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ABSTRACT

This paper presents a content-adaptive coding scheme for immersive
networked experience of sports events, in particular, soccer games.
We assume that future sports events are captured by an array of fixed
high-definition cameras which provide multiview image sequences
for a free-viewpoint immersive networked experience in a home en-
vironment. We discuss a content-adaptive coding scheme for image
sequences that exploits properties of such sequences and that permits
efficient user interactions. In this work, we construct a rate distortion
model for an image sequence to obtain the optimal bitrate allocation
among static and dynamic content items. The optimal bitrate alloca-
tion results in a rate distortion performance of the coding scheme that
outperforms that of conventional H.264/AVC coding significantly.

Index Terms— Immersive networked experience, content-adap-
tive coding, rate distortion model.

1. INTRODUCTION

In recent years, contend-based coding techniques have been consid-
ered for efficient video coding [1]. These techniques provide more
coding flexibility by allowing users to access video objects freely
and semantically meaningfully. However, due to the high complexity
of object detection and segmentation, the efficiency of most content-
based coding schemes cannot be guaranteed. Additionally, shape in-
tra coding consequently increases the coding burden. Hence, object-
based coding methods usually underperform in the classical setting
at high bitrates.

The rise of high-definition television (HDTV) and the desire for
an immersive networked experience in a home environment have
raised the interest in content-adaptive coding schemes. Popular ap-
plications include soccer games where background objects, like sta-
dium and soccer field, are relatively static and where foreground
objects, like players, are mostly dynamic. Similar to conventional
sprite coding [2], the dynamic parts will be extracted from the static
background and encoded separately. However, there are three im-
portant issues with this strategy. First, the computational complexity
should be taken into account when extracting dynamic parts. Sec-
ond, the trade-off between frame rate and rendering distortion of the
static content can be optimized. Third, the optimal bitrate alloca-
tion between static and dynamic parts can maximize the overall rate
distortion performance.

In this paper, we discuss a content-adaptive coding scheme for
immersive networked experience of sports events. We exploit the
properties of static and dynamic parts and construct a rate distortion
model for optimal bitrate allocation. We consider three important
aspects, namely the rendering distortion of the static part, the coding

distortion of the static part, and the coding distortion of the dynamic
parts. With that, we aim to maximize the overall rate distortion per-
formance of the content-adaptive coding scheme.

The remainder of this paper is organized as follows: Section 2
presents our content-adaptive coding scheme. Section 3 discusses
a rate distortion model and determines the optimal rate allocation
between static and dynamic content items. The experimental eval-
uation of our scheme and a comparison to H.264/AVC coding are
given in Section 4, followed by a short conclusion.

2. CONTENT-ADAPTIVE CODING SCHEME

To facilitate an immersive networked experience of soccer events,
we discuss a content-adaptive coding scheme. To match the proper-
ties of multiview video captured by an array of static cameras in a
soccer stadium, we distinguish between static and dynamic content.
The static content, comprising mostly of areas capturing the field
and the background, is varying slowly over time and its multiview
redundancy can be exploited efficiently by inter-view prediction. On
the other hand, the dynamic content, comprising mostly of regions
covered by players, is changing rapidly over time and its temporal
redundancy can be exploited efficiently by inter-frame prediction.
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Fig. 1. Content-adaptive coding scheme.

The content-adaptive coding scheme comprises the extraction
of static and dynamic content, the individual coding engines, and
a synthesis unit at the decoder that facilitates the reconstruction of
the output image sequence. The content-adaptive approach will also
offer an advantage when considering an user-specified viewpoint in
the reconstruction process. In particular, algorithms for view inter-
polation can be tailored to the specific content. Fig. 1 depicts the
discussed content-adaptive coding scheme.

2.1. Extraction of Static and Dynamic Content

We assume that player tracking information [3] is available which
allows us to extract a rectangular region for each player. Each region
defines a dynamic content item and results in an individual image




sequence. All defined content items are removed from the camera
images to establish the static content item. Hence, each original
camera image sequence z is divided into several sub-sequences, one
sequence for the static content 3°, and multiple sequences for the
dynamic content items v*, with & = 1,2,..., K. An example is
shown in Fig. 2.
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Fig. 2. Extraction of dynamic parts; the red boxes indicate dynamic
content.

Foreground scenes are usually generated by applying the fore-
ground shape macroblock approximation method [4]. However, due
to the complexity of foreground object contours, the accuracy of ob-
ject shape prediction is low. Additionally, the intra coding of shape
information will also affect overall coding efficiency. In our work,
we use rectangular boxes to capture the dynamic objects and up-
date the position of the boxes with the help of tracking information
from the dynamic objects. In other words, the image sequences of
dynamic items are generated by the scene content in each box, as
depicted in Fig. 2. This approach offers three advantages: First,
the rectangular content can be coded efficiently with state-of-the-art
standards like H.264/AVC [5]. Second, the extraction of rectangu-
lar content can be easily combined with object tracking techniques.
Third, the cost of shape information coding is lower for rectangular
content.
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Fig. 3. Static content; occlusions are compensated.

After generating the dynamic parts, the static scene can be easily
subtracted from the original image sequence. The occluded parts can
be compensated by traditional temporal median methods [6]. Thus,
original soccer sequences can be divided easily into static and dy-
namic parts with the help of object tracking information. Fig. 3
shows an example for a static part.

2.2. Content Synthesis

After decoding the individual image sequences §/* for static and dy-
namic parts, the reconstructed sequence & is synthesized such that
dynamic parts overwrite the static part. The position of the dynamic
parts on the static content is given by the synchronized tracking in-
formation.

3. RATE DISTORTION OPTIMIZATION

An efficient coding scheme allocates optimally the bitrate of each
content item. To accomplish this, we introduce a rate distortion
model that reflects the trade-off among static and dynamic parts.
This allows us to determine the optimal trade-off and the necessary
allocation of resources.

3.1. Rate Distortion Model

According to our coding scheme in Fig. 1, let the i-th pixel in the
original image = be denoted by x;, and the corresponding recon-
structed pixel by ;. Let the set of pixels in the original frame be
denoted by A, the set of pixels of the static part by B, and the set of
pixels of the k-th dynamic part by Fj. The extracted static part is de-
noted by ¢/°, the extracted k-th dynamic part by 3. The associated
decoded parts are labeled §° and §*.

For our rate distortion model, we use the mean square error to
determine the average reconstruction distortion per pixel.
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The average reconstruction distortion is determined by two main
contributions, namely the average reconstruction distortion of the
static part D®) and the individual average distortions of the dynamic
parts Dy,.

D= D(b Z ||A| )

As extraction and synthems do not affect the pixel values of the dy-
namic parts, the individual average distortions are captured by the
distortion due to coding.
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However, extraction and synthesis affect the pixel values of the
static part as we will reduce the frame rate for the image sequence
that represents the static part. Hence, the average reconstruction dis-
tortion of the static part will have a rendering contribution D) and
a coding contribution Dy. We assume that both contributions are
uncorrelated such that D® = D™ 4+ Dy, where

D = ©)
P2
is the average rendering distortion of the static part, and where
Do = (6))
P

is the average coding distortion of the static part.
The rate-distortion performance mainly depends on the com-
plexity of the content items. As mentioned earlier, dynamic and



static parts have different properties. Thus, it is reasonable to al-
locate bitrates depending on the content. For our model, we allocate
average bitrates in bits per pixel for the image sequence that repre-
sents the static part Ry and for the image sequences that represent
the dynamic parts Rj,. Hence, we obtain a distortion rate function
for our content-adaptive scheme as follows:
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Note, the average rendering distortion of the static part is determined
by the algorithm that we use for extraction and synthesis.

3.2. Optimal Rate Distortion Trade-Off

With this model, we are able to find the optimal rate distortion trade-
off for the individual sub-sequences. For that, we assume that the
individual distortion rate functions Dy, (R)) are convex. Further, we
impose a bandwidth constraint. Let the constant W be the bandwidth
which is allocated to the input image sequence. Let fy be the frame
rate for the static content, and f, the frame rate for the dynamic
content items.

The optimal trade-off is obtained by minimizing the average re-
construction distortion, subject to the imposed bandwidth constraint.
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This constrained problem can be solved by Lagrangian relaxation
and leads to the Pareto condition for our content-adaptive coding
scheme:
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Note, the slopes of the individual distortion rate functions need to be
adjusted by the ratio between the individual frame rates with which
the content items are coded.

3.3. Coding and Rendering of Static Content

For our application, we assume that the cameras are fixed. By defi-
nition, our dynamic content items expose significantly more motion
activities than our static content item. Thus, it is possible to set the
frame rate of the static content lower than that of the dynamic items.
In other words, we update the static content less frequently than the
dynamic content items.

For the extraction process of the static content, we set the i-th
pixel in the extracted frame ! [p] at time p to be the mean value of
temporally previous frame pixels x;[t], such that
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where f denotes the frame rate of the input image sequence z[t].

Note that there exists a trade-off between the frame rate fy of the

static part and its rendering distortion D). A low frame rate may

reduce the average quality of the rendered static content. However,

a low frame rate is favorable for tight bandwidth constraints.

4. EXPERIMENTAL RESULTS

We evaluate our content-adaptive coding scheme with the soccer test
video set Barca-St. Andreu which is provided by the MEDIAPRO
group. The videos are captured by fixed broadcast cameras. The
resolution of the videos is 1080 x 1920 at 25 fps. The average Y-
PSNR between the reconstructed view and the original camera view
will be used to evaluate the performance of the scheme. We use 175
successive frames from the test sequence. H.264/AVC encoding and
decoding is accomplished by the x264 implementation [7].

4.1. Content-Dependent Rate Distortion

As we have shown in Fig. 2, an original sequence can be separated
into five dynamic sub-sequences (player 1 to 5) and one static sub-
sequence. In order to achieve the optimal rate allocation according to
(8), we study first the rate distortion performance of the individual
content items. The frame size is 1080 x 1920 for the static sub-
sequence, and 220 x 140 for the dynamic sub-sequences.
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Fig. 4. Rate distortion for each content item.

Fig. 4 depicts the rate distortion performance of each content
item. As the static content has significantly less motion, a much
smaller bitrate is required to achieve the same average distortion
level when compared to the performance of the dynamic content
items.

4.2. Rendering of the Static Content

As discussed in Section 3.3, there is a trade-off between the frame
rate of the static part and its rendering distortion D). The rendering
distortion contributes to the overall distortion as an offset and should
be chosen appropriately.

Fig. 5 shows the expected rendering distortion as luminance
PSNR over the frame rate of the static sub-sequence. As expected,
the quality of the rendering decreases for low frames rates.

4.3. Performance of the Content-Based Coding Scheme

To evaluate the overall rate distortion performance of our content-
adaptive coding scheme, we encode each sub-sequence with x264.
From (8) we know the slopes of the operation points for each sub-
sequence and we may use a generalized Lagrange multiplier method
[8] to obtain the optimal bitrate allocations. Note that we choose a
fixed frame rate of 25 fps for the dynamic sub-sequences while we
allow various frame rates for the static content.

Fig. 6 depicts the overall reconstruction quality as luminance
PSNR over the total bitrate for our test data. The left plot shows
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Fig. 5. Frame rate of static content and rendering distortion.
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Fig. 6. Comparison of performance for various frame rates of the
static content.

that the overall rate distortion efficiency improves when lowering the
frame rate of the static content from 25 fps to 1 fps. However, the
right plot clarifies that the overall rate distortion efficiency degrades
when lowering the frame rate of the static content below 1 fps. The
decreasing frame rate of the static content increases the rendering
distortion. At a critical frame rate, the overall performance cannot
benefit further from a decreasing frame rate.

4.4. Performance Comparison

Finally, we compare our content-adaptive coding scheme to conven-
tional coding with H.264/AVC for our test data set. Our content-
adaptive coding scheme uses a frame rate of 1 fps for the sub-
sequence of the static content.
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Fig. 7. Performance comparison between our scheme and x264.

As shown in Fig. 7, our content-adaptive coding scheme out-
performs x264 encoding. For the same Y-PSNR values, our scheme
saves up to 40% bitrate.

5. CONCLUSIONS

We discussed a content-adaptive coding scheme for immersive
networked experience of sports events. The content-adaptive cod-
ing scheme extracts from an input image sequence several sub-
sequences depending on the static and dynamic content of the input.
Further, a rate distortion model is discussed to capture the rendering
distortion of the static part, as well as the coding distortions of static
and dynamic parts. We obtain a Pareto condition for the optimal
bitrate allocation among static and dynamic content parts. The ex-
perimental results show that our content-adaptive coding scheme
outperforms conventional H.264/AVC coding significantly.
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