
Computing Alternate Multicast Trees with
Maximum Latency Guarantee

Limin Tang∗, Wanjun Huang∗, Miguel Razo∗, Arularasi Sivasankaran∗,
Paolo Monti†, Marco Tacca∗, and Andrea Fumagalli∗

∗ OpNeAR Lab, Erik Jonsson School of Engineering and Computer Science
The University of Texas at Dallas, Richardson, TX, USA

{lxt064000, wxh063000, mrazora, axs075200, mtacca, andreaf}@utdallas.edu
† NeGONet Group, School of Information and Communication Technology, ICT-FMI

Royal Institute of Technology (KTH), Kista, Sweden
{pmonti}@kth.se

Abstract—The growing demand for online media content
delivery and multi-player gaming is expected to increase the
amount of multicast service requests in both public and private
networks. Careful traffic engineering of multicast service requests
is becoming increasingly essential, as establishing the lowest cost
tree, e.g., shortest path tree, in the network for every individual
multicast request does not always ensure a global optimization.

In this paper, the authors investigate the use of alternate tree
routing, according to which multiple sub-optimal tree candidates
are computed for each multicast request. When performing
global routing optimization, each request is then assigned one
of the tree candidates, in a way that yields the desired result,
e.g., to minimize the number of (active) links that are required in
the network to bear the entire set of requests. A key component
of the investigated approach is the timely construction of the set
of alternate trees for every given root and destination set.

An algorithm is proposed to compute multiple sub-optimal tree
candidates with a guaranteed upper bound on the maximum end-
to-end transmission latency. The algorithm builds on the widely
used K shortest path algorithm, generalizing the technique of
computing K candidate shortest paths to obtain a number of
candidate sub-optimal trees with desirable properties. Simula-
tion experiments obtained for a multi-protocol label switching
(MPLS) traffic engineering network are discussed to investigate
the effectiveness, performance, and scalability of the proposed
algorithm.

I. INTRODUCTION

When dealing with unicast traffic in connection oriented
network (MPLS for example), the choice of shortest path is
optimal for the individual label switch path (LSP) request.
However, when looking at the network as a whole, shortest
path routing may often lead to uneven resource utilization, e.g.,
some links are underutilized, others are congested. Alternate
routing is a way to address this problem by allowing each LSP
request to be assigned one of the many possible sub-optimal
candidate paths. At the cost of a controlled degradation of
routing optimality for every individual LSP, a global network
optimization can thus be performed by searching across the
available candidate paths and choosing the most suitable one
to achieve the desired goal. One simple approach to compute
multiple candidate paths for a given LSP is to find the K short-
est paths, a technique that has been used extensively to solve
a number of routing optimization problems [1],[2],[3],[4].

Various algorithms are available to compute the K shortest
paths from a source to a destination node [5],[6],[7],[8]. Every
newly added candidate path is guaranteed to be the next
best path available to the LSP, thus offering a controlled
degradation of LSP’s routing optimality as the search space for
global optimality is augmented. A similar approach to handling
multicast (as opposed to unicast LSP) requests, i.e. compute
multiple candidate trees for each request, is not available.

In this paper the authors propose a time efficient algorithm
to compute multiple sub-optimal candidate trees from a root
to a set of destinations. Each candidate tree is guaranteed to
have an upper bound on the maximum hop count from the root
to every destination. Complexity, correctness, and a practical
implementation of the proposed algorithm are discussed, as-
suming that every node in the network has unlimited multicast
capability. Simulation results are used to estimate the benefit of
applying alternate routing to computing traffic engineering for
multicast requests in a number of network and traffic scenarios.

II. ALGORITHM FOR COMPUTING MULTIPLE CANDIDATE
TREES

This section contains a description of the proposed algo-
rithm, along with the analysis of its complexity and proof of its
correctness. The algorithm objective is to compute a number
of candidate trees in a graph for a given multicast request,
specified as one root and a set of destination vertices. The
algorithm first computes the K shortest paths for each root-
destination pair of the multicast request. Multiple trees are then
constructed for the multicast request from the K paths, while
guaranteeing an upper bound on the maximum hop-count from
the root to all destinations. The following notation is used:
• N : number of vertices in the network;
• M : number of edges in the network;
• s: root of the multicast request;
• D: set of destinations of the request;
• di ∈ D: the ith destination of the request;
• n: number of destinations in D;
• P : set of ordered loopless paths from s to all di ∈ D;
• Pi: set of ordered loopless paths from s to di;
• pij : jth shortest path from s to di;

2010 International Conference on High Performance Switching and Routing

978-1-4244-6971-0/10/$26.00 ©2010 IEEE 82

• t(V,E): a multicast tree with V as the set of vertices and
E as the set of edges;

• T : set of multicast candidate trees;
• h(p): hop-count of path p;
• hi(t): hop count from s to di in tree t.

A. Algorithm Description

The algorithm comprises two procedures:
Procedure 1 creates set Pi, i.e., it computes a set of K

ordered loopless shortest paths for every pair (s, di), di ∈ D,
using hop count as metric, which often is the dominant factor
responsible for transmission latency in MPLS networks.

Procedure 2 makes use of the paths in set Pi to compute a
number of trees to be added to T . T is an empty set before
running this procedure. The procedure works iteratively,
adding one tree at a time. At each iteration, a new tree
t(V,E) is computed as follows. First, initialize V and E
to be empty sets. Then, vertices and edges are increasingly
added to t(V,E) till a satisfactory tree is obtained. One at
a time, all destinations di ∈ D are considered as follows:
choose a path pij ∈ Pi that was not used in any previous
iteration and add all the vertices and edges in this path to
t(V,E). Then for each of the remaining destinations di′ ,
choose the shortest path from s to di′ in set Pi′ , i.e., pi′1.
Vertices and edges in this path are added to t(V,E), starting
from di′ and traveling backward along the path, until one
edge that has a node already in t(V,E) is added. Then, move
to the next destination node di′ till all destinations in D are
considered.

Pseudocode of Procedure 2:

1 T ← ∅
2 For (Pi ∈ P)
3 For (pij ∈ Pi)
4 create a new tree t(V,E), V ← ∅, E ← ∅
5 For vertex v ∈ pij
6 V = V ∪ v
7 EndFor
8 For edge e ∈ pij
9 E = E ∪ e

10 EndFor
11 For di′ ∈ D and i′ 6= i
12 v ← di′
13 e←last edge of pi′1
14 While (v /∈ V)
15 V = V ∪ v
16 E = E ∪ e
17 v = v’s upstream vertex on pi′1
18 e = e’s upstream edge on pi′1
19 EndWhile
20 EndFor
21 If t(V,E) /∈ T
22 T = T ∪ t(V,E)
23 EndIf
24 EndFor
25 EndFor

An example of how the algorithm runs on the NSFNet
topology (Fig. 1) is given next. Consider the multicast request
with root s = 0 and destinations D = {2, 6, 11}. Let K = 2.
The following 2 shortest paths from s to every di ∈ D are
computed by the algorithm:

Fig. 1: NSFNet Topology.

• P1

p11: 0→ 1→ 2
p12: 0→ 8→ 6→ 4→ 5→ 2

• P2

p21: 0→ 8→ 6
p22: 0→ 1→ 3→ 4→ 6

• P3

p31: 0→ 8→ 9→ 11
p32: 0→ 1→ 2→ 5→ 12→ 11

The first tree is built by using p11, p21 and p31, which is the
shortest path tree (SPT) (Fig. 2a). The second tree is built as
follows: first all vertices and edges in p12 are added to the
tree; then vertices and edges in p21 are added sequentially to
the tree, beginning from vertex 6. Note that since vertex 6 is
already on the tree, no action is required and the algorithm
moves to the next step. Path p31 is considered next, and
vertices and edges in p31 are added to the tree, beginning
with vertex 11. The adding stops once vertex 8 (already in
the tree) is reached. The computed tree is shown in Fig. 2b.
Similarly, two more trees (shown in Figs. 2c and 2d) can be
built based on paths (p11, p22 and p31), and paths (p11, p21
and p32), respectively.

(a) Tree 1 (SPT) (b) Tree 2

(c) Tree 3 (d) Tree 4

Fig. 2: Multiple trees built by the algorithm for the multicast
request with s = 0, D = {2, 6, 11} on the NSFNet topology.

The number of trees computed by the algorithm for a
given multicast request is potentially large (as shown in Sec-
tion II-C). This property offers great flexibility when routing
multicast requests, which is a unique feature of the algorithm.
The downside is that both heavy computation and large
memory consumption may be required to compute and store
all the possible candidate trees upfront. A way to circumvent
this drawback while retaining the ability to explore a large
number of candidate trees during optimization is to make use
of a light-weight implementation of the algorithm as follows.

83

Only the K shortest paths for each root-destination pair are
precomputed and stored in memory. The computation of one or
more candidate trees is performed only when alternate routes
of a multicast request are needed. When and how many such
routes are to be computed are both decisions to be made by the
combinatorial optimization algorithm that is searching for the
most optimal multicast request-to-candidate tree assignment.

B. Algorithm Complexity

This section evaluates the complexity of the algorithm’s two
procedures.

Procedure 1 computes the K shortest paths from source
to all destinations of the multicast request. Since comput-
ing K shortest paths for a pair of vertices has complexity
O(KN(M +N logN)) [8], the complexity of Procedure 1 is
O(nKN(M +N logN)).

Procedure 2 has at most nK iterations, given that there are
K shortest paths from every s to all di ∈ D pair. Each iteration
comprises three steps:

1) add vertices and edges of the jth shortest path from s
to di to the tree;

2) add vertices and edges of the shortest path from s to
di′(i

′ 6= i) to the tree;
3) check whether the computed tree already exists in T or

not.
Since every path can have at most M edges and at most
M + 1 vertices, step 1 has complexity O(M). Similarly,
step 2 has complexity O((n − 1)M). Step 3 compares a
newly computed tree with all trees in T . Hence, in the
worse case it takes O(M) to determine whether two trees
are distinct and there can be at most n(K − 1) existing trees
in T (see Section II-C). Consequently, step 3 has complexity
O((nK − 1)M) = O(nKM). In conclusion, the complexity
of Procedure 2 is nK(O(M)+O((n−1)M)+O(KnM)) =
nK(O((K + 1)nM) = O(n2K2M).

Combining both procedures, the maximum complexity of
the algorithm is O(nKN(M + N logN)) + O(n2K2M) =
O(nK((N + nK)M +N2 logN))).

C. Proof of Correctness

In this section proof is given that the algorithm can compute
at least K distinct candidate trees for the multicast request,
given that K distinct shortest paths can be found for at least
one root-destination pair s-dj . For the proof of correctness
of Procedure 1, see [5] and [8]. The proof of correctness of
Procedure 2 comprises two parts. First, it is proven that t(V,E)
created in line 4-20 of Procedure 2 is a tree (Proof 1), then
it is proven that in the inner loop of Procedure 2 (line 3-24),
every pij ∈ Pi yields a distinct and unique tree (Proof 2).

Proof 1: t(V,E) is a tree. At initialization, t(V,E) only
contains vertices and edges of path pij . At this time t(V,E)
is therefore a loopless tree without branches. Recall that for
destination di′(i

′ 6= i), edges and vertices of pi′1 (shortest path
from s to di′) are added sequentially to t(V,E), beginning
from the last vertex (di′) of pi′1, and proceeding backward

towards the root, till a vertex is found that is already in V .
From this iterative step, it can be observed that:
• since pi′1 is a loopless path and its edges and vertices

are added till a vertex in the tree is reached, t(V,E) is
still loopless;

• since there exists at least one vertex that is in both
pi′1 and t(V,E), namely s, the stop condition is always
reached.

Based on these two observations it is clear that after every
step, t(V,E) remains a tree.

Proof 2: in the inner loop of Procedure 2 (line 3-24),
every pij ∈ Pi yields a distinct and unique tree. Let tj
and tj′ be two candidate trees computed from pij and pij′ ,
respectively, and let j 6= j′. Note that all edges and vertices
in pi′1 (i′ 6= i) added to tj and tj′ belong to SPT; when
j = 1, the computed tree is SPT. Then it is observed that two
different paths with same source and same destination must
depart from each other at one node and must join each other
at another node, hence there must be two edges that belong to
these two paths respectively having different sources and same
destination. In other words for any two paths pij and pij′ , there
are at least two edges e(v1, v2) ∈ pij and e′(v′1, v

′
2) ∈ pij′ that

satisfy v1 6= v′1 and v2 = v′2. Obviously, e /∈ pij′ and e′ /∈ pij .
Also, e and e′ cannot both be in SPT, otherwise there would
be two shortest paths from s to v2, which is not allowed. Thus,
either e or e′ is not in SPT. Without loss of generality, assume
that e is not in SPT. Then e cannot appear in any path of pi′1.
Combined with e /∈ pij′ , it is clear that e /∈ tj′ . Since e ∈ pij
and therefore e ∈ tj , tj and t′j must be two distinct trees.

Both Proof 1 and 2 ensure that a tree computed from pij is
distinct from a tree computed from pij′ , when j 6= j′. Since
j ∈ {1, . . . ,K} (i.e., at least K shortest paths from s to di
can be found), K distinct trees can be computed by the inner
loop of Procedure 2 (line 3-24).

The maximum number of distinct trees that can be built by
the algorithm can also be computed. There are n iterations of
the inner loop of Procedure 2. If K shortest paths from s to
di can be found for every destination di ∈ D, Procedure 2
will compute a total of nK trees. Note that SPT is computed
n times in this case, hence if all other trees are distinct, the
number of distinct candidate trees computed by Procedure 2
has upper bound nK − (n− 1) = n(K − 1) + 1.

D. Proof of Maximum Hop Count

In this section it is demonstrated that for a multicast tree
t(V,E) computed from pij (line 3 of Procedure 2) and pi′1
(i′ 6= i) (line 13 of Procedure 2), the hop count from s to
di′ ∈ D in t(V,E) can not be greater than the hop count from
s to di′ ∈ D using the shortest path tree (SPT) plus xij , where
xij = h(pij)− h(pi1):

hi′(t) ≤ hi′(SPT) + xij ∀ i′ ∈ [1, n] (1)

First note that h(pi′1) = hi′(SPT) always holds. Since all
the edges of pij are in t, hi(t) = h(pij), i.e. xij = hi(t) −
hi(SPT), which means for i′ = i, Eq. (1) holds. For i′ 6= i,
if pi′1 and pij do not have any common vertex except s, then

84

path from s to di′ in t is the shortest path from s to di′ ,
i.e., hi′(t) = hi′(SPT), thus Eq. (1) holds. Otherwise, path
from s to di′ in t contains edges either in pi′1 or in p1j ,
and the number of hop counts from s to di′ in t can be at
most h(pi′1) + h(pij) − h(pi1) = hi′(SPT) + xij . Hence,
hi′1(t) ≤ hi′1(SPT)+xij , Eq. (1) still holds. Thus, the claim
in Eq. (1) is always correct.

Since transmission latency in MPLS networks is usually
dependent on the hop count from source to destination, and
the hop count from s to any di ∈ D in a tree built by the
algorithm has an upper bound (as shown in Eq. (1)), it is
expected that the maximum transmission latency in the built
tree has a guaranteed upper bound, too.

E. A Relaxed Version of the Algorithm

The original algorithm is quite strict in that, when paths
from source to destinations are chosen to build the tree,
only one of them can be a non-shortest path (pij), all other
paths must be shortest paths (pi′1). This condition can be
relaxed to let all these paths be chosen from any of the
computed K shortest paths, i.e., any pi′j ∈ Pi′ , then up to Kn

distinct trees can be built for each multicast request and hence
providing a much larger pool of candidate trees. Performance
differences between the original algorithm and the relaxed one
are compared in Section III-B.

One thing to notice is that since the relaxed algorithm
computes potentially many more trees than the original one,
the light-weighted implementation presented in Section II-A
becomes even more valuable in the former case.

III. EXPERIMENTS AND SIMULATION RESULTS

Two experiments are carried out to study the effectiveness
of the proposed algorithm. In Experiment I, the focus is on the
effect of K on the whole network optimization and average
hop count of the chosen trees. In Experiment II, the original
and relaxed algorithms are compared.

A. Experiment I

Three MPLS network topologies are randomly generated:
network 1 has 10 vertices and 60 unidirectional edges; network
2 has 50 vertices and 300 unidirectional edges; and network
3 has 100 vertices and 600 unidirectional edges. Any edge
can be equipped with one transmission link with maximum
transmission capacity C. A number of multicast requests —
with number of destinations ranging from 2 to 8 and bandwidth
request C/100 — are generated uniformly for each network.

The simulation experiments are carried via a network design
tool [9]. The tool uses simulated annealing (SA) algorithm
to minimize the number of edges that are equipped with
a C capacity link, in order to support the set of multicast
requests. At each iteration the SA algorithm randomly picks
one multicast request and randomly chooses one candidate tree
for that request, using the algorithms described in Section II.
Annealing temperature is gradually decreased till it is not
possible to accept any different candidate tree other than the
one currently assigned to every request. As already mentioned,

the purpose of these experiments is to determine the degree of
optimization of the whole network as a function of the number
of candidate trees that is available to each request (i.e., value
of K).

Numbers of required links in the three networks are shown
in Figs. 3, 4, and 5, respectively. In all three networks the
number of required links is less when more candidate trees
are allowed for each request (i.e., K is larger). The reduction
gain is significant especially when the total number of requests
is relatively small. This result is reasonable, since when the
network load is low, there is more room for optimization.

Fig. 3: Effect of K on the number of required links for a
set of multicast requests, the network has 10 vertices and 60
unidirectional edges.

Fig. 4: Effect of K on number of required links for a set
of multicast requests, the network has 50 vertices and 300
unidirectional edges.

Fig. 5: Effect of K on number of required links for a set
of multicast requests, the network has 100 vertices and 600
unidirectional edges.

It can also be seen that increments of K yield substantial
gain when K is small. This is natural since when the number

85

of available trees is small, one more alternate tree can increase
the system flexibility a lot. However, if the number of available
trees is large, improvement of one more alternate tree for
optimization is relatively minimal and can even cause an
adverse effect in some cases, as complexity of the optimiza-
tion problem increases more than polynomially and the SA
algorithm may not be able to efficiently find a sub-optimal
solution in this case.

The average maximum hop count (AMHC) in each ex-
periment is computed as follows: take the maximum hop
count of each multicast request (i.e., hop count of the longest
source-destination path in the tree assigned to the request)
and compute the average over all requests. The AMHC results
are shown in Figs. 6, 7, and 8, respectively. As K increases,
AMHC generally also increases. This relationship is intuitive
since longer paths are computed when a larger K is used.
Notice that when K = 1, SPT is assigned to every multicast
request. This is the case with minimal AMHC. Combined with
Figs. 3, 4, and 5, trade-offs between the overall network cost
(i.e., number of required links) and hop count for the multicast
requests is clearly visible in all three networks.

Fig. 6: Effect of K on AMHC for a set of multicast requests,
the network has 10 vertices and 60 unidirectional edges.

Fig. 7: Effect of K on AMHC for a set of multicast requests,
the network has 50 vertices and 300 unidirectional edges.

B. Experiment II

The following experiments are designed to compare the
original against the relaxed algorithm in terms of both the
number of required links and AMHC. The network topologies
and set of multicast requests are the same as in Experiment I.

The required number of links is reported in Figs. 9, 10 and
11, respectively. The average hop count is reported in Figs. 12,

Fig. 8: Effect of K on AMHC for a set of multicast requests,
the network has 100 vertices and 600 unidirectional edges.

13 and 14, respectively. As expected, relaxing the hop count
constraint yields a reduced number of required links in the
network, at the price of an increased AMHC of trees assigned
to requests. It is also worth to note that when K is small,
the relaxed algorithm performs worse than the original one
in both network cost optimization and average transmission
latency. The reason for this behavior is that when K is small,
the number of candidate trees for each request that can be
found by using the relaxed algorithm is not significantly larger
compared to the number of candidate trees found by using the
original algorithm.

Fig. 9: Effects of original and relaxed algorithms on number
of required links, the network has 10 vertices and 60 unidi-
rectional edges and 50 multicast requests.

Fig. 10: Effects of original and relaxed algorithms on num-
ber of required links, the network has 50 vertices and 300
unidirectional edges and 100 multicast requests.

86

Fig. 11: Effects of original and relaxed algorithms on number
of required links, the network has 100 vertices and 600
unidirectional edges and 125 multicast requests.

Fig. 12: Effects of original and relaxed algorithms on AMHC,
the network has 10 vertices and 60 unidirectional edges and
50 multicast requests.

Fig. 13: Effects of original and relaxed algorithms on AMHC,
the network has 50 vertices and 300 unidirectional edges and
100 multicast requests.

Fig. 14: Effects of original and relaxed algorithms on AMHC,
the network has 100 vertices and 600 unidirectional edges and
125 multicast requests.

IV. CONCLUSION

The study in this paper is motivated by the increasing
demand for multicast services in connection oriented (MPLS)
networks, such as online media content delivery and multi-
player gaming. These services are expected to constitute a
significant portion of the overall network traffic in the years
ahead, and their solution for traffic engineering in the network
is becoming increasingly important.

The traffic engineering solution chosen in this paper is to
compute multiple multicast candidate trees for each multicast
request, and then solve a combinatorial problem to assign one
of the candidate trees to every request. Although some of
the candidate trees may be sub-optimal choices for the indi-
vidual request, global network optimization becomes possible
by virtue of solving the combinatorial problem. The set of
candidate trees is computed by combining K shortest paths —
computed for the root destination pairs — in such a way that an
upper bound is guaranteed for the maximum hop-count, hence
maximum transmission latency, from root to every destination
of the request.

The ability of the proposed algorithm to compute an effec-
tive set of multiple candidate trees is assessed indirectly by
running a series of simulation experiments. The experiments
seem to suggest that the proposed technique yields noticeable
network cost reduction (or number of required links) across a
number of cases, regardless of the network size and number
of multicast requests. It is also noted that the algorithm offers
good scalability property and may find application to many
practical scenarios.

V. ACKNOWLEDGEMENTS

This research was supported in part by NSF Grant No. CNS-
0435393.

REFERENCES

[1] C.-F. Hsu, J. Y. Hui, C. feng Hsu, and J. Y. Hui, “Load-balanced k-
shortest path routing for circuit-switched networks,” In Proceedings of
IEEE NY/NJ Regional Control Conference, 1992.

[2] A. K. Yashar Ganjali, “Load balancing in ad hoc networks: Single-path
routing vs. multi-path routing,” IEEE Infocom, 2004.

[3] Z. Jia and P. Varaiya, “Heuristic methods for delay constrained least cost
routing using k-shortest-paths,” IEEE Transactions on Automatic Control,
vol. 51, no. 4, 2006.

[4] A. Esfahani and M. Analoui, “Widest k-shortest paths q-routing: A new
qos routing algorithm in telecommunication networks,” Computer Science
and Software Engineering, International Conference on, vol. 4, pp. 1032–
1035, 2008.

[5] J. Y. Yen, “Finding the k shortest loopless paths in a network,” Manage-
ment Science, vol. 17, p. 712, 1971.

[6] D. Eppstein, “Finding the k shortest paths,” SIAM J. Comput., vol. 28,
no. 2, pp. 652–673, 1999.

[7] V. M. Jiménez and A. Marzal, “Computing the k shortest paths: A new
algorithm and an experimental comparison,” in WAE ’99: Proceedings
of the 3rd International Workshop on Algorithm Engineering. London,
UK: Springer-Verlag, 1999, pp. 15–29.

[8] E. Q. Martins and M. M. Pascoal, “A new implementation of Yen’s
ranking loopless paths algorithm,” Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, vol. 1, p. 121, 2003.

[9] M. Razo, A. Litovsky, W. Huang, A. Sivasankaran, L. Tang, H. Vardhan,
P. Monti, M. Tacca, and A. Fumagalli, “The planet-PTN module: a
single layer design tool for packet transport networks,” the 14th IEEE
International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks, 2009.

87

