levels of 0.8, 0.9, and 0.95 are also shown.

Furthermore, we defined an accuracy level (ρ) by under-
sizing the usage probability and assuming some small error.
As shown in Fig. 2, three accuracy levels are considered (0.8,
0.9, and 0.95), thus obtaining different usage probabilities. For
instance, wavelength channel #9 is in use with a probability of
∼0.29, ∼0.35, and ∼0.41 on links in subset 2 assuming ρ equal
to 0.8, 0.9, and 0.95, respectively.

As the final result of this stage, the usage probability (pi(e))
of each wavelength channel i on the links in the defined
subsets is obtained. These values will be used to compute a
probabilistic Q-factor of each of the lightpaths to be established
over the network.

B. In Operation: Probabilistic Q-factor

With SAFIR, a probabilistic version of the Q-factor defined
in Eq. (1) is computed for each candidate route. Following
the approximated PLI model defined in Section II, peneye,

penPMD, σ2
ASE, and σ2

FWM are pre-computed and stored at
each controller node in the control plane. A set of values
of peneye covering a specific range of lightpath distance
are also pre-computed. On the other hand, the XPM noise
variance for a given wavelength channel on a specific link
is calculated by using the model presented in Eq. (4). Note
that Eq. (3) cannot directly be applied in the context of
SAFIR since the Q-factor of already-established lightpaths is
not re-computed. Furthermore, although the usage status of
every wavelength channel is flooded in the network, making it
possible to calculate the current Q-factor, the value obtained
might be immediately outdated as a consequence of the
network dynamics. For these reasons, the deterministic δi(e)
in Eq. (3) is substituted by the usage probability (pi(e)), and a
probabilistic version of the restricted approximated approach
described in Section II can be obtained as follows, where the
σ2

XPM(e,λ) value computed represents a probabilistic bound
with a given accuracy level of the XPM noise variance that a
lightpath would experience on link e under the expected traffic
distribution and offered load.

TABLE I
SAFIR’S PROBABILISTIC IA-RWA ALGORITHM

IN network, set of k_routes, Q_threshold
OUT route and wavelength
1: Route candidateRoute
2: initialize w ← 0;bestQ ← 0
3: for each route r i in k_routes do
4: for each wavelength wi in W do
5: if wi is end-to-end available in r i then
6: thisQ ← compute prob. Q-factor(network, r i ,wi)
7: if (thisQ > bestQ) then
8: candidateRoute ←r i
9: w ←wi ;bestQ ← thisQ
10: if no candidateRoute found then
11: return no route, lack of resources
12: if bestQ <Q_ threshold then
13: return no route, Q reasons
14: return candidateRoute in wavelength w

Unavailable period
time

On average QQ

Q_threshold

Instantaneous Q

Fig. 3. (Color online) Evaluation of the Q-factor of an optical
connection.

σ2
XPM(e,λ)=

min(λ+η,|W |)∑
max(1,λ−η)

i 6=λ

pi(e) · s2
XPM(e,λ, i). (5)

Using the above probabilistic Q-factor, Table I presents the
pseudo-code of an algorithm that selects a route, from a set
of pre-computed routes for the source and destination nodes
of a connection request, and assigns a wavelength so that its
probabilistic Q-factor is better than a given threshold. For
each candidate route, the algorithm computes the probabilistic
Q-factor of every unused wavelength channel and chooses
the lightpath with the maximum Q value. If no candidate
route is found, the request is blocked due to insufficient
resources. If the Q-factor of the lightpath found is lower
than a given Q_threshold, the connection request is blocked
as a consequence of impairments constraints. Otherwise, the
signaling of the connection request on the route found using
the assigned wavelength starts. In the SAFIR approach, each
source controller node runs this algorithm for every incoming
connection request.

Although lightpaths are established only when their
probabilistic Q-factor is above the threshold, there is no
guarantee that a lightpath will not experience an XPM noise
higher than the prediction. This in turn will lead to a lower
Q-factor during part of its holding time (instantaneousQ). To
quantify the insufficient Q-factor experienced by a lightpath,
we propose to adopt the concept of availability. Similar to the
availability defined in fault recovery [21], an optical connection
becomes quality-of-transmission- (QoT-) unavailable when it
experiences a BER higher than the requested threshold.
Otherwise it remains QoT-available (Fig. 3). Connection QoT-
availability (QoT−A) is defined as the ratio between the time
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that a connection is QoT-available (i.e., satisfies the optical
signal quality requirement) and the total time the connection
is established in the network. Therefore, the inaccuracy of the
decisions made by SAFIR can be quantified in terms of the
QoT-unavailability (QoT−U) of the provisioned connections (or
their complementary QoT-availability, QoT−A = 1−QoT−U).
Note, however, that even in the case of a lightpath experiencing
QoT-unavailability, its on-averageQ value, measured over a
longer time period, might be above the required Q threshold,
as shown in Fig. 3. In this regard, the on-averageQ (BER)
is the performance metric to be considered for service level
agreements (SLAs) between network operators and customers.

C. Changes in the Traffic Distribution: Re-charact-
erization

We assumed that a traffic distribution is forecasted in the
network characterization phase. During network operation,
traffic analysis must be done in order to determine the accu-
racy of traffic forecast. It is obvious that any characterization
includes some error. Let us assume a standard confidence
level of 95%. According to this assumption, some differences
between the forecasted and the real traffic distribution
may exist. In addition, the traffic distribution can change
in the long term. Thus, a mechanism to trigger network
re-characterization when the real traffic distribution moves to
a new distribution (with a difference that is bigger than the
confidence interval considered) must be devised. This adaptive
mechanism is based on the monitoring of the traffic pattern
to detect deviations with respect to the forecasted traffic
distribution.

It is important to distinguish whether the deviations in the
traffic distribution are within the confidence interval or not. In
the latter case, a network re-characterization is triggered. The
chi-squared test [19] can be used to this end.

IV. PERFORMANCE EVALUATION

This section evaluates the PLI model proposed in Section II.
First, the networks considered are characterized to obtain
the expected fiber usage values that will be applied by
SAFIR. Then these networks are put into operation and
the performance of SAFIR is evaluated in terms of blocking
probability, QoT-availability, and setup time.

A. PLI Model Validation

Recall that our PLI model includes a statistical XPM model
and assumes the worst case for FWM.

To minimize the XPM model’s error while keeping the size of
the model at a moderate level, the value of parameters η and γ
of the XPM model in Eqs. (3) and (4) need to be determined.
We first studied the impact of η over both the number of
polynomial models considered and the amount of information
that the XPM model incorporates (i.e., the relative effect of
2 ∗ η neighbor channels over the XPM variance for a given
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reference channel). Using Eq. (3), the amount of information in
σ2

XPM(e,λ) against η is plotted in Fig. 4. The figure shows that
η= 4 adds about 97% of the total XPM effect, which, as will be
proved, is enough for the model. Next, we used this value in our
XPM statistical model and we applied a polynomial fitting [19]
over a set of data which included 80 wavelengths for each
of the 2∗ηs2

XPM(e,λ, i) models. Several γ-degree polynomials
were fitted, and the level of accuracy in terms of the Pearson
correlation coefficient (R2) [19] is plotted in Fig. 4. As shown,
5-degree polynomials can be used while providing R2 values
≥ 96%.

Using these values for η and γ, our restricted approximated
XPM model was compared against the analytical model in [16].
The solid lines in Fig. 5 present σ2

XPM(e,λ, i) values for i =
λ+ 1 of the links, with α(e) ranging from 3 to 23 and with
λ = 1. . .79. The dotted lines show s2

XPM(e,λ, i) values for the
same range of values of α(e) and λ as before. It can be clearly
seen that the values of XPM variance obtained by using our
proposed statistical model are very close to that derived from
the analytical model. The error introduced by the statistical
model is shown as a function of the value of σ2

XPM in Fig. 6.

The vast majority of σ2
XPM values are obtained with an error

lower than ±5%, but a few of them are computed with higher
error. However, most of these higher error values correspond
to a low σ2

XPM value that adds a low or negligible total error
to the final Q-factor value of a lightpath, as will be proved
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next. Interestingly, for higher σ2
XPM values the error is within

±2.5%. In addition to these results, a final validation of the
statistical model applied to end-to-end lightpath provisioning
is performed and presented later in this section.

Regarding the size of the XPM model, Table II shows the
number of coefficients that need to be stored for the different
XPM models in the case of fiber links with up to 25 amplifiers
(i.e., up to 2000 km) using 40 or 80 wavelengths. It is worth
noting that the number of coefficients to be stored is only 288
in the case of our restricted approximated model. In addition,
note that the number of coefficients in the proposed model is
not even dependent on the number of wavelengths considered.

The size of the complete PLI model, however, is slightly
larger, since all other impairments are also pre-computed and
stored. The number of peneye values to be stored depends on
the assumptions for the values of the longest distance possible
for a path and for the distance granularity. In our approach,
a longest distance of 10,000 km and a distance granularity of
25 km are assumed, and thus 400 peneye values are stored
at each controller node. Moreover, |E| values for penPMD, |E|
for σ2

ASE, and |E| ∗ |W | values for the worst-case σ2
FWM are

also stored. In case of a network with 20 optical links and 80
wavelengths, our approach requires storing at each controller
node in the control plane only 2328 PLI values, including the
XPM variance.

Although the statistical XPM model has proved to provide
low relative error (only 6%) when computing the XPM variance
of a given link, it should also be validated to compute the

TABLE II
NUMBER OF COEFFICIENTS AND RELATIVE ERROR OF EACH

MODEL

|W | = 40 |W | = 80
Relative error
(εlink)

Full deterministic 39,000 158,000 0%
Restricted (η= 4) 8000 16,000 3%
Restricted approximated
(η= 4 γ= 5)

288 6%

Q-factor of lightpaths, specifically when a decision needs to
be taken to accept or block a lightpath. To this end, and
for the rest of our experiments, we used three network
topologies: (i) the 16-node basic topology of the EON-BT [22],
(ii) the 28-node ring topology of the European optical network
(EON-RT) [22], and (iii) the 17-node NSF east network
topology (NSF-East) [23]. These three network topologies were
selected by considering their different average nodal degree
and link length. Figure 7 shows the topologies considered
and reviews their most relevant characteristics. Moreover, we
assumed Q_threshold= 6(BER≈ 1e−9).

The proposed PLI model is validated using the network
topologies considered. We run several simulations for two
values of offered network load, i.e., low and high, and the
RWA decisions made by an exact analytical model [1] and
our approximated impairments model are compared. Table III
shows that the proposed PLI model makes incorrect decisions
only in less than 0.11% of all cases. These results ensure that
our model is responsible only for a negligible increment in the
blocking probability.

B. Network Characterization

As described in Section III, before putting SAFIR into
operation, an on-average usage distribution of each wavelength
channel for a given traffic distribution and intensity should be
obtained. To achieve this, we developed an ad hoc event-driven
simulator in Matlab [24]. A dynamic network environment was
simulated for the networks under study, in which incoming
connection requests arrive at the system following a Poisson
process and are sequentially served without prior knowledge
of future incoming connection requests. The holding time of
the connection requests is exponentially distributed with a
mean value equal to 2 h. Source/destination pairs are randomly
chosen with equal probability (uniform distribution) among all
network nodes. Different values of the offered network load
are created by changing the arrival rate while keeping the
mean holding time constant. Furthermore, it is assumed that
the bandwidth demand of each connection request is equal to
one wavelength unit and that wavelength conversion capability
is not available, i.e., the wavelength continuity constraint is
enforced.

Figure 8 shows an example of the values obtained for pi(e)
on a link e with a maximum capacity of 40 wavelengths for
the accuracy levels considered using η = 4 and γ = 5. It can be
noticed that η affects the usage probability of the wavelength
channels, since a clear distribution for the pi(e) values can be
identified. For instance, wavelength channels #0 and #39 have
significantly higher usage probability as compared to channels
#1. . . #η and #(39−η). . . #38.

C. SAFIR Performance Evaluation

The performance of SAFIR was compared against two
benchmarking impairment-aware strategies, i.e., a distributed
approach and a worst-case approach.

The distributed approach, referred to as the impairment-
aware current state (IA-CS), computes the Q-factor of each
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Fig. 7. (Color online) Network topologies considered: (a) 16-node EON-BT [22], (b) 17-node NSF-East [23], and (c) 28-node EON-RT [22].

TABLE III
PLI MODEL FINAL VALIDATION (Q DECISIONS)

EON-BT EON-RT NSF-East

Load (Erlangs) 270 330 210 300 270 360

Decisions 10,027 9936 10,010 10,000 10,035 10,020
Wrong 0 1 0 1 0 11
% 0 0.01 0 0.01 0 0.11

candidate lightpath using the current state of the network. For
this reason IA-CS requires accurate and complete knowledge
of the network resource usage. IA-CS works as follows. If the
Q-factor of a candidate lightpath is lower than Q_threshold,
the connection request is rejected; if the Q-factor is higher
than Q_threshold, IA-CS makes sure that this candidate
lightpath will not affect the already-established connections
by re-computing the Q-factor of the existing lightpaths that
share fiber links with the new lightpath. If the Q-factor of every
already-established lightpath is higher than the threshold, the
new lightpath is established; otherwise, the connection request
is blocked.

The worst-case approach, referred to as the Impairment-
aware Worst Case (IA-WC), assumes that all wavelengths are
in use on every link of the network, and hence the Q-factor is
not dependent on the load of the links. With this strategy, the
information about the current network state is not needed and
the Q-factor re-computation of already-established lightpaths
is not necessary.

Ad hoc event-driven simulators for all approaches consid-
ered were implemented in Matlab. The number of shorter
routes (k) was fixed to 10 for all cases. We conducted a
number of simulations using the previously described uniform
traffic distribution. For all the blocking probability results, the
simulation time was set to achieve a confidence interval of 5%
or better, with 95% confidence level.

Figure 9 shows the total blocking probability accounting
for both blocking due to insufficient resources, i.e., when no
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accuracy levels of 0.8, 0.9, and 0.95, using η= 4 and γ= 5.

wavelength is available, and due to impairment constraints,
i.e., when none of the candidate lightpaths can meet
Q_threshold. To find the lower bound on the total blocking
probability we applied a conventional shortest path routing
approach with FF wavelength assignment, referred to as
NoIA-RWA, i.e., a connection request is blocked due to
insufficient resources only. Different values of the offered
network load are considered in each network topology tested
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by selecting the values where the blocking probability obtained
by NoIA-RWA does not exceed 8%. As expected, IA-WC
exhibits the worst blocking probability performance in all
topologies tested. This is because IA-WC calculates the
Q-factor of a lightpath by assuming that all wavelengths are
in use. On the other hand, the results show that SAFIR
with ρ = 0.95 has similar blocking results to IA-CS without
requiring any information about the current network state or
extra calculations to check the Q-factor value of previously
established lightpaths. Note that the blocking probability
obtained by all approaches tested in the case of EON-RT is as
high as 13% even for low offered network load. This is because
the high average link length leads to high blocking due to
impairment constraints.

Both IA-WC and IA-CS guarantee that, for the entire
connection holding time, all established lightpaths will have
a Q-factor value better than or equal to Q_threshold. However,
as explained in Section III, this is not true for SAFIR. In order
to quantify the effect of using network characterization rather
than the current network state in SAFIR, three different
accuracy levels of wavelength usage probability, i.e., ρ = 0.8,
ρ = 0.9, and ρ = 0.95, are tested for the selected loads. The
blocking probability (Pb) and the QoT−U values are shown
in Table IV for three levels of the load and accuracy of
the wavelength usage. The results show that the average
QoT-unavailability obtained using SAFIR is around 1e−4 in
EON-BT and EON-RT and around 1e−3 in NSF-East. This is
a consequence of longer distances in the latter. It should be
mentioned that QoT−U= 1e−3 entails lightpaths experiencing
a lower Q (worse BER) than the threshold during only 0.1%
of time. The highest observed instantaneous BER for the
lightpaths was equal to 2.3e−8, which is only slightly above the
considered BER threshold of 1e−9. However, on-average BER
values of lightpaths for time periods of 1 h show that, even
when the instantaneous BER value is under the threshold, the
1 h on-average BER values were never worse than 3.84e−10,
which clearly proves how SAFIR fulfills SLA agreements.

As expected, QoT−U values increase when the accuracy
level is reduced. This is because the channel usage is
underestimated, so the values of the probabilities are lower
and in turn the blocking probability is higher.

Next, we study how SAFIR deals with (small) changes in
the forecasted traffic distribution as a consequence of errors in
its characterization. To this end, we add some traffic following
the stringent dual-hub distribution [21], in which every node
in the network connects to only two destination nodes, known
as hubs. The real traffic distribution is then in the form
α∗uniform+ (1−α)∗ dual−hub. Note that, in this case, the
incoming links to the hub nodes would be much more loaded
compared to the expected usage values obtained during the
initial characterization phase.

Table V reproduces the results obtained for the EON-BT
(Fig. 7(a)) network assuming 5% (α= 95%) and 10% (α= 90%)
of traffic following the dual-hub distribution, in which nodes
15 and 16 are selected as the hub nodes. As shown, SAFIR
offers almost the same Pb values as the ones achieved by
the IA-CS scheme under low and medium loads. Although
under the highest load the value of Pb obtained by SAFIR
is perceptibly different from that of IA-CS, it is worth noting
that these load levels are far from the optimum operational
load (i.e., at which Pb ≤ 1%) commonly used in real network
scenarios. On the other hand, in all the loads considered the
QoT−U value obtained is very low.

Additionally, we perform the chi-squared test to randomly
sample the connection requests following the mix of the
uniform and the dual-hub distributions with α = 95%
and compare them against the pure uniform one. Note
that if the size of the sample (the number of connection
requests monitored) is very high, we could detect any small
difference between samples generated following two different
distributions, even in the case of very small deviation in
the distributions. However, large sample sizes entail long
monitoring times; thus the key point is to detect deviations as
soon as they appear. We find that we need to monitor of the
order of 4000 requests to detect deviations in the forecasted
traffic distribution. In the case of the EON-BT network under
a traffic load resulting in Pb = 1% (330 Erlangs), by assuming
a mean holding time of 2 h, the mean inter-arrival time is
as stringent as 22 s. As a consequence, even in the stringent
scenario described above, we need to monitor the network
every day and decide whether or not re-characterization is
needed.
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TABLE IV
BLOCKING PROBABILITY AND QOT-UNAVAILABILITY OF LIGHTPATHS USING SAFIR FOR DIFFERENT ACCURACY LEVELS

Low Load Medium Load High Load

Network ρ Pb QoT-U Pb QoT-U Pb QoT-U

EON-BT
0.95 0% 0 1.19% 1.20e−5 10.60% 1.03e−4
0.9 0% 0 1.18% 2.38e−5 10.55% 1.27e−4
0.8 0% 0 1.13% 2.76e−5 10.33% 1.64e−4

NSF-East
0.95 1.43% 1.26e−3 5.00% 1.86e−3 10.64% 2.44e−3
0.9 1.40% 1.31e−3 4.44% 1.85e−3 10.33% 2.68e−3
0.8 1.03% 1.57e−3 4.36% 1.96e−3 10.32% 2.78e−3

EON-RT
0.95 13.49% 1.62e−5 15.69% 1.85e−4 22.41% 1.82e−6
0.9 12.85% 1.63e−5 14.73% 2.04e−4 21.42% 1.85e−5
0.8 12.09% 1.87e−5 13.63% 2.57e−4 20.36% 2.04e−5

TABLE V
Pb AND QOT-U CONSIDERING TRAFFIC DISTRIBUTION DEVIATIONS

Low Load Medium Load High Load

Dual-hub traffic Approach Pb QoT−U Pb QoT−U Pb QoT−U

5% SAFIR 0 0 1.2% 0 9.8% 0
IA-CS 0 1.3% 12.7%

10% SAFIR 0 0 1.6% 7.7e−6 9.9% 7.4e−5
IA-CS 0 1.5% 12.8%

TABLE VI
MEAN TIMES CONSIDERED

tRWA 20 ms tOCC 0.5 ms
tlink 0.25 ms

+propagation time
tswitch 5 ms

tconfig 2 ms

As mentioned in the introduction, the Q-factor computation
time strongly impacts the lightpath setup times when an
IA-CS strategy is used. In order to better assess the
advantages of SAFIR, we quantified the lightpath setup
times (tsetup) using an equation similar to the one presented
in [25], but adding the Q-factor computation time to consider a
PLI-aware environment. tsetup can be computed as

tsetup = tRWA + (2n−1) · tOCC +2 · (n−1) · tlink + tconfig

+ tswitch + q · tQ , (6)

where tRWA represents the computation time of the RWA
algorithm (excluding the Q-factor computation), tQ is the
Q-factor computation time, tOCC is the processing time in each
controller in the control plane, tlink is the propagation delay in
each control network link, tconfig is the software configuration
time of an optical node, tswitch is the time to perform the
optical switching, n represents the number of nodes traversed
by the lightpath, and q is the number of Q-factor computations.
Note that q includes both the number of Q-factor computations
performed during the wavelength assignment process of a new
lightpath and the number of computations needed to check
already-established lightpaths, which could be calculated in
parallel. Table VI specifies the values used for the parameters,
which are in line with those in [25].

Two general strategies for the wavelength assignment
process were considered to compare the setup times: (i) first
fit (WA-FF), in which the first end-to-end available wavelength
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Fig. 10. (Color online) Lightpath setup time as a function of Q_factor
computation time using the standard IA-CS strategy. The performance
of the SAFIR approach is shown for comparison.

with a Q value higher than the threshold is selected, thus
minimizing the number of Q-factor computations, and (ii) best
fit (WA-BF), in which the wavelength with the best Q value
is selected after computing the Q-factor of every end-to-end
available wavelength. A Q-factor computation time of the order
of 100 ms can be obtained using specific dedicated hardware,
whereas the time to compute the Q-factor without special
hardware is in the order of seconds [10,17].

Figure 10 plots the lightpath setup time as a function of the
time needed to compute the Q-factor using the IA-CS strategy
with both WA-FF and WA-BF. The route of all lightpaths
considered consisted of four nodes (n = 4) with 600 km fiber
links. For comparison purposes, the setup times achieved by
SAFIR are also plotted assuming q = 1 and tQ = 10 ms. The
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figure shows that a setup time shorter than 100 ms can be
achieved by using SAFIR while a setup time of one or of several
seconds is needed using the IA-CS strategy. It is worth noting
that even by using the WA-FF heuristic at least two Q-factor
computations can be expected, one to assign the wavelength
and then, once the Q_threshold is checked, another for the
already-established lightpaths.

V. CONCLUSIONS

In this paper, a PLI model for fast Q-factor computation
in optical transparent WDM networks was proposed. This
model includes a statistical estimation of XPM. The accuracy
of the model was validated via simulations. It was shown that
our statistical model obtains the XPM noise variance with
maximum 6% error when compared to the values offered by
an analytical model. Moreover, the PLI model made a correct
lightpath selection in 99.89% of all the cases, compared to an
exact analytical impairments model.

Based on the advantages of our PLI model, a novel
statistics-based approach for fast impairment-aware RWA,
referred to as SAFIR, was proposed. SAFIR uses network
characterization combined with the validated PLI model to
compute a probabilistic version of the lightpath Q-factor. In
this way the information about the current network state is not
needed, implying no extension of GMPLS. In light of the results
obtained, the total blocking probability achieved by SAFIR was
very close to the one computed via a distributed approach in
all network topologies tested for different accuracy levels of
wavelength channel usage probability.

Since the statistical values for channel usage in each link
may affect the quality of the lightpaths provisioned by SAFIR,
the QoT−U concept related to excessive BER was introduced
to evaluate the inaccuracy of the proposed approach. In the
entire set of the performed tests, the QoT−U of all established
lightpaths was kept below 1e−3. Even for that QoT−U value,
the 1 h on-average BER values were always above the
threshold.

Finally, lightpath setup times achieved by SAFIR were com-
pared against those using the IA-CS strategy in distributed en-
vironments. As proved, SAFIR offers setup times shorter than
100 ms instead of several seconds obtained by the IA-CS strat-
egy together with hardware-accelerated Q-factor computation.

In conclusion, SAFIR removes the prohibitively high control
overhead of the IA distributed approaches while providing
comparable network performance.
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