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Introduction

My main area of research is Algebraic Geometry. More precisely, my areas of
interest are moduli spaces (and moduli stacks) with particular regard to their
arithmetic and cohomological properties, algebraic groups and their representa-
tions, cycle theories, motivic classes, essential dimension and abelian categories.
The fundamental connecting tissue between these areas is the use of algebraic
stacks.

To study a geometric object X one often needs to consider families 2~ — S
varying “continuously” over a base S, in which X is embedded as the inverse
image of a special point sg € S. This idea led, among many advances, to the
powerful tool of moduli spaces. These are spaces (i.e., topological, differen-
tial, algebraic varieties...) whose points correspond to isomorphism classes of a
given type of object. A moduli space M is fine if families over S of the objects
it parametrizes correspond 1 : 1 to maps from S to M. The very first exam-
ples of moduli spaces are the Grassmannian varieties Gr(V,r), parametrizing
r-dimensional subspaces of a vector space V.

Moduli spaces have proven to be important not only in geometry (both alge-
braic, analytic and differential), but also in physics, where they have prominent
roles in string theory (where the moduli spaces involved are actually algebro-
geometric objects) and quantum field theory.

Since the late 1950s it became apparent that moduli spaces were insufficient
for studying algebro-geometric objects with non-trivial automorphism, and in
fact the presence of automorphisms is a fundamental obstruction to the existence
of a fine moduli space. Moreover, if one constructs a (coarse) moduli space
anyway, it will often be singular even if the objects being parametrized are
smooth and nicely behaved.

These problems were solved thanks to the introduction of algebraic stacks.
One can think of an algebraic stack as an algebraic variety where the points have
intrinsic stabilizer groups, corresponding to the automorphisms of the objects
being parametrized. Algebraic stacks produce an algebro-geometric version of
orbifolds, and also of classifying spaces BG in topology. Moduli stacks regain
the “fine” property, as well as smoothness. A prominent example is the moduli
stack .#, of smooth algebraic curves of genus g, constructed by Deligne and
Mumford [10], which is smooth and comes with a universal family ¢, — .,
such that given a family of curves C' — S there is a unique map f : S — %
with f*@, = C. For comparison, the (coarse) moduli space M, is not smooth
and does not admit a universal family C; — M,. These examples and many
others have made algebraic stacks a central object of study.



Past research

My work has concentrated on constructing and computing invariants for al-
gebraic stacks. Functorial invariants for moduli stacks are especially useful,
as they will automatically provide invariants for the families of objects being
parametrized through pullback. Prime examples of invariants which are of inter-
est are the Picard group of line bundles, the Chow groups (an algebraic version
of singular homology), and étale cohomology with various kind of coefficients.

A major part of my research [20-22] regards Cohomological invariants, a
theory of arithmetic invariants which was classically associated with algebraic
groups. The starting point of my investigation was to note that the cohomo-
logical invariants Inv®(G) of an algebraic group G should really be regarded as
invariants of the corresponding algebraic stack BG, which like its topological
counterpart classifies principal G-bundles. Starting from this observation it was
natural to extend the theory to any algebraic stack. I then computed the coho-
mological invariants of the stack of elliptic curves .# i, of the stack of smooth
genus two curves .#> and of the stacks 7 of smooth hyperelliptic curves of
genus ¢ for all even g and for g = 3 when the base field is algebraically closed.
Another student of Vistoli, A. Di Lorenzo, completed the computation for odd
genus using a new presentation of JZ;, and recently we gave a new explicit
description of the cohomological invariants of ¢ for g even, which extends
the result to arbitrary base fields and allows us to compute the multiplicative
structure, which was previously unknown.

I also studied the Picard groups of universal families of Abelian varieties
and the Brauer group of the moduli stacks of vector bundles over curves [15,16]
with R. Fringuelli, and the motivic classes (that is, the classes in an appropriate
Grothendieck ring of isomorphism classes of algebraic stacks Ko(Stk/k)) of the
classifying spaces BSpin,, of Spin,,-principal bundles [23] (joint with M. Talpo).
Finally, in a recent work with J. Calabrese [9] we prove that certain quotients
of the abelian categories of coherent sheaves on a scheme retrieve its birational
geometry.

Cohomological invariants

Consider an algebraic group G, and let Torsg be the functor Torsg : (Fields/k) —
(Sets) sending a field K/k to the set of isomorphism classes of principal G-
bundles (more commonly called torsors in algebraic geometry) over K. In the
modern definition [17], coined by Serre and Rost, a cohomological invariant
a € Inv*(QG) is a natural transformation between Torsg and the Galois coho-
mology (with coefficients in u,,) functor H* : (Fields/k) — (Sets).

Cohomological invariants can be thought of as an arithmetic equivalent to
characteristic classes. They were studied in relation to both rationality problems
and essential dimension by Serre, Rost, Merkurjev, Garibaldi, Totaro and many
others.

It is natural to view the cohomological invariants of G as invariants of the



classifying stack BG, as by definition the functor of isomorphism classes of G-
torsors is the functor of (isomorphism classes of) points of BG.

I extended the definition to any algebraic stack [20, Def. 1.1] by defining
a cohomological invariant of an algebraic stack .# as a natural transformation
from the functor of points Pts_4 : (Fields/k) — (Sets) to H* satisfying a natural
continuity condition. This recovers the classical definition when .#Z = BG.

When the stack .# is smooth, I proved [20, Thm. 4.4] that the ring of
cohomological invariants is equal to the sheafification of étale cohomology in
an appropriate Grothendieck topology. This makes the ring of cohomological
invariants a natural extension of unramified cohomology to algebraic stacks.
Moreover, when .# is a smooth quotient stack I proved [21, Prop. 2.10] that
the ring of cohomological invariants is equal to the zero-dimensional part of the
G-equivariant Chow ring with coefficients [18,24] in H*, making it the main tool
for computing cohomological invariants.

Computing the cohomological invariants of .Z,

Using techniques coming from the study of equivariant Chow rings [14,19] and
presentations produced by Arsie and Vistoli [4], and the theory of equivariant
Chow rings with coefficients, I computed the cohomological invariants of the
stack .11 of elliptic curves [20, Thm. 5.1], the stacks J¢, of hyperelliptic
curves of genus g when g is even [21, Thm. 4.1] and of the stack % of hyper-
elliptic curves of genus three [22, Thm. 3.12]. A. Di Lorenzo, completed the
computation for odd genus using a new presentation of .7 [11], and recently we
gave an explicit description of the cohomological invariants of .7 for g even [12],
extending the result to arbitrary base fields and computing the multiplicative
structure. The natural next steps would be to find an explicit description of
the cohomological invariants of ¢ for odd g, and to compute the invariants of
the stack .3 of smooth genus three curves (note that % = .#5). We plan to
attack these questions using new presentations of these stacks being developed
by Andrea Di Lorenzo as part of his Phd thesis.

Project 1 (joint with A. Di Lorenzo). Explicitly describe the cohomological
invariants of ¢, for all odd ¢g and compute the invariants of .#5.

An important property of cohomological invariants is that by a slightly more
general definition, the degree two part retrieves the cohomological Brauer group
BR'. Using the new explicit construction of the cohomological invariants of .7,
it is possible to compute its cohomological Brauer group. In an upcoming joint
work with A. Di Lorenzo [?Di1Pir2], we show that over any field of characteristic
Zero

If gis even Br'(J) ~ Br'(k) © H' (k,Z/(4g + 2)Z) © Z/27.
If gis odd Br'() ~Br'(k) @ H'(k,Z/(49 + 2)Z) © Z/2Z & 7./ 2.

In the future, we plan to extend the computation to arbitrary fields and use it to
explicitly compute the (ordinary) Brauer group of J#; by constructing explicit
Azumaya algebras.



Project 2 (joint with A. Di Lorenzo). Describe the Brauer group of J, over
any field.

These techniques cannot be applied directly to .#; when g is high enough,
as these stacks become of general type and this makes the existence of a “good”
quotient stack presentation (i.e. one that makes for easy equivariant computa-
tions) for .#, unlikely. One way to get around this might be the following. Let
T, be the profinite completion of the g-th Teichmiiller group. There is a map
Mg — BTy, which is an isomorphism from the point of view of étale homotopy
type. This in particular induces maps .#; — BG for all finite quotients G of T.
A natural subring of Inv*(.#,) to study is the ring generated by the restrictions
of the cohomological invariants of all such groups to those of .Z,.

Project 3. Study the subring of Inv*(.#,) generated by the cohomological
invariants of finite quotients of the Teichmiiller group.

An algebraic geometry approach to Casson-type
invariants

An oriented three dimensional manifold Y always admits a Heegaard decompo-
sition (34,U1,Us), where Uy,U; C Y are two handlebodies intersecting on the

smooth genus g surface ¥,4, and U; UU; = Y. The decomposition induces a
pushout diagram of fundamental groups
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Let 2. (H) be the space of (irreducible) representations of H into a given
group G. From the diagram above we obtain the cartesian diagram
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A well-known and important invariant of 3-manifolds, the Casson invariant,
consists of intersecting the homology classes induced by these two subvarieties
when G = SU,. Roughly speaking, it counts the classes of representations of



the fundamental group 7(X) into SU(2), with multiplicities coming from the
Heegaard decomposition of X. In the early 2000s, Curtis [7, 8] showed that
using intersection theory one can construct the invariant when G is SLy or
PSLs, and that seeing the invariant as an algebraic intersection product offered
extra insight on it. More recently, Abouzaid and Manolescu produced a vast
generalization of the SLy invariant [1], using techniques coming from derived
and symplectic geometry, which they call Full Casson invariant.

In an upcoming paper with Paolo Aceto [2], we will show that Both the
Casson—Curtis invariant and the Abouzaid—Manolescu invariant can be extended
to representations into general reductive algebraic groups if one accepts doing
intersection theory (or symplectic geometry) on algebraic stacks rather than
algebraic. Studying these generalized invariants is the focus of a joint project
with Paolo Aceto.

Project 4 (Joint with P. Aceto). Study the generalized Casson and Full Casson
invariants.

Motivic classes of algebraic stacks

An important object of study in algebraic geometry is the Grothendieck ring
of algebraic varieties over a field Ky(Var/k). Its elements are isomorphism
classes of algebraic varieties, subject to three relations: a) if U C X is an
open immersion with closed complement V then {U} +{V} = {X} b) we have
{X xx Y} = {X} - {Y}. Motivic invariants, such as the Euler characteristic,
factor through it, so understanding it is an important objective in the study of
algebraic varieties. One can enlarge it to contain more general objects, such as
Deligne-Mumford stacks or Artin stacks. We are interested in these enlarged
rings.

A Bittner presentation for the Grothendieck ring of good
moduli morphisms

A powerful tool in creating invariants on the Grothendick ring is the Bittner
presentation, which describes the ring in terms of smooth proper varieties and
blow-ups. Namely, Bittner’s theorem states that the classes of proper smooth
varieties with the multiplicative relation and the blow-up relation

{X}—{E}={X} - {2}

where F is the exceptional locus of the blow-up X of X along Z, are sufficient
to reconstruct the Grothendieck ring of varieties.

Recently Bergh [6] constructed a Bittner presentation for the Grothendieck
ring of Deligne-Mumford stacks using stacky blow-ups, an extension of ordinary
blow-ups which admit root stack constructions.

The situation for general algebraic stacks is more complicated, but one can
consider the smaller ring of algebraic stacks 2~ which admit a good moduli space



morphism % — X, as defined by Alper [3], and consider the Grothendieck ring
of morphisms 2" — X, where the operations are required to be compatible with
the morphism. On this new ring one can use techniques such as saturated blow-
ups and destackification to try to obtain a Bittner-type presentation, which is
the subject of a work in progress with D. Rydh.

Project 5 (Joint with D.Rydh). Construct a Bittner-type presentation for the
Grothendieck ring of good moduli morphisms.

Classes of classifying stacks in Ekedahl’s Grothendieck ring
of algebraic stacks

In the late 2000s Ekedahl defined a modified Grothendieck ring of algebraic
stacks Ko(Stk/k). Its elements are isomorphism classes of algebraic stacks,
subject to three relations: a) if Z C £ is an open immersion with closed
complement ¥ then {Z}+{¥} ={2} b) we have {Z x, ¥} ={Z} - {#}
c) if & — 2 is a vector bundle of rank d then {&} = {A% x;, 2} (note that
this is always true for varieties). Due to the last relation Ekedahl’s ring is a
localization of the Grothendieck ring of algebraic varieties.

Computing the class of the classifying stacks BG in this ring is an open
problem. There is an “expected class formula” saying that the class of BG should
be {G}~! when G is connected and 1 when G is finite. It holds when G is special,
but there are counterexamples for finite groups, and the formula is expected to
fail for connected groups too, even though no counterexample is known. This
problem seems to be (at least morally) related to a major problem in group
theory, Noether’s problem for connected algebraic groups, which asks whether
given a connected algebraic group G with a generically free representation V'
the quotient V/G is rational. A negative answer is expected for this question,
but no example is known.

The class of BG has been computed for connected groups in the cases of
PGL; and PGL3 by Bergh [5], in the case of SO,, for odd n by Dhillon and
Young [13] and in the case of SO, for all n by Talpo and Vistoli [25]. In a
joint paper with Mattia Talpo we computed [23, Thm. 3.1, 3.8] the classes of
BGs, BSpin,, BSping, and showed [23, Thm. 4.5] that for any n the problem
of whether BSpin,, satisfies the expected class formula boils down to the same
problem for a certain finite subgroup A,, C Spin,,. We conjecture that BSpin,,
should violate the formula for all n > 15.

Project 6 (joint with M. Talpo). Prove that BSpin,, fails to satisfy the expected
class formula for some n > 15.
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