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Abstract—An inference-based multiview depth image enhance-
ment algorithm is introduced and investigated in this paper.
Multiview depth imagery plays a pivotal role in free-viewpoint
television. This technology requires high quality virtual view
synthesis to enable viewers to move freely in a dynamic real world
scene. Depth imagery of different viewpoints is used to synthesize
an arbitrary number of novel views. Usually, the depth imagery is
estimated individually by stereo-matching algorithms and, hence,

shows inter-view inconsistency. This inconsistency affects the
quality of view synthesis negatively. This paper enhances the
multiview depth imagery at multiple viewpoints by probabilistic
weighting of each depth pixel. First, our approach classifies
the color pixels in the multiview color imagery. Second, using
the resulting color clusters, we classify the corresponding depth
values in the multiview depth imagery. Each clustered depth
image is subject to further subclustering. Clustering based on
generative models is used for assigning probabilistic weights to
each depth pixel. Finally, these probabilistic weights are used to
enhance the depth imagery at multiple viewpoints. Experiments
show that our approach consistently improves the quality of
virtual views by 0.2 dB to 1.6 dB, depending on the quality
of the input multiview depth imagery.

Index Terms—Multiview video, multiview depth consistency,
virtual view synthesis, free-viewpoint television, Dirichlet mixture
model.

I. INTRODUCTION

C
ONSISTENT and precise geometry information on nat-

ural scenes is highly desirable for many computer vi-

sion algorithms and visual media applications. Free-viewpoint

television (FTV) is one of such emerging immersive visual

media applications [1]. It will enable users to experience a

dynamic natural 3D-depth impression while freely choosing

their viewpoint of a real world scene. FTV is able to display a

large number of views from different viewpoints at the receiver

side in order to have a seamless free-viewpoint experience

while maintaining a realistic depth perception of natural 3D

scenes [2]. This entails a demand for high camera density

around the natural scene and a need of high storage and

transmission capacity for the vast amount of captured imagery

at multiple viewpoints [3]. However, these requirements may
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be significantly reduced by using geometry information of 3D

scenes, for example, depth images [4].

Usually, depth images are quantized representations where

each depth value is stored as an eight bit single-channel gray

value between zero and 255. Each pixel in the depth image

represents the shortest distance between the corresponding

object point in the natural scene and the given camera plane.

For a given small subset of multiview video (MVV) imagery

and its corresponding set of multiview depth (MVD) images,

an arbitrary number of views can be rendered by using depth-

image-based rendering (DIBR) [5]. This is why depth images

are critical for FTV. Moreover, multiview depth imagery may

also be used to compress the multiview video data more

efficiently compared to conventional compression schemes.

But for that, advanced compression of multiview depth data is

needed. Various methods have been developed to obtain depth

information [6]. There are basically two ways to acquire depth

images from dynamic natural scenes: 1) active depth sensing

and 2) passive depth sensing. Active depth sensing uses special

sensors such as time-of-flight cameras to generate real-time

depth images from discrete depth measurements of the natural

scene. Depth is estimated by measuring the phase delay of the

infrared light reflected by the dynamic scene [6]. These depth

estimates are burdened by noise and holes, specially due to

optical imperfection and scene environment reflectance [7].

The resulting depth images have also low spatial resolution

and require upsampling to match the high-resolution video [8].

Further, depth measurements are less reliable for texture-rich

regions and large distances.

Numerous methods have been proposed to improve the

quality of the actively acquired depth maps. The vast majority

of these methods assume and exploit the correlation between

the depth maps and the corresponding color images to compute

the missing depth values and to denoise depth maps, such as

[9], [10], and [11]. Upsampling of high-quality depth maps

may be achieved by assuming co-occurrences of depth and

image boundaries in the associated high-resolution color image

(e.g., [8]). In cases where an object in a scene moves fast, time-

of-flight cameras are also affected by motion blur as ordinary

cameras [7]. To address this issue, a method for motion blur

detection and deblurring has recently been proposed in [12].

Acquisition of complete geometry information for a natural

scene by using a time-of-flight camera from a single viewpoint

is not possible. A feasible solution is to use multiple depth

sensing cameras from different viewpoints. However, this

approach gives rise to the interference problem. Multiple time-

of-flight cameras can interfere with each other because each
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View ♯1 View ♯3 View ♯5

Depth map ♯1 Depth map ♯3 Depth map ♯5

(a) Dancer.

View ♯2 View ♯4 View ♯6

Depth map ♯2 Depth map ♯4 Depth map ♯6

(b) Newspaper.

Fig. 1. Inter-view inconsistency among multiview depth maps at different
viewpoints for the multiview imagery as provided by [18]. Note, the Dancer
test data set is a synthetic test material and has a consistent depth representa-
tion across all viewpoints in (a). On the other hand, the estimated depth maps
of the Newspaper test data set show inter-view depth inconsistency across all
viewpoints in (b), where red circles mark prominent inconsistent areas in the
depth maps. (Best viewed in color.)

time-of-flight camera emits its own light. Hence, the resulting

depth image quality degrades significantly at multiple view-

points [13]. A plane-sweeping based algorithm is proposed

in [14] to tackle the interference problem for a multiple

time-of-flight cameras setup. The fusion of depth estimates

from multiple viewpoints has been investigated in [15] and

[16] to obtain high quality 3D model reconstruction. The

calibration of the multiple time-of-flight cameras is another

challenging issue when acquiring geometry information of a

natural dynamic scene [17]. Furthermore, depth sensing suffers

from two other major disadvantages. First, the active depth

sensors have to be placed at slightly different positions than

the corresponding video cameras. Second, these sensors are

mostly limited to indoor environments.

On the other hand, passive depth sensing provides full

resolution and viewpoint-aligned depth images by utilizing

camera-captured images from natural dynamic environments.

Full resolution depth maps significantly improve the depth

perception and the quality of rendered views [19]. Depth

images obtained by passive sensing is the focus of our study

in this paper. Passive depth estimates are usually obtained

by establishing stereo correspondences among two or more

camera images at different viewpoints with the help of a

matching criterion [20]. The accuracy of stereo matching

affects the resulting depth estimates. Stereo matching has been

an active research topic for many decades and a number of

optimization techniques are used to refine depth estimates, for

example, graph-cut [21], belief propagation [22], and modified

plane sweeping [23]. Despite using a number of optimization

techniques, the resulting depth maps usually lack temporal

consistency because depth estimation does not exploit tem-

poral coherence among view frames. This results in temporal

inconsistency and flicking.

In order to obtain overall geometry information about a

scene, multiple depth images are estimated using stereo-

matching algorithms at multiple viewpoints. However, as depth

estimation at each viewpoint is independent in passive sensing,

the resulting depth maps at different viewpoints usually lack

inter-view consistency as shown in Fig. 1. For example, in case

of a 1D parallel camera array, depth map values of a unique

3D point should be the same in all depth maps, but located at

different positions in the maps at a given instant of time. In

such a camera setting, all optical centers of the cameras are

parallel to each other and all rotation matrices are identical.

Therefore, depth observations at different viewpoints should

be consistent, and related areas in different viewpoints should

show the same depth values, but shifted, as shown in Fig.

1(a). This is not always the case in Fig. 1(b), as the estimated

depth maps at different viewpoints reflect strong inter-view

depth inconsistencies.

DIBR-based view synthesis algorithms may use multiple

views acquired from different viewpoints and their corre-

sponding depth images. The inconsistencies of depth values

at different viewpoints affect the quality of rendered views.

Incorrect depth values lead to erroneously chosen pixels for

the view interpolation. This leads to perceptually annoying

artefacts in the rendered view [24]. Hence, inter-view depth

inconsistencies affect the quality of synthesized views nega-

tively [25]. Furthermore, as depth images are crucial for many

FTV data representations such as [26], [27], and [28], inter-

view depth inconsistencies may hamper coding as well.

The enhancement of passively estimated multiview depth

imagery at multiple viewpoints is the goal of this paper.

Techniques developed to improve active depth sensing, focus

usually on modeling sensor noise and measurement errors.

In general, these modelling techniques are not suitable to

improve the estimation errors from stereo matching algorithm

(e.g., [11] and [29]). On the other hand, many methods have

been proposed to improve the temporal inconsistency in the

estimated multiview depth imagery, for example, [30], [31],

[32], and [33].

Our goal is to improve the inter-view depth consistency

among estimated depth images at multiple viewpoints. In [34],

we proposed a general model-based framework for multiview

depth map enhancement which improves depth maps at their

respective viewpoints by utilizing color information from view

imagery. The idea to improve stereo matching results by

using color information has been mentioned in [35] and later

investigated by [36]. Recently, many researchers exploited

color classification to improve depth estimates, enforce depth



3

smoothness, and delineate sharp depth boundaries, for exam-

ple, [37], [38], and [39].

Our initial enhancement framework in [34] mainly consists

of two processing steps: multiview color classification and

multiview depth classification. First, color clustering is per-

formed on the concatenated view imagery. The clustering is

carried out in an unsupervised fashion using a generative clus-

tering approach based on Gaussian mixture models (GMMs).

The model parameters are estimated in a Bayesian framework

by variational inference (VI) [40], which allows automatic

determination of the number of color clusters. Second, for each

resulting color cluster, we classify the corresponding depth

values from multiple viewpoints. Finally, multiple depth levels

are assigned to individual sub-clusters for depth enhancement

at multiple viewpoints. The choice of the generative model

has significant influence on the clustering performance. As an

extension to [34], we investigate in [41] the Dirichlet mixture

model as the generative model in the color-clustering stage

[42]. Contrary to [34], the clustering is preformed on the

xyz chromaticity space of the view imagery. The use of the

chromaticity space reduces the effects of illumination for the

clustering. The choice of the Dirichlet distribution is motivated

by two facts. First, a normalized vector in the xyz chromaticity

space has non-negative elements and its l1 norm equals one.

These properties fit the definition of the Dirichlet distribution

nicely [42], [43]. Second, the learning inference in DMM

requires the estimation of fewer parameters, when compared to

that of GMM. This implies less model complexity at superior

clustering performance.

Although using DMM considerably reduces the model

complexity when compared to GMM, the high computational

demand for the enhancement framework is still a concern.

Therefore, our objective of this paper is to effectively reduce

the computational complexity of the framework, while main-

taining its overall performance. In contrast to our fragmented

pervious work [34] and [41], the first contribution of this

paper is the use of superpixels instead of image pixels for

color classification. A superpixel is a group of perceptually

meaningful and homogeneous neighboring image pixels [44].

Superpixels capture image redundancy. This fact helps to

reduce the number of feature vectors for color classification

significantly. Hence, computational time is saved as well [44].

By taking advantage of reduced computational demand

for color classification, we propose an algorithm for fully

probabilistic multiview depth enhancement (PROMDE). In

contrast to [34] and [41], which use K-means and mean-shift,

respectively, depth subclassification is facilitated by variational

inference using Gaussian mixture models. This is the second

main contribution of our paper.

In our initial work [34] , we use discriminative clustering

for the depth subclassification stage. Such methods require the

prior knowledge of the exact number of clusters. The success

of such methods depends highly on this prior knowledge. But

note, in general, depth is noisy and determining the necessary

number of clusters is a nontrivial task. In [41], we use

unsupervised mean shift clustering for depth subclassification.

Here, the final number of clusters is sensitive to the minimum

number of pixels in a cluster. That is, clusters containing

Multiview Color ImageryMultiview Depth Imagery

SuperpixelizationConcatenation

Concatenation

Color Classification

Depth Classification

Depth Enhancement

Improved Depth Imagery

Fig. 2. Probabilistic multiview depth image enhancement.

less than a specified number of pixels will be merged with

its neighboring cluster [45]. To overcome these problems in

this work, we use a generative-based clustering approach with

a mixture of Gaussian distributions. The learning is carried

out in a fully Bayesian inference, which allows automatic

determination of the model complexity.

As we learn the model in a fully Bayesian inference, we

have a set of posterior probabilities, also known as responsi-

bilities. They determine the contribution of data points when

explaining data. In our initial work [34] and [41], the resulting

mean of each subcluster has been used for enhancement. In

the present work, Bayesian inference for depth subclustering

provides us a way to gain insight in inter-view depth incon-

sistencies at multiple viewpoints. The resulting responsibilities

act as probabilistic weights for the input depth pixels. This is

the third main contribution of our paper. Finally, our proposed

multiview depth enhancement algorithm can be used either on

a server or on a client to improve the rendering quality and

the interactive free-viewpoint experience. Experimental results

on virtual view rendering will demonstrate the advantage of

PROMDE.

The rest of the paper is organized as follows: Section II

describes our multiview depth image enhancement. Section III

presents the experimental assessment of our approach. Our

conclusions are summarized in Section IV.

II. MULTIVIEW DEPTH IMAGE ENHANCEMENT

Our proposed multiview depth image enhancement frame-

work mainly consists of four steps: (1) superpixelization, (2)

multiview color classification, (3) depth classification, and (4)

depth image enhancement as depicted in Fig. 2. We assume

that the multiview video imagery of pixel resolution R=H ×
W is independently captured for a given natural dynamic scene

using projective cameras at N discrete viewpoints, where each

image is H pixels in height and W pixels in width. Usually,

each captured view of the scene is an image in YUV color

space [46]. To make the procedure insensitive to the absolut

luminance, we use a chromatic color representation [47]. We
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Fig. 3. Two concatenated Newspaper views with approximately M=1000
superpixels as obtain by using SLIC [44]. The color space has been changed
to RGB for better visualization. (Best viewed in color.)

transform these views from YUV color space to the XYZ color

space. In this space, the virtual primary colors are denoted by

X , Y , and Z , respectively [48]. The chromaticity of a pixel

in a view at any viewpoint n is described by a vector of three

coefficients, i.e., vnr = [x1, x2, x3]
T, xk ∈ [0, 1], whose

entries sum to one, here n = 1, . . . , N, and r = 1, . . . , R. The

chromaticity coefficients are defined as [48]

x1 =
X

X + Y + Z
, x2 =

Y

X + Y + Z
, x3 =

Z

X + Y + Z
.

(1)

In the following, we will explain and motivate the individual

steps of our approach in detail.

A. Superpixelization and Concatenation of View Imagery

The computational complexity of most classification al-

gorithms is proportional to the number of feature samples.

Our earlier approaches in [34] and [41] mainly use image

color pixel vectors as features for color classification. This

demands high computational resources, specially for high

resolution imagery. Generally, there is no prior knowledge on

the observed data. For proper classification, we need a suffi-

cient amount of feature vectors such that the learning can be

performed from the data under consideration. This may incur

additional computational demand. Thus, in order to decrease

this computational demand by reducing the number of feature

samples for classification, we need to find an efficient way

to compute image features which capture image redundancy

efficiently while adhering well to object boundaries.

One way is to group image pixels perceptually into atomic

regions, known as superpixels (e.g., [44]). The use of superpix-

els as a preprocessing step before classification, significantly

decreases the number of feature samples while preserving the

classification accuracy [44]. The interest in using superpixels

is increasing in the computer vision community. As a result,

many superpixel algorithms are proposed [44]. In this paper,

we use Simple Linear Iterative Clustering (SLIC) to generate

superpixels [44]. This algorithm is one of the state-of-the-art

methods and an adaption of the K-means.

The SLIC algorithm performs local clustering of image

pixels in the 5D feature space which is defined by the values

L, a, b of the CIE Lab color space and the x, y pixel

coordinates. For the clustering, the algorithm uses the idea of

iteratively evolving local clusters and cluster centers, which is

a special case of K-means with two major modifications. First,

a novel weighted distance measure is proposed in [44], which

combines color and spatial proximity, and provides control

over the size and compactness of the superpixels. Second,

SLIC limits the search space to a region proportional to the

superpixel size during the distance calculation. This allows

the algorithm to achieve a computational complexity which is

linear in the number of pixels and independent of the number

of superpixels.

Let a view at viewpoint n be represented by a set of R pixels

Vn = {vnr}
R
r=1, then the SLIC algorithm returns a set of

superpixels Sn = {snω}
Ωn

ω=1 with Ωn as the number of desired

superpixels in Vn. Each superpixel snω is a set of pixels with

index ω in view n. Similar to the K-means, once each pixel

has been associated to a superpixel center, i.e., the mean color

vector, it will be assigned this mean color vector which is a

point in xyz chromaticity space snω = [x1, x2, x3]
T.

In order to describe each color uniquely in a given natural

scene through classification, we exploit the inherent inter-

view similarity in the acquired multiview imagery from N

viewpoints. For this, all N views with a desired number of

superpixels Ω are concatenated to a single view with NΩ
superpixels. This can be represented by the following superset

of the superpixel mean color vectors from all N views

S ={Sn}
N

n=1. (2)

By reassigning labels in (2), the concatenated image can be

represented by the following set

S ={sm}Mm=1 (3)

where m = nω and M =
∑N

n=1 Ωn is the number of total

superpixels in the concatenated views from N viewpoints.

Fig. 3 is an example of such concatenated views from two

different viewpoints with M superpixels, where each pixel is

replaced by its corresponding superpixel vector sm.

B. Multiview Color Classification

In order to exploit the inherent per-pixel association between

multiview view and multiview depth imagery for improving

the depth at multiple viewpoints simultaneously, the under-

lying color clusters in the multiview view imagery need to

be known. This is facilitated by color classification of the

multiview imagery. In this subsection, we discuss the details

of color classification. In the subsequent subsection, the results

of color classification are utilized to classify depth images at

multiple viewpoints using the per-pixel association between

color and depth pixels. In general, the goal of classification

is to assign each input data to one of a finite number of

discrete groups of similar examples within the data, know as

clusters [40]. Intuitively, a cluster comprises a group of data

points whose inter-point distances are smaller when compared

with the distances to points outside of the cluster [40].

1) Classification Methods: In a broad sense, we can cat-

egorize classification approaches to be either discrimina-

tive (e.g., [49]) or generative (e.g., [50]). Within discriminative

approaches, the K-means enjoys the status of one of the

simplest and most popular clustering algorithms, but it also

suffers from two major drawbacks [40]. First, it does not
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consider the spatial proximity of different superpixels, and

second, it assumes a known number of clusters. [40].

Clustering methods with generative models are of special

interest. In many cases, we can incorporate domain knowl-

edge to uncover clusters with desirable patterns. In clustering

algorithms based on generative models, the clustering task

is performed by modelling the underlying distribution of the

data with a mixture of known distributions. The parame-

ters of the mixture model are often estimated by maximum

likelihood estimation which involves often an application of

the expectation-maximization algorithm. An example for a

popular generative model is the mixture of Gaussian distribu-

tions whose effect is analogous to the use of Euclidean-type

distances as the chosen measure of distortion from the dis-

criminative point of view. Although this framework considers

spatial proximity, it has its own limitations: 1) it suffers from

singularities when one of the Gaussian components collapses

onto a specific data point, for example, the log-likelihood

function goes to infinity; 2) it suffers from over-fitting; and

3) similar to the K-means algorithm, the number of clusters

has to be known. Usually in practice, the number of clusters

is unknown and determining it imposes its own challenges.

In Bayesian inference for generative clustering, the number

of clusters is treated as a random variable together with the

parameters of the mixture components (e.g., [51]). As the exact

inference is not analytically tractable, we have to resort to

approximations. Two most prominent strategies in statistics

and machine learning are Markov chain Monte Carlo (MCMC)

sampling and variational inference [40], [52], [53]. In MCMC

sampling, we collect samples from the exact posterior while

the approximation arises from the use of a finite number of

samples due to limited computational resources [40, Ch.11].

However, MCMC methods may converge slowly and their

convergence can be difficult to diagnose. In practice, this often

limits their use in small-scale problems. Variational inference

based methods provide an alternative to computationally costly

sampling-based methods. Variational inference replaces sam-

pling and gives a deterministic approximation to the posterior

distribution [54]. In this paper, we employ a generative clus-

tering approach which uses variational inference for parameter

estimation.

2) Dirichlet Mixture Models with Variational Inference:

Our goal is to classify the chromaticity of superpixels. So, our

choice of the generative model for classification is based on the

properties of the feature domain. Each feature of a superpixel

sm is a three-dimensional vector in xyz chromaticity space

which contains only nonnegative elements. These elements

are in the interval [0,1] and sum to one. Obviously, sm is

not Gaussian distributed. Based on the properties of sm, a

more reasonable choice is to model the underlying distribution

of sm by a Dirichlet distribution (e.g., [40]). The Dirichlet

distribution has a probability density function of the form

Dir (sm|u) =
Γ
(∑K

k=1 uk

)

∏K
k=1 Γ (uk)

K∏

k=1

xuk−1
k , uk > 0, (4)

where K = 3,
∑K

k=1 xk = 1, 0 ≤ xk ≤ 1, u = [u1, . . . , uK ]T

is the parameter vector, and Γ (·) is the Gamma function. The

sm

zm

M

πi

I

ci

uKi

I

u1i

a1i

b1i

aKi

bKi

Fig. 4. Directed acyclic graph to represent the relationship of the variables
in the Bayesian inference of a DMM, where the parameters of Dirichlet
distributions are assumed to be mutually independent. Nodes denote random
variables, edges denote possible dependencies, and plates denote replications.

distribution is parameterized by the parameter vector u. When

uk > 1, it is unimodally distributed. Here, we consider only a

Dirichlet distribution with all its parameters greater than one.

We use a finite mixture of multivariate Dirichlet distributions

to capture the underlying distribution of S as [55]

p (S|Π,U) =

M∏

m=1

I∑

i=1

πiDir (sm|ui) , 0 ≤ πi ≤ 1, (5)

where I denotes the number of mixture components,

Π = [π1, . . . , πI ]
T is the vector of mixture weights with∑I

i=1 πi=1, and U = [u1, . . . ,uI ] is the parameter matrix. In

the following, we adopt the Bayesian approach with variational

inference to estimate the model parameters [42]. This leads to

an analytically tractable solution that can be easily used in

practice.

To facilitate Bayesian estimation with variational inference

for Dirichlet mixture models, the following conjugate priors

are introduced over πi and ui as

πi ∼ Dir (c0,i) , (6)

uki ∼ Gam (a0,ki, b0,ki) . (7)

In the above expression, Dir (c0,i) is the Dirichlet distribution

with c0,i as the hyperparameter for the prior distribution over

πi. Gam (a0,ki, b0,ki) is the Gamma distribution with the shape

parameter a0,ki and the inverse scale parameter b0,ki, which

are regarded as the hyperparameters for the prior distribution

over uki.

In this model, an I-dimensional indication vector zm =
[zm1, . . . , zmI ]

T is assigned to each sm ∈ S. Only one element

in the indication vector is equal to 1 and the remaining

elements are zeros. Thus, zmi = 1 indicates that the mth

superpixel is generated from the ith mixture component.

Therefore, Z = [z1, . . . , zM ] is the indication matrix for M

superpixels. Fig. 4 shows a graphical representation of the

relationship between the variables in the Bayesian inference

of a Dirichlet mixture model.

By treating all the parameters in (5) as random variables and

assuming that S is conditionally independent of Π given Z,

while having Z independent of U, the conditional probability

of S given {Z,U} can be written as

p (S|Z,U) =

M∏

m=1

I∏

i=1

Dir (sm|ui)
zmi . (8)
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By considering the indication Z as random, the conditional

probability of Z given Π is

p (Z|Π) =
M∏

m=1

I∏

i=1

πzmi

i . (9)

Regarding our model description, we can represent the joint

distribution of S and all the latent variables {U,Π,Z} by

p (S,U,Π,Z) = p (S|Z,U) p (Z|Π) p (Π) p (U) . (10)

Working with the exact posterior is not analytically tractable.

The idea behind variational methods is to approximate

p(U,Π,Z | S) with a distribution q(U,Π,Z) that belongs

to a constrained family of distributions, indexed by a vari-

ational parameter. The goal is to choose a member of that

family which is as close as possible to the exact posterior

distribution [54]. In variational inference this is carried out

by maximizing a lower bound introduced on the log marginal

likelihood (the model evidence) [54]. In this work, we follow a

framework as described in [42] for maximizing the variational

lower bound and deriving the required sequential update

equations. We proceed by providing a summary of the method.

By considering a fully factorized approximation for the

latent switch variables Z, the component parameters Π and U,

then the variational distribution q(U,Π,Z) can be expressed

as, [42],

q(U,Π,Z) = q(U)q(Π)q(Z). (11)

Optimization of the variational factors q(Z)q(Π)q(U) is

performed by maximizing the lower bound on the model

evidence. The lower bound is given by

L = Eq [ln p(S,U,Π,Z)]− Eq [ln q(U,Π,Z)] . (12)

The operator Eq [·] takes the expectation of variables in its

argument with respect to the variational variable distribution

q(·). The optimization of the variational posterior distribution

q(Z)q(Π,U) involves cycling between optimization of q(Z)
and q(Π,U), which is analogous to the expectation and the

maximization steps in the maximum-likelihood expectation-

maximization algorithm.

First, we use the current distributions over the model

parameters to evaluate the responsibilities r
(S)
mi as

r
(S)
mi = Eq [zmi] =

ρmi∑I
j=1 ρmj

, (13)

ln ρmi = ψ (ci)− ψ
(
c
T
1I

)
+ (ui − 1K)

T
ln sm

+

K∑

k=1

[
ψ(

K∑

k=1

uki)− ψ(uki)

]

× uki (Eq [lnuki]− lnuki) , (14)

uki =
aki

bki
, (15)

Eq [lnuki] = ψ (aki)− ln bki, (16)

where, uki is calculated from the previous iteration, ψ(·)
is the digamma function defined as ψ(x) = ∂ ln Γ(x)

∂x
, the

superscript S represents the superpixel, and 1I denotes an

I dimensional vector with all elements equal to one. The

resulting responsibilities are used to re-estimate the variational

distribution over the parameters. The corresponding posteriors

are given by

πi ∼ Dir (ci) , (17)

uki ∼ Gam (aki, bki) , (18)

where

ci = c0,i +
M∑

m=1

r
(S)
mi , (19)

bki = b0,ki −
M∑

m=1

r
(S)
mi ln skm, (20)

aki = a0,ki +

M∑

m=1

r
(S)
mi uki

[
ψ

(
K∑

k=1

uki

)
− ψ (uki)

]
. (21)

The procedure is guaranteed to converge as the lower bound is

convex in each of the factors [56] and there is only one lower

bound being maximized during the updating steps.

3) Color Classification: The responsibilities r
(S)
mi play an

important role in the classification as they express how re-

sponsible each mixture component is in explaining the data.

In other words, each element r
(S)
mi ∈ [0, 1] represents the

probability that sm is generated from the ith cluster. Let

R(S) = [r
(S)
1 , . . . , r

(S)
M ] denote the responsibility matrix,

where r
(S)
m = [r

(S)
m1 , . . . , r

(S)
mI ]

T are non-negative and sum to

one. Thus, we assign each superpixel to the cluster which

gives the largest probability. Members of the ith cluster of

superpixels S(i) can be extracted from S as

S(i) = {s(i)m }Mm=1 (22)

with

s
(i)
m =

{
sm, if r

(S)
mi > r

(S)
mj , ∀ i 6= j, (i, j = 1, . . . , I);

∅, otherwise,
(23)

where ∅ is the empty set. Note that a superpixel is a set of

perceptually grouped pixels. Therefore, a superpixel in a given

cluster represents the pixels which belong to the specified

superpixel. We further note that all pixels in a superpixel

will be assigned the responsibility of that superpixel. Let

R(C) = [r
(C)
11 , . . . , r

(C)
NR] denote the responsibility matrix,

where, the superscript C represents the color vector pixel,

r
(C)
nr = [r

(C)
nr1, . . . , r

(C)
nrI ]

T and each element r
(C)
nri represents the

probability that the color pixel vnr ∈ {Vn}Nn=1 which belongs

to s
(i)
m is generated from the ith cluster. By assigning each

color pixel to the cluster which gives the largest probability, we

extract the members of the color cluster C(i) from {Vn}Nn=1 as

C(i) = {v
(i)
11 , . . . ,v

(i)
NR}, (24)

where

v
(i)
nr =

{
vnr, if r

(C)
nri > r

(C)
nrj , ∀i 6= j (i, j = 1, . . . , I);

∅, otherwise.
(25)
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C. Multiview Depth Image Classification and Enhancement

With color clusters {C(i)}Ii=1 for a given multiview imagery,

we can improve the quality of depth maps and specially

the inter-view depth consistency at multiple viewpoints, si-

multaneously. For this, depth images from N viewpoints are

concatenated to a single depth D ∈ R
H×NW
+ which can be

represented as a set of all N depth images

D = {Dn}
N
n=1, (26)

where Dn = {dnr}Rr=1 ∈ R
H×W
+ is the depth map at the

viewpoint n which can be considered as a set of discrete depth

values dnr ∈ {0, . . . , 255}. For simplicity, we consider the

following mapping

D ∈ R
H×NW
+ 7→ D ∈ R

1×NR
+ , (27)

where D = {d1, . . . , dNR} is such that for each color pixel

vnr, there is an associated depth value dnr. In order to obtain

members of the ith depth cluster D(i), we utilize this per-pixel

depth association with color pixels by defining

D(i) = {d̃
(i)
1 , . . . , d̃

(i)
NR}, (28)

where

d̃(i)nr =

{
dnr, if r

(C)
nri > r

(C)
nrj , ∀i 6= j (i, j = 1, . . . , I);

∅, otherwise.
(29)

Fig. 5 shows such color clusters and the associated depth clus-

ters for concatenated color images and depth maps from two

viewpoints, respectively. Note that this approach efficiently

clusters similar color pixels from multiple viewpoints without

making any specific assumptions about the natural scene.

In natural scene imagery, foreground and background object

points can have a similar color, but foreground object points

have different depth values when compared to background

object points. This leads to ambiguities among the members

of a depth cluster as compared to the associated color cluster.

The members of C(i) have similar colors, whereas members of

D(i) may have different depth values. For 1D parallel camera

arrangements, a given object point with a given chromaticity,

which is visible from N viewpoints, should have the same

depth value in all N depth images. However, such points

usually have different depth values in D(i) due to the inter-

view inconsistency across multiple viewpoints. This adds

additional ambiguity to depth clusters and motivates us to

resolve this by considering further subclassification of each

depth cluster D(i).

We consider a way to gain insight about inter-view incon-

sistencies at multiple viewpoints by using the depth responsi-

bilities for each depth pixel. We notice that inconsistent depth

values for an observed object point at multiple viewpoints will

be assigned lower responsibilities when compared to consistent

depth values. Further, we need to put emphasis on depth pixel

values as well as their positions at multiple viewpoints. For

this purpose, we define the following feature domain

D̂(i) = {dφ}φ∈Φ(i) , (30)

where each feature vector dφ = [dφ, hφ, wφ]
T consists of

depth pixel value dφ ∈ D(i) ∀ φ, and its location information

hφ ∈ {1, . . . , H} ∀ φ and wφ ∈ {1, . . . ,W} ∀ φ with respect

to the viewpoint to which dφ belongs. The set Φ(i) denotes

the set of indices of members of D(i). Note that the defined

feature vector dφ is not limited by the number of images from

different viewpoints. It is only limited by the constraints of the

1D parallel camera arrangement. However, our method can

easily adapt to other multi-camera arrangements such as the

2D camera array or the circular camera array by defining a

new feature vector in an appropriate feature domain. In [44],

the authors extended the idea of superpixels to compute 3D

SLIC supervoxels for a video sequence. Our proposed depth

enhancement framework can also be extended to improve

temporal depth coherence by applying the 3D supervoxels

on concatenated temporally successive frames and defining

feature vectors that reflect the constraints of scene geometry,

object point motion, and visibility [57].

As the elements of the feature vector dφ are discrete

geometric values sampled from a continuous distribution with

quantization noise, we model the underlying distribution of

D̂(i) by a mixture of multivariate Gaussian distributions as

p(D̂(i) | µ,Λ, τ) =
∏

φ∈Φ(i)

L∑

l=1

τlN (dφ | µl,Λ
−1
l ), (31)

where L is the number of mixture components, τ =
[τ1, . . . , τL]

T, 0 ≤ τl ≤ 1,
∑L

l=1 τl = 1, denotes the

vector of mixture weights, µ = [µ1, . . . ,µL]
T represents the

mean vectors, and Λ = [Λ1, . . . ,ΛL]
T denotes the precision

(i.e., inverse covariance) matrices. The model parameters are

estimated in a Bayesian framework by variational inference

[40, Ch.10]. In the first step, the following priors are used for

the model parameters

τl ∼ Dir(α0,l), (32)

Λl ∼ W(W0,l, ν0,l), (33)

µl ∼ N (m0,l, (β0,lΛl)
−1). (34)

In the above expressions, Dir(α0,l) is the symmetric Dirichlet

distribution of dimension L, with the hyperparameter α0,l. The

Dirichlet distribution is the conjugate prior of the categorical

distribution. W(W0,l, ν0,l) is the Wishart distribution with

scale matrix W0,l and degree of freedom ν0,l, which is the

conjugate prior of the precision matrix for a multivariate Gaus-

sian distribution. Associated with each observation dφ, there is

a corresponding latent switch variable zφ = [zφ1, . . . , zφL]
T

consisting of the binary elements zφl. Indicating the set of

switch variables by Z = {zφ}φ∈Φ(i) , the conditional distribu-

tion of Z given τ is

p(Z | τ) =
∏

φ∈Φ(i)

L∏

l=1

τ
zφl

l . (35)

Again, we use first the current distributions over the model

parameters to evaluate the responsibilities r
(D)
φl for i as

r
(D)
φl =

̺φl∑L
ς=1 ̺φς

(36)
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Input views (♯4, ♯6) Input views (♯6, ♯8) Input views (♯3, ♯5) Input views (♯3, ♯5)

Color cluster Color cluster Color cluster Color cluster

Depth cluster Depth cluster Depth cluster Depth cluster

(a) Newspaper. (b) Lovebird1. (c) Balloons. (d) Kendo.

Fig. 5. Example of color classification and corresponding depth classification. Concatenated imagery from two viewpoints is shown. The classification of
depth pixels is achieved by utilizing the per-pixel association of depth pixels with color pixels. (Best viewed in color.)

ln ̺φl = Eq[lnπl] +
1

2
Eq[ln |Λl|]−

∆

2
ln(2π)

−
1

2
Eq[(dφ −ml)

T
Λl(dφ −ml)], (37)

where ∆ = 3 which is the dimension of the feature vector

dφ. Next, these responsibilities are employed to re-estimate the

variational distribution over the parameters. The corresponding

posteriors are given by

τl ∼ Dir(αl), (38)

Λl ∼ W(Wl, νl), (39)

µl ∼ N (ml, (βlΛl)
−1), (40)

where

αl = α0,l + Fl, Fl =
∑

φ∈Φ(i)

r
(D)
φl (41)

νl = ν0,l + Fl, (42)

βl = β0,l + Fl, (43)

d̄l =
1

Fl

∑

φ∈Φ(i)

r
(D)
φl dφ, (44)

Gl =
1

Fl

∑

φ∈Φ(i)

(dφ − d̄l)(dφ − d̄l)
T, (45)

ml =
1

βl
(β0,lm0,l + Fld̄l), (46)

W
−1
l = W

−1
0,l + FlGl

+
β0,lFl

β0,l + Fl

(d̄l −m0,l)(d̄l −m0,l)
T. (47)

For detail, please see [40].

Let R(D) = [r
(D)
φ ]φ∈Φi represent the responsibility matrix

for all depth pixels which are obtained by subclassification of

the depth cluster D(i) using variational inference with a Gaus-

sian mixture model, where r
(D)
φ = [r

(D)
φ1 , . . . , r

(D)
φL ]T. Each

element r
(D)
φl represents the probability that dφ is generated

(a) Depth maps of Newspaper sequence before enhancement.

(b) Depth maps of Newspaper sequence after enhancement.

Fig. 6. Example for inter-view consistent depth maps as obtained by using our
probabilistic depth enhancement for the MPEG Newspaper sequence. After
the enhancement in (b), more regions in the depth maps are consistent when
compare to the original MPEG depth maps without enhancement. The red
circles mark areas with inter-view inconsistency in the depth maps before
enhancement. The green circles mark corresponding areas with improved
inter-view consistency after enhancement. (Best viewed in color.)

from the lth cluster of the depth values. Thus, we assign each

depth pixel dφ in D(i) to the depth subcluster which gives the

largest probability. Members of the lth depth subcluster D(il)

can be extracted from D(i) as

D(il) = {d̃
(il)
φ }φ∈Φi (48)

with

d̃
(il)
φ =

{
dφ, if r

(D)
φg > r

(D)
φh , ∀ g 6= h, (g, h = 1, . . . , L);

∅, otherwise.
(49)
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(a) Newspaper. (b) Lovebird1.
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(c) Balloons. (d) Kendo.

MPEG/D RGB→VI-GMM/CC→MS/ED XYZ→VI-GMM/CC→MS/ED

xyz→VI-DMM/CC→MS/ED [41]∗ PROMDE PROMDE∗

Fig. 7. Total number of superpixels vs. objective quality of virtual views as generated by VSRS 3.5 using the small baseline setting as given in Table I.
The virtual views as obtained by using MPEG depth images without enhancement (MPEG/D) are used as the baseline for comparison. The use of depth
images enhanced by PROMDE improves the quality of view synthesis when compared to the enhancement approach xyz→VI-DMM/CC→MS/ED, where
the enhanced depth (ED) is generated by mean-shift (MS) rather than VI-GMM. This inferior approach is similar to our previous work [41] which does not
use superpixels. Two more enhancement schemes which use VI-GMM color classification are used for comparison: RGB→VI-GMM/CC→MS/ED uses color
clusters in RGB color space and the resulting depth is processed by mean-shift. XYZ→VI-GMM/CC→MS/ED utilizes color classification in XYZ color space
while reusing mean-shift for depth subclustering. The results of the algorithm in [41] and the proposed algorithm without superpixels are represented by [41]∗

and PROMDE∗, respectively. Note, all enhancement schemes use superpixels as pre-processing step before color classification to lower the computational
complexity, except the schemes marked by an asterisk (∗).

We consider a set Υ(il) which denotes the set of indices of

members of D(il). We replace the depth values in the depth

subcluster D(il) by the responsibility-weighted mean

d̂(il) =

∑
υ∈Υ(il) r

(D)
υ dυ

∑
υ∈Υ(il) r

(D)
υ

, (50)

where r
(D)
υ is the largest responsibility of the depth pixel dυ .

Note that the simple mean of all depth values within D(il)

would be sensitive to depth inconsistency and noise.

The method is guaranteed to converge. This can be ex-

plained as follows. Using variational inference, we have an

explicit lower bound on the marginal likelihood of data (evi-

dence). During optimization, the lower bound value increases

with each iteration. Further, the learning procedure is guaran-

teed to converge as the lower bound is convex in each of the

factors (model parameters) [40, Ch.10]. In fact this is one of

the key advantages of using variational inference.

III. EXPERIMENTAL RESULTS

FTV experience allows the user to enjoy either camera

captured views or virtual views at a time. Depth images

are employed for generating novel virtual views by DIBR at

viewpoints where real cameras are missing. The inconsistent

and inaccurate depth values from different viewpoints affect

the position and hence, intensity of the virtual view pixels [24].

Therefore, the quality of depth images has direct impact on

view synthesis [24]. The quality of views rendered by DIBR-

based view synthesis algorithms can be significantly improved

by the improving the quality of the depth imagery [25]. Thus,

rendering results provide a means to evaluate the inter-view
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inconsistency in the multiview depth imagery. Hence, the

performance of the proposed probabilistic depth enhancement

is assessed through the effect on the subjective and objective

quality of virtual views. In the experiments, we use four

multiview test sets and the corresponding multiview depth

imagery as provided by MPEG [18]: Newspaper, Lovebird1,

Balloons, and Kendo. The spatial resolution of the test imagery

is 1024 × 768. The MPEG multiview depth imagery has the

same resolution and is estimated by a passive depth sensing

method [58]. Each evaluation experiment for the proposed

scheme mainly consists of two steps: (1) improvement of depth

images at multiple viewpoints using the proposed approach

and (2) virtual view synthesis with the help of the improved

depth images. For this purpose, the MPEG view synthesis

reference software (VSRS) is employed [58]. This reference

software is a DIBR approach which takes two views, left

and right, to render a view at a given intermediate viewpoint

by using the two corresponding depth images and camera

parameters [59]. The virtual views are generated by using

the 1D parallel synthesis mode of VSRS 3.5 with half-pel

precision.

TABLE I
EXPERIMENTAL MVV AND MVD VIEWPOINT SETTINGS.

Small Baseline Large Baseline
MPEG Data Input Virtual Input Virtual

Views View Views Views

Newspaper ♯4, ♯6 ♯5 ♯3, ♯7 ♯4, ♯5, ♯6

Lovebird1 ♯6, ♯8 ♯7 ♯4, ♯8 ♯5, ♯6, ♯7

Kendo ♯3, ♯5 ♯4 ♯1, ♯5 ♯2, ♯3, ♯4

Balloons ♯3, ♯5 ♯4 ♯1, ♯5 ♯2, ♯3, ♯4

Due to the input requirements of VSRS 3.5, we restrict

our evaluation experiments to improve depth images at two

viewpoints, i.e., N = 2, for each multiview test imagery. For

this, our algorithm starts with a specified number of superpix-

els Ω. The number mixture components for both VI-DMM

color classification and VI-GMM depth subclassification is

initialized by a large value, for example, I = L = 100. The

resulting responsibilities from depth subclassification are used

to improve the depth estimates at two chosen viewpoints. Fig.

6 shows an example of depth maps improved by our proposed

method. Next, a virtual view at a given viewpoint is synthe-

sized by using VSRS 3.5 with the improved depth images.

The objective quality of these synthesized views is measured

in terms of the peak signal-to-noise ratio (PSNR) with respect

to the captured view from a real camera at the same viewpoint.

We consider the quality of virtual views generated by using

MPEG depth maps and enhanced MPEG depth maps by our

pervious work [41] with superpixels. The experiments are

performed using two different camera baseline settings: the

small camera baseline and the large camera baseline. For each

test data set, Table I shows the experimental setting of the

input viewpoints and the corresponding synthesized virtual

viewpoints for the two camera baseline settings.

A. Small Camera Baseline Setting

For the small baseline setting as given in Table I, Fig. 7

shows the average luminance PSNR (in dB) of virtual views

over the number of total superpixels for the four test sets.

The quality of views obtain by using enhanced MPEG depth

images is better than the quality of views synthesized by using

MPEG depth images without enhancement. Graphs show that

probabilistic enhancement of depth imagery is advantageous.

When compared to [41], the advantage by pre-processing

with superpixels. Further, we noticed that PROMDE offers

improvements over mean-shift subclustering of depth. The

choice of the generative model and the color space for

classification also influence the depth enhancement. Color

classification using VI-DMM outperforms classification based

on VI-GMM. The graphs in Fig. 7 also indicate that the choice

of color space affects the performance of depth enhancement.

For example, depth images improved by using VI-GMM color

classification in XYZ space give better results than VI-GMM

in RGB space. For both methods, superpixels and mean-

shift depth subclassification are used. The performance of

our proposed probabilistic depth enhancement even without

superpixels improves the quality of depth maps significantly

when compared with the [41] and MPEG depth images. When

comparing the improvements among the multivew test sets,

note that they depend on the quality of the input reference

depth maps.
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xyz→VI-DMM/CC→MS/ED PROMDE

Fig. 8. Total number of superpixels vs. relative computational time in percent
with respect to the computational time of [41] without superpixels. The
performance of our algorithm PROMDE is shown. The method xyz→VI-
DMM/CC→MS/ED denotes the extension of [41] by superpixels. Here, the
relative computational time is defined as the ratio of the computational time
required to enhance depth maps by our depth enhancement algorithm which
uses superpixels as pre-processing to the computational time required to
enhance the same depth maps by using the method as proposed in [41].
The number of initial clusters and the number of iterations are the same in all
experiments. The same concatenated views from two different viewpoints are
used in all experiments. The resolution of each view is 1024×768 pixels. With
this imagery, the computational time of the algorithm [41] is approximately
90 min using a MATLAB implementation on a 64-bit Windows operating
system and an Intel Core i7 CPU.

We observe that our algorithm does offer objective gains

for the test data. The gain for Kendo is the largest. This

gain mainly comes from the VI-DMM color classification. For
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Kendo, the VI-DMM classification returns a well-clustered

background. The corresponding depth clusters, as shown in

Fig. 5, reflect a significant inter-view inconsistency. The

mean-shift based enhancement efficiently improves the inter-

view consistency by assigning mean values to specified clus-

ters [41]. For PROMDE, depth values are replaced by the

responsibility-weighted mean value in each specified cluster.

This considers the contribution of each depth value within the

cluster. The graphs in Fig. 8 show that pre-processing with

superpixels reduces the computational time significantly when

compared to [41].

The visual quality of virtual views is critical for the com-

fort of FTV viewers. With the proposed probabilistic depth

enhancement, we are able to perceptibly improve the quality

of the virtual views. The improvements reported here come

exclusively from the enhanced depth imagery. In particular,

they remove artifacts around edges of objects as defined

by chromaticity clusters. Fig. 9 compares virtual views of

the test imagery. Improvements are highlighted and shown

through the selected cropped regions. For Newspaper, the

hand and the background are well synthesized with PROMDE.

Visually annoying artifacts in Lovebird1, specially around

the hair and the red jeogori sleeve of the man have been

noticeably suppressed. The boundaries of the balloons are well

synthesized in the Balloons test set. The synthesis quality for

Kendo around the hakama and the trouser of the spectator is

significantly improved, as shown in Fig. 9(d).

B. Large Camera Baseline Setting

The following experiments are devised to examine the per-

formance and robustness of our proposed depth enhancement

algorithm in large baseline scenarios. In these experiments, we

first enhance the depth maps at two different viewpoints, say,

n and n + 4, using our probabilistic depth enhancement or

[41] with superpixels. Second, virtual views at three different

intermediate viewpoints n+1, n+2, and n+3 are synthesized.

The three intermediate views help us to analyze the effect of

the improved inter-view depth consistency on the quality of

the views. Note that these experiments are performed with

a fixed number of desired superpixels M = 1.2 × 105. For

each multiview test set, the large baseline setting in Table I

is used. Fig. 10 shows the average luminance PSNR (in dB)

of all three virtual views. In general, the bar plots show that

all virtual views obtain by using our enhanced MPEG depth

images offer better visual quality when compared to virtual

views synthesized by using [41] with superpixels and MPEG

depth maps without enhancement. Similar to the small baseline

setting, the gain in quality of virtual views in the large baseline

setting is also highly dependent on the quality of the input

multiview depth imagery.

Fig. 11 emphasizes on the improved inter-view consistency

across the viewpoints by showing selected cropped regions of

the virtual views. In the synthesized virtual views of Newspa-

per using PROMDE, the head of the man and the background

wall are more consistent across the different viewpoints when

compared using the MPEG depth maps without enhancement.

For Lovebird1, the artifacts around the red jeogori sleeve of the

man have been noticeably suppressed across all virtual views

as shown in Fig. 11(b). Using our enhanced depth maps for

the Balloons imagery, we observe an improved consistency of

the synthesized boundaries of the balloons in Fig. 11(c). For

Kendo in Fig. 11(d), the visual artifact on the head of the

spectator is consistently suppressed across all virtual views.

These examples demonstrate the efficiency of our genera-

tive models used to enhance multiview depth imagery. Our

approach to improve the inter-view depth consistency permits

the rendering of high-quality intermediate virtual views which

allow interactive users to navigate smoothly through high-

quality natural scenes.

IV. CONCLUSIONS

This paper presents a probabilistic approach to multiview

depth image enhancement by using variational inference. We

exploit the inherent inter-view similarity in multiview imagery

through color classification of concatenated views. For color

classification, a Dirichlet mixture model with variational in-

ference is employed. The resulting color clusters are used to

classify depth pixels from various viewpoints. Here, a per-

pixel association between depth and color pixels has been

utilized. The inter-view inconsistencies in these depth clusters

inspire further subclassification with Gaussian mixture models.

The depth subclassification assigns probabilistic weights to

depth pixels. These depth weights are then used to repair the

input depth imagery at multiple viewpoints. Pre-processing

by generating superpixels reduces the overall computational

complexity significantly. Both objective and subjective results

confirm the benefit of our multiview depth image enhancement

method for interactive users.
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Fig. 9. Selected regions of synthesized virtual views of test sequences as generated by VSRS 3.5 using MPEG depth maps and enhanced depth maps from
our depth enhancement algorithm. These virtual views are generated by using the small camera baseline setting of Table I. (Best viewed in color.)
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Fig. 10. The objective quality of three intermediate virtual views as generated by VSRS 3.5 using the large baseline setting as given in Table I for a total
number of desired superpixels M = 1.2 × 105. The virtual views as obtained by using MPEG depth maps without enhancement (MPEG/D) are used as
the baseline for comparison. The quality of view synthesis improves across all three intermediate viewpoints by using enhanced depth maps via probabilistic
depth enhancement (PROMDE) when compared to the enhancement method xyz→VI-DMM/CC→MS/ED, where the enhanced depth (ED) is generated by
mean-shift (MS). This reference is the extended version of our early work [41] and includes superpixels as pre-processing step.
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Fig. 11. For the large camera baseline setting in Table I, selected regions of synthesized virtual views at three different viewpoints are shown. VSRS 3.5
is used for rendering. The enhanced depth maps from our depth enhancement algorithm (PROMDE) exhibit more inter-view consistency when compared to
the original MPEG depth maps without depth enhancement. The improved depth consistency has a direct impact on the quality of the rendered views. (Best
viewed in color.)
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