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Cohomological invariants

Some notation

we fix a base field k0 and a prime number p. We will always assume that
the characteristic of k0 is different from p, and that we have a fixed
primitive p-th root of unit ζ in k0.
If X is a k0-scheme we will denote by Hi (X ) the étale cohomology ring of
X with coefficients in Z/pZ. If R is a k0-algebra, we set
H•(R) = H•(Spec(R)).
All schemes and algebraic stacks considered will be of finite type over k0

and quasi-separated.
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Cohomological invariants The definition

Classical vs new

A näive definition of cohomological invariants for algebraic stacks:

Given an algebraic stack M , let PM be the functor of isomorphism
classes of maps Spec(K )→M

A cohomological invariant for M is a natural transformation

PM → H•

This definition is incomplete. In fact, it does not even distinguish between
a scheme and the disjoint union of its points.
To solve this problem, we introduce a continuity condition.
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Cohomological invariants The definition

Continuity condition

We restrict to natural transformations satisfying a technical condition,
which can roughly be stated as:

Let R be a DVR and f : Spec(R)→M a map. The value of a
cohomological invariant on the closed point of Spec(R) is determined by

its value at the generic point.

We write Inv•(M ) for the ring of natural transformations PM → H•

satisfying the continuity condition.
There is a natural map sending étale cohomology with coefficients in Z/pZ
to cohomological invariants. In general it is neither surjective nor injective.
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Cohomological invariants Smooth-Nisnevich topology

Choice of topology

Cohomological invariants have an obvious pullback map induced by
composition. We want to find the right Grothendieck topology to make it
into a sheaf.

The étale and smooth topologies are too fine: pulling back
cohomological invariants through an étale covering is in general not
injective.

The Zariski topology is too coarse: we want algebraic stacks to be
covered by schemes in our topology.

We need to look for a compromise between these options.
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Cohomological invariants Smooth-Nisnevich topology

Lifting points

Definition

We say that a representable map of algebraic stacks f : M → N has the
lifting property if for every map p : Spec(K )→ N there is a lifting

M

f
��

66
p′

Spec(K )
p // N

A Nisnevich (resp. smooth-Nisnevich) covering is a representable étale
(resp. smooth) map having the lifting property.

Cohomolgical invariants are a sheaf in the Nisnevich and smooth-Nisnevich
topologies. In general even Deligne-Mumford stacks will not be covered by
schemes in the Nisnevich topology, so we restrict to the latter.
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Cohomological invariants The Main Theorem

A complete description

Theorem

Consider the functor H•ét(−,Z/pZ) sending a smooth algebraic stack to its
étale cohomology. There is a natural map

H•ét(−,Z/pZ)
j−→ Inv•(−), j(α)(p) = p∗(α)

for α ∈ H•ét(M ,Z/pZ) and p : Spec(K )→M .
This map extends to a map

(H•ét(−,Z/pZ))sm-Nis j̃−→ Inv•

where (−)sm-Nis denotes the smooth-Nisnevich sheafification.
The map j̃ is an isomorphism.
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Cohomological invariants The Main Theorem

Idea of the proof

On schemes we prove that a cohomological invariant only depends on
its value at the generic point. The ring of possible values must satisfy
some ramification conditions, and it is know as the unramified
cohomology ring.

The unramified cohomology of a smooth scheme is classically known
to be isomorphic to the Zariski sheafification of étale cohomology due
to the Bloch-Ogus theorem. The latter maps to Inv• through the map
j̃ , obtaining the isomorphism on schemes.

We can use to sheaf condition to infer the general result from the
result on schemes.
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Cohomological invariants Some corollaries

Invariance results

We can use the explicit description on schemes to infer the following:

Corollary

Let E →M be a vector bundle. Then the pullback
Inv•(M )→ Inv•(E ) is an isomorphism.

Let N be a closed substack of codimension 2 or more. Then the
pullback Inv•(M )→ Inv•(M r N ) is an isomorphism.
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Cohomological invariants Some corollaries

A classical application

with the two corollaries we easily obtain a new proof of this strong
classical result by B.Totaro:

Theorem (Totaro)

Let G be an affine algebraic group smooth over k0. Suppose that we have
a representation V of G and a closed subset Z ⊂ V such that the
codimension of Z in V is 2 or more, and the complement U = V \ Z is a
G-torsor. Then the group of cohomological invariants of G is isomorphic
to the unramified cohomology of U/G.
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Computing cohomological invariants Chow groups with coefficients

The tool

We want to compute some nontrivial ring of cohomological invariants.
Our main tool will be the Chow ring with coefficients, introduced by
M.Rost. Given a smooth scheme X it is a bigraded ring A•,•(X ).
If we consider the ring A•,0(X ) we obtain the usual Chow ring tensored by
Z/pZ. If we consider the ring A0,•(X ) we get the unramified cohomology
of X .

We aim to understand the ring A0,•(X ) for some smooth-Nisnevich cover
of the stack M we’re interested in, and then check the gluing conditions.
Even better, for quotient stacks [X/G ] we have an equivariant version
A•,•G (X ) of the theory that allows us to skip checking the gluing conditions
altogether. It was introduced by B.Totaro and P.Guillot.
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Computing cohomological invariants the stacks of hyperelliptic curves

The main result

Theorem

Suppose our base field k0 is algebraically closed, of characteristic different
from 2, 3. Let Hg be the stack of hyperelliptic curves of genus g.

Suppose g is even. For p = 2 a basis for Inv•(Hg ) as a graded
F2-module is {1, x1, . . . , xg+2}, where the degree of xi is i .
If p 6= 2, a basis for Inv•(Hg ) is {1, x1} if 2g + 1 is divisible by p, and
{1} otherwise.

For p = 2 a basis for Inv•(H3) as a graded F2-module is
{1, x1, x2,w2, x3, x4, x5}, where the degree of xi is i and w2 comes
from the cohomological invariants of PGL2.
If p 6= 2, then the cohomological invariants of H3 are trivial for p 6= 7
and freely generated by 1 and x1 for p = 7.
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Computing cohomological invariants the stacks of hyperelliptic curves

A presentation for Hg

We use a very explicit description of the stacks of hyperelliptic curves, by
Arsie and Vistoli.

Theorem (A.Arsie, A.Vistoli)

Consider the affine space A2g+3, seen as the space of all binary forms
φ(x) = φ(x0, x1) of degree 2g + 2. Denote by Xg the open subset
consisting of nonzero forms with distinct roots. Consider the action of GL2

on Xg defined by A(φ(x)) = det(A)gφ(A−1x). For an even g we have

Hg ' [Xg/GL2]

If g is odd, let PGL2 × Gm act on Xg by
([A] , α)(f )(x) = Det(A)g+1α−2f (A−1(x)). We have

Hg = [Xg/(PGL2 × Gm)]
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Computing cohomological invariants The stratification method

Stratifying the problem

We want to understand the ring A0,•
G (Xg ), where G is respectively GL2 for

even g and PGL2 for odd g .
We use a variant of the stratification method, first used by G.Vezzosi in
his phd thesis to compute the Chow ring of BPGL3, and by P.Guillot to
compute cohomological invariants of algebraic groups.
Given a representation V of an algebraic group G we find some closed
subset Z such that good things (e.g. being able to reduce to a simpler
group) happen for both V r Z and Z , compute the Chow rings of both,
and then use the localization sequence to get the result.
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Computing cohomological invariants The stratification method

The stratification

In our case we are already working with an open subset of a representation,
namely the space of nondegenerate binary forms of degree 2g + 2. We
need to get enough information on the equivariant Chow Groups with
coefficients of the closed subset ∆ consisting of degnerate forms.

First we take the quotient by the multiplicative group Gm so that we are
working with subschemes of P2g+2. Our stratification is given by

P2g+2 ⊃ ∆1,2g+2 ⊃ ∆2,2g+2 ⊃ . . . ⊃ ∆g+1,2g+2

The closed subscheme ∆i , r of Pr is composed of those forms of degree r
that are divisible by the square of a form of degree i .
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Computing cohomological invariants The stratification method

Idea of the proof

The proof of the main theorem is done by induction starting from the
following two lemmas:

Proposition

Let πr ,i : Pr−2i × Pi → ∆i ,r be the map induced by (f , g)→ fg2. The
equivariant morphism πi ,r restricts to a universal homeomorphism on
∆i ,rr∆i+1,r .
Moreover, the inverse image of ∆i+1,r is ∆1,r−2i × Pi .

Proposition

A universal homeomorphism induces an isomorphism on Chow groups with
coefficients.
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Computing cohomological invariants The stratification method

Idea of the proof - 2

The two lemmas show that the chow groups with coefficients of
∆i ,rr∆i ,r+1 are isomorphic to those of (Pr−2ir∆1,r−2i )× Pi .
We have a formula for the chow groups with coefficients of a projective
bundle, so we have reduced the computation of A•,•G (∆i ,r ) to something
concerning A•,•G (∆1,r−2i ) and A•,•G (∆i+1,r ).

The index r can only be as small as 2, and the index i can only be as big
as r/2. We start from the bottom case of ∆1,2, which is universally
homeomorphic to P1, and using the reduction above we can inductively
compute all the invariants we need to conclude.
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Computing cohomological invariants Future developments

Thoughts for the future

We still lack a way to understand the product structure of Inv•(Hg ) or to
produce invariants for Mg , g ≥ 3. One idea is to try to reduce to classical
cohomological invariants. Suppose our base field contains a q-th root of
unit for a prime q.

Given a family of curves C f−→ X we can consider the sheaf Rf∗(Z/qZ) on
X , or equivalently the q-torsion in the Jacobian of C. It is a form of
Z/qZ2g with a nondegenerate symplectic pairing, so it induces a map
Mg → BSp(2g ,Fq).
To the author’s knowledge the cohomological invariants of Sp(2g ,Fq) are
not known. Hopefully computing them and studying the maps
Mg → BSp(2g ,Fq) can shed some light on the cohomological invariants
of Mg and possibly be instrumental in creating some stable cohomological
invariant classes.
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Computing cohomological invariants Future developments

Thank you for your attention!
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