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A Linearized Statistical XPM Model for Accurate Q-factor Computation
Marc Ruiz, Luis Velasco, Paolo Monti, and Lena Wosinska

Abstract—Non-linear physical layer impairments make the
mathematical programming formulation of off-line impairment-
aware (IA) Routing and Wavelength Assignment (RWA) problem
to be non-linear. To alleviate that, this paper presents for the
first time a statistical linear model to compute the Cross Phase
Modulation (XPM) noise variance. Exhaustive evaluation reveals
that the proposed linear model provides an accurate Q-factor
estimation. An example of Integer Linear Programming (ILP)
formulation integrating the XPM model is also given.

Index Terms—Physical layer impairments, off-line IA-RWA,
statistical modeling.

I. INTRODUCTION

IN transparent Dense Wavelength Division Multiplexing
(DWDM) networks, physical layer impairments (PLI) de-

grade the signal quality of optical connections (referred to
as lightpaths) when they traverse the optical fibers and com-
ponents. PLI can be either non-linear or linear. Non-linear
impairments affect not only each wavelength channel indi-
vidually, but also cause disturbance and interference among
channels traversing the same fiber link. In general, they
manifest as signal power fluctuations in long haul links. In
contrast, linear impairments do not depend on the signal power
and affect each channel individually. The most tangible non-
linear effects are Self Phase Modulation (SPM), Cross Phase
Modulation (XPM), and Four Wave Mixing (FWM) while
the most important linear impairments are fiber attenuation,
Amplifier Spontaneous Emission (ASE) noise, Chromatic Dis-
persion (CD) (or Group Velocity Dispersion (GVD)), and
Polarization Mode Dispersion (PMD). The impact of PLI on
the transmission quality of a lightpath can be quantified by
using the quality factor Q [1]. Eq. (1) shows an expression
to estimate the Q-factor:

Q =
peneye · Ptx

penPMD ·√σ2
ASE + σ2

XPM + σ2
FWM

, (1)

where Ptx denotes the transmitted signal power, peneye the
relative eye closure penalty attributed to SPM/GVD and opti-
cal filtering, and penPMD is the power penalty due to PMD
while σ2

ASE , σ2
XPM , and σ2

FWM denote the electrical variance
of ASE noise, XPM, and FWM, respectively.

In order to provide good quality lightpaths in transparent
optical networks, PLI information needs to be considered
when solving the Routing and Wavelength Assignment (RWA)
problem. The impairment aware (IA) and off-line RWA prob-
lem has recently received a lot of attention. The Q factor
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computation within mathematical programming formulations
entails non-linear constraints, highly increasing the complexity
of the problem. For this reason different approaches in the
literature propose to compute the effect of PLI only partially,
leading to near optimal solutions [2]- [4]; linear PLIs are
commonly included in Integer Linear Programming (ILP)
formulations, since they can be pre-computed beforehand,
whereas non-linear impairments, as a consequence of the
wavelength assignment, have been considered in few works.
For instance, the authors in [3] propose an ILP formulation
designed for reducing as much as possible the interference
between lightpaths, but computing the Q value of each light-
path in a post-optimization process. Other works propose ILP
formulations with similar constraints combined with iterative
methods, where the Q factor is still computed outside the ILP.
Among them, the authors in [4] propose a complex algorithm
consisting of four simple ILP formulations. None of these
approaches listed so far include a Q-factor computation within
their ILP formulations, with no guarantee that an optimal
solution is eventually found.

While looking at the nature of physical impairments, it
was found that, in the case of 10 Gbps signals with On-Off
Keying (OOK) modulation, the value of XPM is dominant
over FWM, being XPM variance several times higher than
the one of FWM [5], [6]. With this in mind, a statistical
and non-linear model for fast and accurate estimation of the
XPM noise-like variance was proposed in [6] and it was used
for fast computation of the Q-factor for a given lightpath. The
model in [6] was specifically designed for dynamic scenarios,
so its linearity was not a requirement. This paper goes a
step further proposing, for the first time, a statistical linear
model to compute the XPM noise-like variance of a lightpath.
Exhaustive numerical simulations are performed to validate
the XPM model against analytical expressions. Finally, since
the proposed model is specifically designed to fit off-line
scenarios for the IA-RWA problem, an ILP formulation is
detailed for illustrative purposes.

II. XPM MODEL

This section first describes the assumption made for the
transmission kind, it provides an analysis of the nature of the
XPM variance, and then it details the proposed XPM model.

A. XPM Noise Variance Analysis

Let G(N , E, W ) be a graph describing an optical network,
where N is the set of nodes, E is the set of fiber links,
and W is the set of wavelengths, each one associated with
a wavelength channel labeled from 1 to |W |. Additionally,
let αe be the number of optical amplifiers in link e ∈ E.
The transmission link consists of a sequence of single mode
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Fig. 1. Transmission link architecture.

fiber (SMF) spans (Fig. 1). Their number varies according to
the physical distance. In the current study, the length of each
fiber span is assumed to be 80 km. Optical amplifiers are
inserted after each fiber span to compensate for the power
loss induced by the fiber. A non-resonant dispersion map
that utilizes pre- and post- compensation is used, while the
accumulated dispersion is also compensated by allocating in-
line dispersion compensating fiber (DCF) after each amplifier.
The detail of transmission link model used in this work can
be found in [1].

Since the XPM noise variance of a lightpath depends on the
physical route and the assigned wavelength, let σ2

XPM (r,λ)
represent the value of XPM variance of a lightpath using
route r and wavelength λ. Besides, let σ2

XPM (e,λ) be the
XPM noise variance on reference channel λ in link e. As
shown in [7], σ2

XPM (r,λ)=
∑

e∈E(r) σ2
XPM (e,λ), where

E(r) is the subset of links in route r. Finally, let σ2
XPM (e,λ,i)

be the XPM noise variance over the reference channel λ as
a consequence of channel i, in link e. According to [7],
σ2
XPM (e,λ)=

∑
i∈W\{λ} δei·σ2

XPM (e,λ,i), where δei is equal
to 1 if channel i is in use in link e. In summary, each channel
being used by an active lightpath adds some interference to
the XPM variance of the reference channel independently of
the rest of the channels.

This additive property allows considering an alternative
way to calculate σ2

XPM (e,λ) based on the modeling of
σ2
XPM (e,λ,i). In this regard, although each channel in use

adds some interference to the XPM variance over the reference
channel, this interference decreases with the spectral distance
between the channels until the gap is too large to have any
significant effect. Based on this, it is possible to determine
which channels cause a notable interference over the reference
one. For example, the work in [6] defines the so-called
channel-interference negligible distance (η), which means that
the channels at a distance greater than η from the reference
channel are assumed to add a negligible XPM interference
contribution. The notion of η can be used to derive a restricted
model of σ2

XPM (e,λ) (2), where εe represents the error as a
result of dismissing those channels at a distance longer than
η. From [6], only 3% of error is obtained when η=4.

σ2
XPM (e, λ) =

min{λ+η,|W |}∑
i=max{1,λ−η}

i�=λ

δi(e) · σ2
XPM (e, λ, i) + εe (2)

B. A restricted linear XPM model

In order to be able to model σ2
XPM (e,λ) with a linear func-

tion, it is necessary to find a linear expression for σ2
XPM (e,λ,i)

in (2). To this end, we propose a restricted linear XPM
model to estimate each σ2

XPM (e,λ,i) value for the channels
in the range [λ-η, λ+η]. Each approximation can be denoted
as s2XPM (αe,λ,i), where σ2

XPM (e,λ,i)≈ s2XPM (αe,λ,i). The
model for estimating s2XPM (αe,λ,i) is a continuous function

expressed in terms of λ that consists in a number of C
connected linear segments, each represented by a slope and by
two end wavelengths. Eq. (3) formally describes the restricted
linear model, where gic(·) the first wavelength of each segment
(break point) c, mic(·) the slope of the segment, and hic(·)
is the y-intercept value. We model both gic(·) and the XPM
value for each break point (fic(·)), and thus mic(·) and hic(·)
can be computed from gic(·), gi(c+1)(·), fic(·), and fi(c+1)(·).

s2XPM (αe, λ, i) =

{
mic(αe) · λ+ hic(αe),

gic(αe) ≤ λ ≤ gi(c+1)(αe), c = 1..C
(3)

Aiming at reducing the number of coefficients for the
model (fic(·) and gic(·)), which are data to be stored, every
coefficient can be modeled using mathematical expressions,
e.g., polynomials, exponential forms [8]. However, to have a
linear function suitable for using in ILP formulations, λ cannot
be part of these expressions. After comparing the performance
of several alternative linear models, we propose modeling
fic(·) with a polynomial of degree ρ, using αe as the only
variable (x). Eq. (4) illustrates the proposed model for fic(·),
where ticj represents the j-th coefficient of the polynomial:

fic(x) =
∑

j∈[0,ρ]
ticj · xj (4)

Note that gic(·) represents an integer in the range [1, |W |],
where gi1(·)=1 and gi(C+1)(·) = |W |. To avoid rounding
operations, which result in a non-linear expression, Eq. (5)
defines a linear function that predicts integer gic(·) values.

gic(x) = bic · x+ aic|aic, bic ∈ Z+ (5)

Note that for each segment defined in (3), fic(·) needs
(ρ + 1) coefficients to be modeled, while gic(·) needs two.
As a result the total size of the restricted linear model is
2η · (C · (3 + ρ)). A good value for ρ and η is a tradeoff
between the need to obtain the best goodness-of-fit while
keeping the size of the model at a minimum. To this end,
a two-step statistic approach was used. First the number of
segments C was optimized and then ρ, and consequently ticj ,
was minimized. The optimal values were obtained applying
the well-known least squares minimization fitting [8] over a
set of exact σ2

XPM (e, λ, i) values computed using the equation
and reference values presented in [1] (hereafter, analytical
model). The XPM noise variance was computed for each link
with |W | = 80, assuming a 50 GHz grid, and αe ∈ [1, 25].

The Pearson determination coefficient (R2) and a normal-
ized mean squared error (MSE) [8] were used to discrimi-
nate among the different models. The normalized MSE was
obtained by comparing the MSE of a given model against
the MSE of the null model which contains only one value
representing the average of all the σ2

XPM (e,λ,i), i.e., every
channel in every link produces the same XPM noise regard-
less of the number of optical amplifiers in the link and its
spectral position. Following the above methodology, we first
generated different sets of break points ensuring the integrality
condition in (5) for values of C ∈ [2, 5]. Applying linear
regression among values of each segment, we obtained a valid
fit (R2>99%) for C=4. Since C is set, the next step is to
find the minimum value of ρ that fits the required target
error (R2>99%). A polynomial of the form described in (4)
was obtained applying polynomial fitting for every subset of
slopes fic(·) of the optimal set of slopes F. Algorithm 1
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details the algorithm to compute ρ and ticj coefficients for
the polynomials. After running this algorithm, we obtain a
R2 > 99% for all the subsets of slopes when ρ=4.

Algorithm 1 Algorithm to Compute ρ and ticj Coefficients

INPUT: I = {i ∈ W, i ≥ max(1, λ − η), i ≤ min(λ +
η, |W |), C, fic values (set F )

OUTPUT: T = {ticj}, ρ
1: ρ← 1, T ← ∅, stop← false,minR2 ← 0.99
2: while not stop do
3: stop← false
4: for all i ∈ W do
5: for c = 1..C do
6: Compute the ρ-th degree polynomial f for all elements

in F ∩ {i, c}
7: if R2(f) ≥ minR2 then
8: T ← T ∪ {f coeffs.}
9: else

10: T ← ∅, ρ++, stop← false
11: break for
12: end if
13: end for
14: if stop=false then
15: break for
16: end if
17: end for
18: end while

III. PERFORMANCE EVALUATION

The performance of the proposed restricted linear XPM
model has been evaluated in terms of accuracy and size.
Fig. 2 plots both σ2

XPM (e, λ, i) exact values (markers) and
s2XPM (αe, λ, i) fitted ones (solid lines) for i = λ + 1 (Fig.
2a) and i = λ + 2 (Fig. 2b). For the sake of a broad
comparison, we depict three different link lengths in terms
of αe, i.e., 3, 12, and 23. As illustrated, the higher the value
of the XPM variance the better the fitted value. These results
reveal that the restricted linear model is accurate enough when
compared with the analytical one. Regarding the size of the
proposed XPM model, assuming C = ρ = 4, the number
of coefficients to be stored falls to only 224, compared to
2η · |W | ·max{αe, e ∈ E} (16,000 for 80 wavelengths) needed
using Eq. (2) with pre-computed values.

Fig. 2c illustrates the goodness-of-fit of the statistical Q
model when the restricted linear XPM model is used and the
worst case is assumed for FWM; dashed lines represent an
error of 5%. As observed, all the fitted values (markers) are
within the error range. In a deeper analysis, not shown in
the figures, we observed that the restricted linear XPM model
provides Q values slightly higher than the analytical one, thus
sub-estimating XPM which leads to an over-estimation of Q.

Finally, to weight the impact of the error in the statis-
tical Q computation, the model was evaluated in terms of
wrong decisions made in accepting/rejecting lightpaths, i.e.,
on whether or not the Q value of a lightpath is better than
a given Q threshold (Qth). With this objective in mind six
different thresholds (ranging from 7 to 12) were considered,
each one tested with 15,000 randomly generated lightpaths
from a wide set of link lengths, |W | values, hop count, and
channels in use in each link. For each lightpath the Q value
was computed using the analytical and the restricted linear
models. A decision was considered as wrong when the result

TABLE I
STATISTICAL Q MODEL VALIDATION (WRONG DECISIONS)

Qth 7 8 9 10 11 12
Wrong decisions (%) 0.9 2.1 2.0 1.7 0.9 0.4

Stat. vs. analy. Q error (%) 1.1 1.3 1.3 1.4 1.5 1.3

of the two models were different. Table I details the results in
percentage as a function of Qth. As shown the percentage of
wrong decisions made by the restricted linear model is lower
than 2.1%, which represents a very low error. In fact, the on-
average error in the wrong decisions is lower than 1.5%.

To reduce even more the number of wrong decisions, the
value of Qth could be slightly increased (in the order of 1-
1.5%) being thus decisions taken under a bit more stringent
threshold. In the light of these results, we can conclude that the
proposed linear XPM model provides an accurate statistical Q
estimation really close to the exact Q values.

IV. XPM MODEL IN ILP FORMULATIONS AND

DISCUSSION

This section presents an ILP formulation that can be used
to solve the off-line IA-RWA problem. The formulation makes
use of the restricted linear XPM model defined in Section II.
To this end, Eq. (1) needs to be rearranged. As already men-
tioned in Section I, PLI data pertinent to linear impairments
depend only on the length of the route. Hence, they can be pre-
computed if the ILP uses an arc-path formulation [9]. Thus,
only σ2

XPM and σ2
FWM are dependent on both the route and

the wavelength assignment. We assume a worst case for the
FWM noise variance (σ2

FWM (r)), being that a constant value
for our problem. Therefore, from (1), Qth can be translated
into a XPM threshold (XPM th) for a given feasible route as:

XPM th(r) =

(
peneye · Ptx

penPMD ·Qth

)2

− σ2
ASE(r) − σ2

FWM (r)

(6)
Obviously, a lightpath whose σ2

XPM value is less than
XPM th, has a Q higher than Qth. Then, an ILP formulation
for the off-line IA-RWA problem will focus on guaranteeing
that the σ2

XPM value of each established lightpath (computed
using the s2XPM piece-wise linear functions described in (3))
is lower than XPM th. Note that, as previously stated, the
right-hand term in (6) can be calculated beforehand for each
pre-computed route r.

Let us consider a set of traffic demands D to be served over
a network represented by the graph G(N,E,W ). For each
demand, a set of routes R(d) is pre-computed, where each
route is represented as a set of links E(r) ⊆ E. Parameter
δre is equal to 1 if route r uses link e.

The off-line IA-RWA consists in finding a route and assign-
ing a wavelength (lightpath) for every demand provided that
the Q-factor of each of them does not violate a given Qth.
In our example, the objective function consists in minimizing
the number of used wavelength channels. However, any other
objective function could be defined. The variables are defined
as follows: xdrw, binary, equal to 1 if demand d uses route
r and wavelength w; 0 otherwise. yew, binary, equal to 1 if
wavelength w in link e is used; 0 otherwise. sd, real positive
with the XPM noise variance of demand d. Finally, the off-line
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Fig. 2. σ2
XPM (e, λ, i) and s2XPM(αe, λ, i) for i = λ+ 1 (a) and i = λ+ 2 (b). Analytical vs. statistical Q values of paths (c).

IA-RWA problem can be modeled as:

min
∑
e∈E

∑
w∈W

yew (7)

subject to: ∑
r∈R(d)

∑
w∈W

xdrw = 1, ∀d ∈ D (8)

∑
d∈D

∑
r∈R(d)

δre · xdrw = yew, ∀e ∈ E,w ∈ W (9)

∑
e∈E

w+η∑
w′=w−η
w′ �=w

δre · yew′ · s2XPM (αe, w, w
′)−

(1− xdrw) ·M ≤ sd, ∀d ∈ D, r ∈ R(d), w ∈ W

(10)

sd ≤
∑

r∈R(d)

∑
w∈W

xdrw ·XPM th(r), ∀d ∈ D (11)

The objective function (7) minimizes the total used capacity.
Constraint 8 guarantees that each demand is assigned to only
one route and wavelength, whereas constraint (9) ensures
that each wavelength channel supports only one demand.
Constraint (10) computes the XPM noise of each demand
according to its route and the occupation of the network, using
the restricted linear model for s2XPM (αe, λ, i). In constraint
(10), the use of a big integer M allows the XPM noise to
be computed only for those assigned routes and wavelengths.
The XPM noise is compared to XPM th in constraint (11)
to ensure that all the demands experience a XPM noise
lower than the threshold and, consequently, the Q-factor is
guaranteed to be higher than the required Q threshold.

As shown, the number of variables and constraints is
O(|D| · Rmax · |W | + |E| · |W |), where Rmax is the
maximum number of pre-computed routes for each demand.
For illustrative purposes, assuming 50 demands, 10 routes for
each demand, 16 wavelengths, and the EON-BT topology [6],
the size of the problem instance would be lower than 10.000

variables and constraints, which clearly shows the applicability
of the proposed XPM model.

To conclude, in this paper a linear statistical model to
compute the XPM noise variance for 10 Gbps signals with
OOK modulation has been presented. The model allows to
accurately estimate the Q factor of lightpaths, taking advantage
of the fact that, under the considered scenario, the XPM
variance is several times higher than the one of FWM.

Exhaustive evaluation confirmed the accuracy of the Q-factor
estimation. The XPM model was eventually integrated into an
ILP formulation of the off-line IA-RWA problem.
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