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ABSTRACT

Wyner-Ziv coding can exploit the similarity of stereo images
without communication among the cameras. For good com-
pression performance, the disparity among the images should
be known at the decoder. Since the Wyner-Ziv encoder has
access only to one image, the disparity must be inferred from
the compressed bitstream. We develop an Expectation Max-
imization algorithm to perform unsupervised learning of dis-
parity at the decoder. Our experiments with natural stereo im-
ages show that the unsupervised disparity learning algorithm
outperforms a system which does no disparity compensation.
It is also superior to conventional compression using JPEG.

1. INTRODUCTION

Colocated pixels from pairs of stereo images are strongly sta-
tistically dependent after compensation for disparity induced
by the geometry of the scene. Much of the disparity between
these images can be characterized as shifts of foreground ob-
jects relative to the background. Assuming that the dispar-
ity information and occlusions can be coded compactly, joint
compression is much more efficient than separate encoding
and decoding. Surprisingly, distributed encoding combined
with joint decoding can be just as efficient as the wholly joint
system, according to the Slepian-Wolf theorem in the loss-
less case [1] and the Wyner-Ziv theorem in certain asymmet-
ric lossy cases [2]. Distributed compression is preferred be-
cause it reduces communication between the stereo cameras.
The difficulty, however, lies in discovering and exploiting the
scene-dependent disparity at the decoder, while keeping the
transmission rate low.

A similar situation arises in low-complexity Wyner-Ziv
encoding of video captured by a single camera [3] [4] [5].
These systems encode frames of video separately and decode
them jointly, so discovering the motion between successive
frames at the decoder is helpful. A very computationally bur-
densome way to learn the motion is to run the decoding al-
gorithm with every motion realization [4]. Another approach
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Fig. 1. (a) Source image X (72-by-88 pixels), (b) horizon-
tal disparity legend, (c) and (d) source images Y (72-by-88
pixels) with respective 8-by-8 blockwise horizontal disparity
fields D

requires the encoder to transmit additional hash information,
so the decoder can perform suitable motion compensation be-
fore running the decoding algorithm [6]. Since the encoder
transmits the hashes at a constant rate, it wastes bits when
the motion is small. On the other hand, if there is too much
change between frames, the fixed-rate hash may be insuffi-
cient for reliable motion search. Due to the drawbacks of ex-
cessive computation and difficulty of rate allocation for the
hash, we use neither of these approaches for compression of
stereo images. Instead, we apply an Expectation Maximiza-
tion (EM) algorithm [7] at the decoder to learn the disparity
in an unsupervised way during decoding.

In Section 2, we review our work on distributed lossless
compression with unsupervised disparity learning for pairs
of binary random dot stereograms [8] and natural grayscale
stereo images [9]. In Section 3, we describe the extension to



rate control

Transform|-»{ Quantizer LDPC 1 Wyner-Ziv Recon- Inverse
Encoder Decoder struction Transform

Wyner-Ziv Encoder

. i____ Disparity
. s!de Compensator
information

"""..I

:dlspanty
1(if available)

A

o j Lossy
* 'L Encoder Decoderj

Lossy W ;&
s

Fig. 2. Wyner-Ziv coding of source X with respect to Y

lossy Wyner-Ziv coding. Section 4 reports our rate-distortion
results for pairs of natural stereo images.

2. BACKGROUND

The relationship between a pair of stereo images X and Y in
terms of their disparity D is illustrated in Fig. 1. A sample
source image X is depicted in Fig. 1(a). Fig. 1(c) and (d)
show two realizations of source image Y taken from differ-
ent viewpoints [10]. For each pair, the respective block-wise
horizontal disparity field D indicates which 8-by-8 block of
Y (among candidates shifted up to 5 pixels horizontally) best
matches each 8-by-8 block of X (in terms of mean square er-
ror). These stereo image pairs, when viewed stereoscopically,
create an illusion of depth: various parts of the scene appear
on different planes, according to the value of the disparity
field in those parts.

For the distributed lossless compression of such stereo im-
ages [9], we developed a decoder that performed unsuper-
vised learning of disparity and described it formally within
the framework of EM. This system did not exploit the spa-
tial redundancy, but did account for the dependency between
bitplanes of individual pixels (via a construction called joint
bitplane coding). The precursor work [8] tackled the same
problem for pairs of synthetic binary random dot stereograms.
Both papers demonstrated that the disparity learning decoder
could perform almost as well as an oracle-assisted decoder,
and significantly better than a decoder that did no disparity
compensation at all.

3. WYNER-ZIV CODING OF STEREO IMAGES

The Wyner-Ziv stereo image coder shown in Fig. 2 extends
the previous work in two ways. The system applies trans-
forms for exploiting spatial redundancy and quantization for
lossy coding. We now describe the three important compo-

nents in the codec for X: Wyner-Ziv encoder, Wyner-Ziv de-
coder and reconstruction.

3.1. Wyner-Ziv Encoder

Just as in JPEG [11], the source image X is transformed by
a blockwise 8-by-8 DCT and quantized using a midtread uni-
form quantizer. The resulting quantized coefficient indices
are Slepian-Wolf encoded as in [9], using a low-density parity-
check (LDPC) code [12], to produce the syndrome S.

3.2. Wyner-Ziv Decoder

The role of the Wyner-Ziv decoder is to recover the quan-
tized coefficient indices (denoted by Q) from the syndrome S
and the lossy coded side information Y. Fig. 3 depicts three
Wyner-Ziv decoders that differ in their handling of disparity.

The baseline decoder in Fig. 3(a) performs no disparity
compensation. It initially estimates () statistically based on
the colocated transform coefficients from side information Y.
An iterative belief propagation algorithm refines the estimates
using S. This decoder is a concatenation of a LPDC decoder
and a joint bitplane decoder (from [9]) that exploits depen-
dency among bitplanes of (). Since disparity exists between
X and Y, this scheme does not perform well because the es-
timates of @ from Y are poor in regions of nonzero disparity.

For comparison, Fig. 3(b) shows an impractical scheme
in which the decoder is endowed with a disparity oracle. The
oracle compensates Y blockwise to align with blocks of X,
Now the initial statistical estimates of ) use the disparity-
compensated version of Y as side information and, thus, do
not suffer in regions of nonzero disparity.

Finally, Fig. 3(c) depicts the practical decoder that per-
forms unsupervised disparity learning via EM. In place of the
disparity oracle, a disparity estimator maintains an a posteri-
ori probability distribution on disparity D. Every iteration of
LDPC/joint bitplane decoding sends the disparity estimator a
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Fig. 3. Wyner-Ziv decoding of quantized coefficient indices
@ with (a) no disparity compensation, (b) a disparity oracle,
and (c) unsupervised learning of disparity D via EM

soft estimate of () (denoted by #) in order to refine the dis-
tribution on D. In return, the disparity estimator updates the
probabilistic side information estimate 1 for the LDPC/joint
bitplane decoder by blending information from the transform
coefficients of shifted blocks of ¥ according to the refined
distribution on D. Fig. 4 shows the disparity field estimation
and side information blending in greater detail. As depicted
on the left-hand side, each block of 8 (the soft estimate of
Q) is matched with the candidate transformed blocks of Y
to produce the a posteriori probability distribution on D for
that block. On the right-hand side, the same candidate trans-
formed blocks of Y are blended together according to this
distribution to create the more accurate side information .
(For details we refer the reader to [9], noting that each co-
efficient band has its own Laplacian statistics.) These steps
iterate with LDPC/joint bitplane decoding to jointly recover
the quantized coefficient indices @) and the disparity field D.

3.3. Reconstruction

The reconstruction block recovers X from the quantized co-
efficient indices Q and the side information Y, possibly com-
pensated by the disparity output of the Wyner-Ziv decoder.
Conventional reconstruction (with no side information) would
map () to the probabilistic centroids of the respective quanti-
zation intervals. Since side information is available, recon-
struction can be improved [3]. If a value of () matches the
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Fig. 4. Disparity field estimation (left) and side information
blending (right)

colocated quantized coefficient index in (possibly disparity-
compensated) Y, that reconstructed coefficient is set equal to
the colocated coefficient. If the value of () does not match the
colocated quantized coefficient index, the coefficient is recon-
structed at the boundary of its quantization interval closest to
the colocated coefficient.

4. SIMULATION RESULTS

We compare the performance of coding X for the three Wyner-
Ziv schemes that differ in their handling of disparity (in Fig. 3)
as well as baseline JPEG. For ease of comparison, we use 8-
by-8 blocks for transforms (and consequently disparity esti-
mation) and scaled versions of the quantization matrix in An-
nex K of [11] with scaling factors 0.5, 1, 2 and 4. In each
case, Y is JPEG-coded with the same quantization matrix.
The maximum horizontal disparity shift is 5. For the disparity
learning decoder, a good initialization of disparity shift distri-
bution has a peak of 0.75 at zero and is uniform elsewhere.

Rate control is implemented by using rate-adaptive LDPC
accumulate codes of length 50688 bits [13]. After 150 decod-
ing iterations, if the recovered @ does not satisfy the syn-
drome condition, the decoder requests additional incremental
transmission from the encoder via a feedback channel.

Figs. 5 and 6 show rate distortion curves for coding X
from Fig. 1(a) with respect to Y obtained from Fig. 1(c) and
(d), respectively. The four points on each curve result from
the four quantization scaling factors, so that corresponding
points on different curves belong to encodings with identi-
cal quantized coefficient indices ). For each encoding, the
practical unsupervised disparity learning scheme comes close
in both rate and distortion to the impractical oracle-assisted
scheme. The rate loss is incurred at the Wyner-Ziv decoder,
and the PSNR loss at the reconstruction block. In both of
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Fig. 5. Rate-distortion curves for coding X from Fig. 1(a)
with respect to Y obtained from Fig. 1(c)

these ways, the unsupervised disparity learning scheme is su-
perior to the scheme with no disparity compensation. In fact,
the uncompensated side information Y is so poor for recon-
struction that our plots show conventional centroidal recon-
struction for the scheme with no compensation. The rate-
distortion curves for JPEG are identical in both figures be-
cause the source X is the same, but in both cases worse than
the curves for the unsupervised disparity learning scheme by
2 to 5 dB. The three Wyner-Ziv schemes perform worse in
Fig. 6 than in Fig. 5 because less of the disparity field matches
the initialization peaked at zero. But the scheme with no com-
pensation suffers most dramatically because it cannot com-
pensate for the greater disparity mismatch.

5. CONCLUSION

We extend distributed compression with unsupervised learn-
ing of disparity at the decoder to the lossy transform-domain
case. For natural stereo images, our proposed practical Wyner-
Ziv scheme shows rate-distortion performance between 2 to 5
dB superior to conventional JPEG compression, and similar
or greater performance gaps relative to a Wyner-Ziv scheme
with no disparity compensation. Future work should explore
test images with greater scene complexity and disparity range,
and investigate reduction of computational load.
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