
A Wavelength Sharing and Assignment Heuristic to

Minimize the Number of Wavelength Converters in

Resilient WDM Networks

Shreejith Billenahalli∗, Miguel Razo∗, Wanjun Huang∗, Arularasi Sivasankaran∗, Limin Tang∗, Hars Vardhan∗,

Paolo Monti†, Marco Tacca∗, and Andrea Fumagalli∗

∗ OpNeAR Lab, Erik Jonsson School of Engineering and Computer Science

The University of Texas at Dallas, Richardson, TX, USA

{sxb071100, mrazora, wxh063000, axs075200, lxt064000, hxv071000, mtacca, andreaf}@utdallas.edu
† NEGONET Group, School of Information and Communication Technology, ICT-FMI

The Royal Institute of Technology, Kista, Sweden

pmonti@kth.se

Abstract—With the successful introduction of reconfigurable

optical add-drop multiplexers (ROADMs) and related technolo-

gies, WDM networks are now growing in the number of optical

nodes, wavelengths, and lambda services supported. In addition,

shared path protection mechanisms — whereby lambda services

are allowed to share protection wavelength channels — are

possible at the optical (WDM) layer. Efficient strategies must

be devised to both determine the set of services that must share

a common protection wavelength channel and assign wavelengths

to every service. One objective of these strategies is to minimize

the total number of wavelength converters (WCs), which are

required every time the wavelength continuity constraint cannot

be met.

This paper presents a scalable and efficient heuristic, whose

goal is to minimize the number of WCs in resilient WDM

networks supporting static sets of shared path protection lambda

services. The heuristic comprises a set of polynomial algorithms

that are executed sequentially to obtain a sub-optimal solution.

In small size instances of the problem, the heuristic is compared

against the optimal solution obtained from ILP formulation. For

large size instances — tens of thousands of lambda services and

hundreds of nodes — the heuristic yields an average number of

WCs that is close to be linear in the number of services, despite

the fact that the wavelength sharing factor increases.

I. INTRODUCTION

End-to-end optical circuits can be established in optical

transport networks to support lambda services without requir-

ing electronic processing of the service traffic at the intermedi-

ate optical cross-connect nodes. In WDM networks, the optical

circuit is obtained by reserving a wavelength channel from the

source to the destination node, to constitute the working path.

If the lambda service requires path protection switching, one

additional wavelength channel is reserved to obtain a second

end-to-end optical circuit — the protection path. In some

solutions the protection path is activated only if the working

path fails. Depending on the lambda service requirements, the

protection path may be edge, node, or shared risk link group

(SRLG) disjoint from the working path.

When fiber wavelengths are a scarce resource, protection

wavelength channel must be shared among as many protection

paths, as long as no more than one of these protection paths is

activated at any given time1. In addition, wavelength continuity

is preferred when assigning wavelengths to optical circuits

due to the relative high cost of wavelength converters (WCs).

When the wavelength continuity constraint cannot be satisfied,

WCs are necessary along the path, to shift the optical signal

from the wavelength reserved in one fiber to a different

wavelength reserved in the next fiber.

The problem of assigning wavelengths (WA) to optical

circuits (paths) in some optimal way has been long studied.

The min-RWA (optimal way of routing and wavelength assign-

ment) is NP-hard [1]. The WA problem alone is equivalent to

the coloring problem, under the assumption that WCs are not

used [2], [3]. Solutions are available to sub-optimally solve

the RWA problem for unprotected lambda services, in order to

minimize a given cost function [4], [5]. This cost function can

be defined to minimize the number of necessary WCs for each

lambda service, given the set of unreserved wavelengths. For

(shared path) protected lambda services, algorithms designed

to minimize the number of reserved wavelengths are available

for different type of traffic and protection constraints [6], [7].

A number of additional papers addresses the problem of mini-

mizing the blocking probability of dynamically created optical

circuits, for a given set of existing WCs in the network [8]. A

number of more recent solutions generalize both WA and RWA

problems to account for optical transmission impairments [9],

[10], [11].

With the successful advent of reconfigurable optical add-

drop multiplexers (ROADMs) and related technologies, WDM

networks are growing in the number of optical nodes, wave-

lengths, and lambda services supported. Efficient strategies

must be devised to both determine the set of services that

must share a common protection wavelength channel and

assign wavelengths to every service. One objective of these

1In this paper it is assumed that the network can be affected by at most
one single failure at a time.

319978-1-4244-5048-0/09/$26.00 c©2009 IEEE

strategies is to minimize the total number of WCs, which are

required when the wavelength continuity constraint cannot be

met. This problem has not been addressed in the literature.

For example, some solutions apply to unprotected services

only and make use of an auxiliary graph whose number of

vertices is proportional to the product between the number of

network nodes and wavelengths [4], [12], [13]. Other solutions

target the optimization of protected lambda services but do not

address the problem of WC minimization [6], [7].

This paper presents an efficient heuristic, whose goal is to

minimize the number of WCs in resilient WDM networks sup-

porting static sets of shared path protection lambda services.

The heuristic comprises a set of polynomial algorithms that

are executed sequentially to obtain a sub-optimal solution. In

the former part of the heuristic, protection paths are assigned

to shared wavelength channels while aiming for a contained

number of WCs that may result from the assignment. In

the latter part of the heuristic, wavelengths are assigned to

both services and protection wavelength channels in order to

minimize the number of required WCs. The proposed solution

is referred to as the wavelength sharing and assignment

(WSA) heuristic.

The polynomial algorithms in the WSA heuristic are de-

signed to be run-time and memory efficient, and applicable

to large size instances of the problem. They are successfully

applied to networks with 750 nodes and above, 40 wavelengths

and above, 20,000 lambda services and above, requiring

only 1GB of memory. The optimality of the overall solution

computed by the algorithms is however difficult to assess, as

this problem has not been addressed before and benchmark

solutions are not available. In Section III, the WSA heuristic

is compared against the solution obtained with an ILP solver

for small size instances of the problem. The results indicate

that the number of WCs is almost linearly proportional to

the number of services, and the heuristic result is on average

40% worse when compared to the optimum found by the ILP

solver. In large size instances of the problem the wavelength

sharing factor — the average number of protection paths that

share one wavelength channel — increases, as more options

exist that may lead to wavelength sharing. Despite the fact

that an increased sharing factor exacerbates the wavelength

continuity constraint, the number of WCs computed by the

WSA heuristic remains close to linear in the number of

services.

II. WSA HEURISTIC

Let the optical transport network be modeled as an undi-

rected graph G(N, E), where N is the set of network nodes,

and E is the set of edges. Each edge represents a pair of fibers,

one for each direction of propagation. Let each fiber carry up

to W wavelengths. Let the set of lambda services contain

a number of bidirectional (shared path) protected services.

Assume that every protected service requires two disjoint paths

(edge, node, or SRLG), i.e., a working path and a protection

path, to tolerate one single network element failure. Assume

that protection switching is achieved at the optical layer, i.e.,

the signal is generated by the transmitter (laser) and optically

switched to either the working or protection path. The reverse

procedure is used at the receiver, to collect the received signal

from either the working or the protection path. Assume that

the transmitter and receiver are both non-tunable. Then the

wavelength assigned to both the working and the protection

path must be the same, i.e., wavelength continuity constraint,

unless wavelength conversion is allowed. Assume that both

the working and protection paths for every service are given.

For each conduit (fiber pair or edge) the information of all the

working and protection paths which pass through it, is given.

Fig. 1. Wavelength conversion along a path.

Fig. 2. Wavelength conversion at source/destination of a protected service.

The set of algorithms (WSA) described in this section aims

to determine (1) which services share protection resources with

one another (to form a Group of Sharing or GS), and (2)

which wavelength is assigned to each service (WA), subject

to minimizing the number of wavelength converters that are

required in the network to support the services. Wavelength

converters may be necessary for two reasons. First, due to the

finite value of W , for some services, it may not be possible

to assign a single wavelength all across to both its working

and protection path due to the finite number of wavelengths

(FNW) problem [4]. The FNW problem is illustrated in Fig. 1

and Fig. 2. In Fig. 1, a single wavelength from node 0 to node

3 cannot be found (the wavelengths available in each edge are

in brackets). In Fig. 2, a single wavelength from node 0 to

node 2 is available for either the working or protection lambda

services, but as they use different wavelengths, wavelength

converters are required at the source and destination. Second,

services that are allowed to share protection wavelengths —

i.e., services in the same GS — may require more than one

wavelength due to the working-protection interference (WPI)

problem. The WPI problem is illustrated in Fig. 3. Two

services have disjoint working paths (W1 and W2) and are

allowed to share the same protection wavelength over edges

(0,4) and (1,5). However, protection path P2 and working path

W1 both contain edge (0,1), thus each service must be assigned

320 2009 7th International Workshop on the Design of Reliable Communication Networks

a distinct wavelength on that edge. The protection wavelength

channels on edges (0,4) and (1,5) are said to be undecided, as

their chosen wavelength may match the wavelength of either

W1 or P2. While it is possible to avoid the WPI problem by

not allowing the two services to share the same wavelength

on edges (0,4) and (1,5), the objective of this paper is to allow

this type of sharing to minimize the total number of reserved

wavelengths in the network.

Fig. 3. Building graph for wavelength assignment.

Fig. 4. Building graph for wavelength assignment.

Before presenting the set of WSA algorithms, one last

observation is in order. The study in this paper makes the

assumption that the protection mechanism for every service

must not be sensitive to the actual location of the fault. The

example in Fig. 5 illustrates the implication of this assumption

using three services, each requiring edge disjoint protection.

On edge (4,5), one could reserve only 2 protection wavelengths

to service all three services, as any single edge failure can

disrupt at most 2 services. However, if only 2 protection

wavelengths were reserved on edge (4,5), at least one of the

services would be required to use either wavelengths. For

example, P2 is assigned λ1 and P3 is assigned λ2. Then P1 is

assigned either λ1 if edge (1,3) is faulty, or λ2 if edge (1,2)

is faulty. To avoid this problem, three protection wavelengths

must be reserved on edge (4,5).

The WSA set contains a number of sequential algorithms,

that are used to break the overall problem into smaller sub-

problems, which can be solved individually requiring less

computation. This ”divide and conquer” approach does not

guarantee optimality. In addition, the solutions proposed for

the subproblems may not be optimal, as most of the subprob-

lems are still NP. The subproblems are: (1) to compute the

Fig. 5. Computing sharing and number of channels required.

number of shared wavelengths to be reserved on each edge

(fiber) and, compute the set of services that must share the

same wavelength channel on a single edge [Algorithm 1, 2],

(2) to compute the GS (set of services that must share some

protection wavelengths) [Algorithm 3, 4], (3) to assign a single

lambda to as many GSs as possible [Algorithm 5], (4) to assign

two or more lambdas to the remaining GSs [Algorithm 6].

Subproblem (1) is solved using a solution similar to the one

described in [14]. The other steps of the proposed heuristic

are not presented in [14].

A. Compute Number of Shared Wavelengths

The protection paths of multiple services may share one

channel if the working paths of the corresponding services do

not share any edge2. A simple data structure is associated to

each edge as follows.

One edge is considered at a time. Sharing information

consists of a matrix M(i, j), where i represents the edges

that are part of the working path of the lambda services whose

protection path is in the edge being considered and j represents

all the lambda services whose working path consists of the

edge i. Each edge in the sharing information has the list of

all such lambda services.

To determine sharing information in every edge, consider

each of the protection lambda services through it. Get the

working path of protection lambda service. For each edge i

of the working path, add the lambda service j to the sharing

information M(i, j). Each edge in the sharing information will

contain all the lambda services that have the protection path

in the edge being considered.

Every shared wavelength channel must be associated with

one or more services using the sharing information M(i, j).
For each edge in G, only the services whose protection path

contains this edge are considered. An auxiliary graph of such

services is created by representing each sharing lambda service

as a node. An edge is added between the nodes of the auxiliary

graph if the services are present in the sharing information

M(i, j) for each edge, i.e., if the working path of the lambda

services are present in the same edge in the original topology

graph. Then the nodes of the auxiliary graph are colored.

2Node and SRLG case are handled similarly.

2009 7th International Workshop on the Design of Reliable Communication Networks 321

The node is assigned a color among all the colors which

satisfies the coloring condition by considering 2 factors in

order. First, a color which minimizes the WPI. Second, a color

which maximizes the number of edges shared between the

lambda services. The former has the highest priority and the

latter factor is used only if there is no WPI. Nodes with same

color represent a set of services that share the same protection

channel.

Fig. 6. Graph for the determination of sharing.

The example in Fig. 5 is used to build the auxiliary graph

for determining sharing. The protection lambda services are

represented as nodes as shown in Fig. 6 and the nodes are

colored with distinct color since there is a conflict between

every pair of nodes, hence correctly requires 3 protection

channels.

Fig. 7. Building sharing information.

Fig. 8. Building shared channels from sharing information.

Fig. 7 shows 3 lambda service requests in a network. L1

and L2 are from 0 to 1. The working path takes the route 0-1

and the protection path takes the route 0-2-3-1. L3 is from 4

to 5. The working path takes the route 4-5 and the protection

path take the route 4-2-3-5. When the sharing is computed in

C3, C0 has the working paths of L1 and L2 and C6 has the

working paths of L3. Fig. 8 shows the conflict graph obtained

by using this information. Lambda services L1 and L3 are

assigned color 1 and L2 is assigned color 2. Hence we need

2 channels one for L1 and L3, and the other for L2.

Pseudo code given in Algorithm 1 and 2 describes building

shared channels in an edge. An auxiliary graph, SharingGraph

is created with each node representing the protection lambda

service in the edge.

The node also contains the information about neighbors list

and the color assigned to the node and this information is not

assigned initially. Each edge i in M(i, j) is considered. An

edge is added between the nodes for every pair of lambda

services in the edge and the neighbor list of the nodes is

updated.

The edge will now have the information of the number of

channels required, which is the sum of the shared channels

required (as determined above) and the number of working

lambda services through the edge.

Algorithm 1 Building Shared Channels A

1: SharingGraphNode: Node representing the protection lambda
service in the edge

2: SharingGraph: vector of SharingGraphNode
3: for each protection lambda service in the edge do

4: Create a node of type SharingGraphNode
5: SharingGraphNode.color := -1
6: Add SharingGraphNode to SharingGraph
7: end for

8: for each edge in M(i,j) do

9: for every pair of the lambda services in the edge do

10: Add edge between the 2 SharingGraphNodes which repre-
sent these lambda services. The neighbors of the Sharing-
GraphNodes is updated

11: end for

12: end for

13: Sort the nodes of SharingGraph in decreasing order of nodal
degree

14: for every pair of SharingGraphNodes do

15: Compute the number of WPI
16: Compute the number of shared edges between every pair of

protection lambda services
17: end for

B. Compute GS

All the shared protected services which share some channel

have to be grouped together, since all of these have to be

assigned a common wavelength. This collection of shared

protected services is called Group of Sharing(GS). GS is built

by scanning through the edges. All the services which are in

the same channel of the edge will form the initial group. If any

of the services is part of a group already formed, the group

being considered will be merged with the existing group. Thus

GS is formed by globally considering all the edges. Due to

the WPI problem, the services that belong to the same GS

322 2009 7th International Workshop on the Design of Reliable Communication Networks

Algorithm 2 Building Shared Channels B

1: for each node of SharingGraph in the sorted order do

2: for each color from 0 to the maximum number of nodes in
SharingGraph do

3: if none of the neighbors colored till now has this color
then

4: for each of the lambda service which have been assigned
the same color do

5: if WPI is minimum or if no WPI, then if sharing
between this lambda service and the lambda service
being colored is maximum then

6: The lambda service being colored has the affinity
towards this color

7: end if

8: end for

9: if there are no lambda services with this color already
then

10: The lambda service being colored has the affinity
towards this color

11: end if

12: end if

13: end for

14: Assign the node with the color with which the lambda service
has the affinity

15: end for

16: channelToLambdaServices: map of channel to the lambda ser-
vices assigned to the channel

17: for each node in the graph, SharingGraph do

18: color := color assigned to the node
19: Add the lambda service representing the node to the map

channelToLambdaServices with key as color
20: end for

may not be assigned one single wavelength. In this case, GS

is partitioned to make sure that each partition does not face

the WPI problem. Partitioning of GS is done by coloring as

follows. Each lambda service in GS is represented as a node

in an auxiliary graph. An edge is added between two nodes

if (a) both lambda service working paths contain a common

edge in G, or (b) the working path of one service and the

protection path of the other service contain a common edge in

G. The edge indicates that the two lambda services must use

different wavelengths on at least one fiber. The auxiliary graph

is colored, and the lambda services with the same color form

a sub-group (partition) of GS. For each sub-group, a node

is created in the coloring graph for wavelength assignment.

As explained in Figs. 3 and 4 some of the shared channels

may support lambda services that belong to two or more sub-

groups. These channels are termed undecided channels.

The undecided channel is assigned to the partition which has

fewer number of edges of graph G and the channel is removed

from all other partitions. The color assigned to the partition

(to which undecided channel was assigned) is assigned to the

undecided channel and the same color is used by the lambda

services which are in the other partitions and wavelength

converters are required at both the ends of the undecided

channel. Pseudo code in Algorithm 3 and 4 describes building

the graph for wavelength assignment.

After the nodes for the coloring graph are determined,

the edges are determined in the following way. An edge is

Algorithm 3 Building Graph for Wavelength Assignment A

1: for each edge in the topology do

2: for each shared channel in the edge do

3: for each lambda service in the channel do

4: for each GS already formed do

5: if GS contains the lambda service then

6: if this is the first GS to contain the lambda service
then

7: Augment the GS with all the lambda services
in the shared channel

8: else

9: Copy all the lambda services in this GS to the
first found GS

10: Remove this GS

11: end if

12: end if

13: end for

14: end for

15: if there is no GS which contains this lambda service then

16: Create a new GS with all the lambda services in the
shared channel

17: end if

18: end for

19: end for

20: for each each GS do

21: Create an auxiliary Graph with each lambda service in the
GS as nodes

22: for every pair of lambda services in GS do

23: if pair of lambda services share a fiber then

24: if fiber is shared between, working paths of the lambda
services or working path and protection path of the pairs
or protection path of lambda services and the protection
paths are assigned different channels then

25: Add edges between the nodes of the auxiliary graph
26: end if

27: end if

28: end for

29: end for

Algorithm 4 Building Graph for Wavelength Assignment B

1: Color the conflict graph to determine color for the nodes
2: All the nodes with same color form a sub-group (partition) which

form the node of the graph for wavelength assignment
3: undecidedChannelToServices: Map of undecided channel to the

lambda services in the channel
4: for every pair of sub-groups of GS do

5: if pair of lambda services across sub-groups share a channel
then

6: Add the lambda services to undecidedChannelToServices
with channel Id as key

7: end if

8: end for

9: for each undecided channel in undecidedChannelToServices do

10: Assign the undecided channel to the lambda service in the
sub-group which contains minimum number of physical ser-
vices

11: Remove the undecided channel from all other lambda services
in other sub-groups

12: for each sub-group from which undecided channel is removed
do

13: Add the lambda service and the channel Id, to be processed
later for assigning the color assigned to the decided channel

14: end for

15: end for

2009 7th International Workshop on the Design of Reliable Communication Networks 323

added between two nodes of the conflict graph if the nodes

share at least one edge in G. Each node in the coloring

graph contains all the edges of the lambda services which

are grouped together to form a node in the coloring graph.

The WA problem is formulated as follows: Assign each

service one or more dedicated wavelength values along its

path(s), in order to minimize the total number of WCs, which

are required in the network. This is done in two steps as

described in sections II-C and II-D.

C. Assign Single Wavelength to GS

In the first step, wavelengths are assigned to all the services,

which can be assigned a single wavelength value. This is done

by coloring a conflict graph with a technique similar to the one

proposed in [2]. Each lambda service is associated with a node

in the conflict graph and each node represents a GS.

Once the conflict graph is built, the coloring is computed

using any polynomial graph coloring algorithm. For example,

the nodes are ordered in decreasing order of their nodal degree

in the conflict graph. Each node is examined in this order

and is assigned the color with the lowest identifier, which is

not already assigned to any of its neighbors. The number of

required colors is found at the end of this procedure. If no more

than W colors are required, no further steps are necessary,

as every node is colored with an identifier that is within the

W wavelengths. If more than W colors are required, colors

are sorted by decreasing number of channels used by all the

nodes which are assigned the color. The maximum number

of nodes being assigned the color is used to break the tie.

The nodes colored with any of the top ranked W colors are

permanently colored with the rank of the color. The other

nodes are left uncolored. The color of the node is then turned

into the corresponding wavelength, which is assigned to the

service corresponding to the node. The colored services meet

the wavelength continuity constraint, and do not require any

WCs. Nodes (services) left uncolored require some WCs and

are dealt with in step 2. A pseudo code description is given

in Algorithm 5.

D. Assign Multiple Wavelengths to GS

For every GS left uncolored after running step 1, the

following algorithm is used to assign two or more wavelength

values, i.e., wavelength converter, to the services in the GS.

Consider one uncolored GS at a time. Create a subgraph of

G, which is formed by only the edges and the nodes that

belong to the service paths in the uncolored GS. Sort the

edges by increasing number of unreserved wavelengths. Sort

the wavelength values by decreasing wavelength popularity,

i.e., the popularity of a wavelength is defined as the number

of edges in the subgraph of G, which have that wavelength

value unreserved. Every edge in the subgraph is uncolored and

it is then colored using one of its unreserved wavelengths as

follows. Start with the uncolored edge, which has the smallest

number of unreserved wavelengths. Color that edge with the

most popular wavelength value that is available on that edge.

Let this wavelength value be the temporary default wavelength.

Algorithm 5 Wavelength Assignment Using Graph Coloring

1: Build the graph with service requests as nodes
2: Add edges between nodes if the service request share a fiber
3: Sort the nodes in the non increasing order of nodal degree
4: Initialize all the nodes to be uncolored
5: for each node in the graph in sorted order do

6: for each color from 0 to number of nodes - 1 do

7: if none of the neighbors colored till now has this color
then

8: Assign this color to the node
9: Break the loop

10: end if

11: end for

12: end for

13: Group all the nodes which are assigned the same color
14: for each color that has been assigned in the previous step do

15: Calculate the number of fibers being used by all the nodes
which are assigned the color and call it points

16: end for

17: Rank the colors based on maximum number of points
18: Break the tie of colors with same points by minimum number

of nodes which as assigned the color
19: Nodes which are assigned the top W colors are permanently

assigned a color equal to the rank of color
20: All the other nodes are left uncolored

This colored edge forms a fragment of the subgraph of G. The

fragment is augmented by adding only edges which can be

colored using the default wavelength, as follows. Every edge

which is adjacent to the fragment is added to the fragment if

the default wavelength is unreserved on the edge. Every edge

added to the fragment is colored with the default wavelength.

The algorithm keeps adding edges to the fragment till no

additional edge can be added. The following iterative steps

are then performed until all edges in the subgraph of G are

colored. Create a new fragment with the uncolored edge,

which has the smallest number of unreserved wavelengths.

Color that edge with the most popular wavelength value

that is available on that edge. This wavelength value is the

new default wavelength, and this fragment is augmented as

described earlier, till no more edges can be added. A pseudo

code description of step 2 is given in Algorithm 6.

Fig. 9. Step 2: Example using a protected lambda service.

The execution of step 2 is illustrated with the help of Fig. 9,

which shows the subgraph of G obtained for a protection

324 2009 7th International Workshop on the Design of Reliable Communication Networks

Algorithm 6 Coloring lambda services using multiple colors

1: for each node in the G that is uncolored in Step 1 do

2: Rank colors based on the availability in the fibers of the node
(The color available in most fibers is top ranked, the one
which is least available is ranked lowest)

3: Sort the fibers of the node which need to be colored in
increasing order of available colors

4: for each fiber in the sorted order which has not assigned a
color do

5: Get the top ranked available color in the fiber
6: Assign this color to the fiber
7: adjacentFibers := All the fibers adjacent to this fiber
8: while adjacentFibers is not empty do

9: if the color is available in the fiber then

10: Assign this color to the fiber
11: Add all the fibers adjacent to this fiber to adjacent-

Fibers, if they have not assigned a color yet
12: else

13: Remove the fiber from adjacentFibers
14: end if

15: end while

16: end for

17: end for

lambda service. The protection service has source node 0

and destination node 2. The working path (solid arrow) takes

route 0-1-2 and the protection path (dashed arrow) takes route

0-3-4-2. The unreserved wavelengths (colors) on each edge

of the subgraph are shown in brackets, next to the edge.

The wavelength continuity constraint cannot be met for this

service, and step 2 is therefore required. f1, f2, f3, f4 and f5

represent the fibers in the corresponding edges. The algorithm

first sorts the wavelengths based on their decreasing popularity.

Here wavelength 1 is available in 3 fibers, 2 is available in 3

fibers, and so on. The wavelengths are then sorted as 1, 2, 3

and 4. The edges (fibers) are sorted with increasing number

of unreserved wavelengths: f1 has 2 unreserved wavelengths,

f2 has 3, and so on. Edges are thus sorted as follows: f5,

f1, f3, f4 and f2. f5 is considered first and is assigned the

only unreserved wavelength, i.e., 2. f5 constitutes the first

fragment. All edges which are adjacent to the fragment (f2

and f4) are considered next. f2 can be added to the fragment

as it can be assigned wavelength 2, too. f4 cannot be added

to the fragment, as wavelength 2 is not unreserved on that

edge. The fragment now contains both f5 and f2, and f1 is an

adjacent edge to the fragment. f1 is added to the fragment and

assigned wavelength 2. At this point the fragment cannot be

further augmented. The algorithm then creates a new fragment

by choosing the uncolored edge with the smallest number of

unreserved wavelengths. In this case, both f3 and f4 have each

2 unreserved wavelengths. Let f3 be the chosen edge. f3 is

assigned wavelength 1, which is more popular than wavelength

3. The new fragment is augmented by adding f4, which is

assigned wavelength 1, too. All the edges in the subgraph are

now colored and the algorithm stops. In summary, this lambda

service is assigned two wavelength values: wavelength 2 over

edges f1, f2 and f5 and wavelength 1 over edges f3 and f4.

Two bidirectional WCs are then required: one at node 4, along

the protection path; the other at node 03.

After assigning colors to all the nodes, the undecided

channels which were formed while building the graph for

coloring need to be handled. All the undecided channels which

were removed before coloring are added to the lambda services

and are assigned the color assigned to the retained channel

which was decided to go with one node. Pseudo code in

Algorithm 7 describes the handling of undecided channels.

Algorithm 7 Handling Undecided Channels

1: for each node in graph for coloring that has undecided channels
do

2: for each lambda service that has undecided channel do

3: for each undecided channel in the lambda service do

4: Add the channel back to the lambda service which was
removed earlier

5: Get the lambda service with the corresponding decided
channel

6: Get the color assigned to the decided channel
7: Assign this color to the undecided channel
8: end for

9: end for

10: end for

III. RESULTS

In this section, both the optimality and scalability of the

WSA heuristic are assessed.

Benchmarking. The WSA heuristic optimality is investigated

first. As already mentioned, no other solution is available

in the literature that can be used as benchmark. An ILP

formulation [15] is therefore used for small instances of the

problem. A network with a number of nodes N = 5, a number

of fiber links (edges) L = 8 and a number of wavelengths per

fiber W = 8 is used. The number of protected services4 is

varied from 5 to 12. For each number of lambda services, 20

experiments are run. The results are averaged. For each exper-

iment, the ILP formulation and the WSA heuristic are solved

using the same set of input lambda services where, for each

service the same routing is used. Results in TABLE I show

the comparison. The average number of required channels is

the same for both the ILP and the WSA heuristic. The table

also shows the average number of required WCs. The WSA

heuristic requires a number of WCs that is 27% to 48% larger

than the optimal number obtained with the ILP.

Scalability. The scalability of the WSA heuristic is assessed

next. TABLE II shows results obtained by the WSA heuristic

when the network size — i.e., the number of nodes, fiber links

(edges), and lambda services — is increased. The number of

wavelengths per fiber is set to W = 40. The table shows

the number of nodes, fiber links, WCs required, sharing

factor (i.e., average number of services sharing one protection

3The transmitter at node 0 can be assigned wavelength 2 (1), and the WC
is placed between the transmitter and the multiplexer of f3 (f1)

4The ILP solver [16] requires several hours to compute the optimal solution
for the ILP formulation when the number of lambda services is larger than
12.

2009 7th International Workshop on the Design of Reliable Communication Networks 325

TABLE I
ILP VS. WSA HEURISTIC.

ILP WSA

Req. WC Channels WC Channels

5 1.3 14.1 1.65 14.1

6 1.75 16.6 2.25 16.6

7 2.35 18.9 3.45 18.9

8 3.15 20.85 4.65 20.85

9 4.05 22.85 5.7 22.85

10 4.85 24.95 6.8 24.95

11 5.8 27.25 8.3 27.25

12 6.65 29.45 9.4 29.45

channel), wavelength channels used, and the time (in seconds)

taken by the WSA heuristic, respectively. The run time is

reasonable, even for large networks with hundreds of nodes

and tens of thousands of lambda services.

TABLE II
SCALABILITY OF THE WSA HEURISTIC.

N F Req. WC Sharing Channels Time [s]

30 133 2194 8361 5.02763 9516 78

40 179 2499 10125 5.34633 11560 104

50 223 2995 12671 5.94234 14484 157

75 335 3500 15318 6.5274 18160 201

100 446 5974 29839 7.63172 32406 674

150 666 7989 41556 8.08658 46740 1245

200 890 9998 53918 8.59914 61034 2052

300 1337 14927 86273 9.40011 96536 5215

400 1789 17994 104883 9.64224 121598 7729

500 2231 21985 131515 9.92145 154760 12492

750 3351 26000 157735 9.66434 195634 18938

IV. SUMMARY

This paper presented the polynomial WSA heuristic, whose

goal is to minimize the number of WCs in resilient WDM

networks supporting lambda services protected with shared

path protection. The WSA heuristic (i) computes the set of

protection paths that can share the same wavelength channel,

and (ii) assigns wavelengths to both services and protection

wavelength channels, given a pre-computed set of routes for

every service’s working and protection path.

The WSA heuristic is designed to be time and memory

efficient, and applicable to large size instances of the problem.

It is successfully applied to networks with 750 nodes and

above, 40 wavelengths and above, 20,000 lambda services

and above, requiring only 1GB of memory. The optimality of

the overall solution computed by the algorithms is however

difficult to assess. A comparison with an ILP formulation

was carried out in small size problem instances. In large

size instances of the problem, where the wavelength sharing

factor increases and the wavelength continuity constraint is

exacerbated, the number of WCs computed by the WSA

heuristic is close to linear with the number of services.

REFERENCES

[1] T. Erlebach, K. Jansen, and C. Elvezia, “The complexity of path coloring
and call scheduling,” Theoretical Computer Science, vol. 255, p. 2001,
2001.

[2] I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications:
An approach to high bandwidth optical wans,” IEEE Transaction on

Communications, vol. 40, no. 7, pp. 1171–1182, July 1992.
[3] G. Li and R. Simha, “The partition coloring problem and its application

to wavelength routing and assignment,” in Proceedings of the First

Workshop on Optical Networks, 2000.
[4] I. Chlamtac, A. Farago, and T. Zhang, “Lightpath (wavelength) routing

in large wdm networks,” IEEE Journal on Selected Areas in Communi-

cations, vol. 14, no. 5, pp. 909–913, Jun 1996.
[5] D. Banerjee and B. Mukherjee, “A practical approach for routing and

wavelength assignment in large wavelength-routed optical networks,”
IEEE Journal on Selected Areas in Communications, vol. 14, pp. 903–
908, 1996.

[6] A. Jaekel and T. Khan, “Routing and wavelength assignment in op-
tical mesh networks with wavelength conversion,” in Proceedings of

25th IEEE International Performance, Computing, and Communications

Conference (IPCCC 2006), April 2006, pp. 273–280.
[7] H. Zang, C. Ou, and B. Mukherjee, “Path-protection routing and

wavelength assignment (rwa) in wdm mesh networks under duct-layer
constraints,” IEEE/ACM Transactions on Networking, vol. 11, no. 2, pp.
248–258, Apr 2003.

[8] X. Chu, B. Li, and Z. Zhang, “A dynamic rwa algorithm in a wavelength-
routed all-optical network with wavelength converters,” in In Proceed-

ings of IEEE INFOCOM 2003, March-April 2003, pp. 1795–1804.
[9] R. Martinez, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi,

L. Wosinska, J. Comellas, and G. Junyent, “Challenges and requirements
for introducing impairment-awareness into the management and control
planes of ason/gmpls wdm networks,” IEEE Communications Magazine,
vol. 44, no. 12, p. 76, 2006.

[10] Y. Huang, J. P. Heritage, and B. Mukherjee, “Connection provisioning
with transmission impairment consideration in optical wdm networks
with high-speed channels,” Journal of Lightwave Technology, vol. 23,
no. 3, p. 982, 2005.

[11] A. Jirattigalachote, K. Katrinis, A. Tzanakaki, L. Wosinska, and
P. Monti, “Quantifying the benefit of ber-based differentiated path pro-
visioning in wdm optical networks,” in Proceedings 11th International

Conference on Transparent Optical Networks (ICTON 09), July 2009.
[12] S. Gowda and K. M. Sivalingam, “Protection mechanisms for optical

wdm networks based on wavelength converter multiplexing and backup
path relocation techniques,” in Proceedings of IEEE INFOCOM 2003,
March-April 2003.

[13] Y. Wang, L. Li, and S. Wang, “A new algorithm of design protection for
wavelength-routed networks and efficient wavelength converter place-
ment,” in Proceedings of IEEE International Conference on Communi-

cations (ICC 2001), vol. 6, 2001, pp. 1807–1811.
[14] J.-F. Labourdette, E. Bouillet, R. Ramamurthy, and G. Ellinas, Path

Routing in Mesh Optical Networks. John Wiley & Sons, 2006.
[15] W. Huang et al., “Shared Protection ILP Formulation,” The University

of Texas at Dallas, Tech. Rep., May 2009. [Online]. Available:
http://opnear.utdallas.edu/publications/reports/UTD-EE-03-2009.pdf

[16] Ilog, Inc., “Solver cplex,” 2009, http://www.ilog.com/products/cplex/.
[Online]. Available: http://www.ilog.com/products/cplex/

326 2009 7th International Workshop on the Design of Reliable Communication Networks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

