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ABSTRACT

This paper discusses a transform for successive pictures of an image sequence which strictly maintains orthogo-
nality while permitting 2-hypothesis motion compensation between pairs of pictures. We extend previous work
on an orthogonal transform for image sequences which uses only 1-hypothesis motion compensation between pairs
of pictures. This work is motivated by the well known fact that the motion-compensated lifted Haar wavelet
maintains orthogonality only approximately. In the case of zero motion fields, the motion-compensated lifted
Haar wavelet is known to be orthogonal. But for complex motion fields with many multi-connected and uncon-
nected pixels, the motion-compensated lifted Haar wavelet cannot accurately maintain its transform property
and, hence, suffers a performance degradation. The presented double motion-compensated orthogonal transform
strictly maintains orthogonality for any motion field. For the transform, each pixel in the high-band is com-
pensated by a linear combination of two motion-compensated pixels chosen from the corresponding low-band.
That is, each pixel in the high-band is associated with two motion vectors. This is in contrast to the previously
presented single motion-compensated orthogonal transform where each pixel in the high-band is compensated by
only one motion-compensated pixel chosen from the corresponding low-band. In terms of energy concentration,
the double motion-compensated orthogonal transform outperforms the single motion-compensated orthogonal
transform and compares favorably with the double motion-compensated lifted Haar wavelet.

Keywords: Temporal subband coding of video, motion-compensated orthogonal video transforms, complemen-
tary motion-compensated signals.

1. INTRODUCTION

We address the problem of representing image sequences for coding and communication applications. Well
known methods are standard hybrid video coding techniques as well as subband coding schemes. To achieve
high compression efficiency, standard hybrid video encoders operate in a closed-loop fashion such that the total
distortion across the reconstructed pictures equals the total distortion in the corresponding intra picture and
encoded displaced frame differences. In case of channel errors, decoded reference frames differ from the optimized
reference frames at the encoder and error propagation is observed. On the other hand, transform coding schemes
operate in an open-loop fashion. Consider high-rate transform coding schemes in which the analysis transform
produces independent transform coefficients. With uniform quantization, these schemes are optimal when utiliz-
ing an orthogonal transform.1 Further, energy conservation holds for orthogonal transforms such that the total
quantization distortion in the coefficient domain equals that in the image domain. In case of channel errors, the
error energy in the image domain equals that in the coefficient domain. Hence, the error energy is preserved in
the image domain and is not amplified by the decoder, as is the case, e.g., for predictive decoders.

During the last decade, there have been attempts to incorporate motion compensation into temporal subband
coding schemes by approaching problems arising from multi-connected pixels. Ref. 2 proposes to distinguish
between connected, covered, and uncovered pixels when incorporating motion compensation for filtering in
temporal direction. Motion-compensated filtering in Ref. 3 addresses the problem of double-connected pixels
and proposes a method to resolve the ambiguity. Refs. 4–6 choose a lifting implementation for the temporal
filter and incorporate motion compensation into the lifting steps. In contrast to the early work, the lifting
implementation permits a reversible filter structure, but still, it struggles with unconnected, connected, and
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multi-connected pixels when performing the update step. To minimize the impact on the reconstructed images,
Ref. 7 proposes an optimum update step that minimizes the mean-squared reconstruction error. But note that
the motion-compensated lifted Haar wavelet maintains orthogonality only approximately. For a zero motion
field, the motion-compensated lifted Haar wavelet is known to be orthogonal. But for complex motion fields with
many multi-connected and unconnected pixels, the motion-compensated lifted Haar wavelet cannot accurately
maintain its transform property.

We present in Ref. 8 a motion-compensated orthogonal transform which strictly maintains orthogonality for
any motion field. The transform is factored into a sequence of incremental transforms that are strictly orthogonal.
The incremental transforms maintain scale counters to keep track of the scale factors that are introduced to ensure
orthogonality. The decorrelation factor of each incremental transform is determined by the scale counters and
is chosen such that the transform meets an energy concentration constraint. The experiments show that this
orthogonal transform offers an improved energy compaction when compared to motion-compensated lifted Haar
wavelets and closed-loop hierarchical P pictures. But note that the transform in Ref. 8 compensates each pixel in
the high-band by only one motion-compensated pixel chosen from the corresponding low-band. That is, each pixel
in the high-band is associated with only one motion vector. Hence, it will be called a single motion-compensated
orthogonal transform.

It is well known that a linear combination of multiple motion-compensated signals improves the accuracy of
motion compensation.9 For example, 2-hypothesis motion compensation is widely used and the bi-predictive
mode of H.264/AVC is a popular example. This paper discusses an extension of the work in Ref. 8 by permitting
up to two hypotheses per high-band pixel. In particular, each pixel in the high-band is compensated by a linear
combination of two motion-compensated pixels chosen from the corresponding low-band. That is, each pixel
in the high-band is associated with two motion vectors. Hence, it will be called a double motion-compensated
orthogonal transform. If we limit the pair of motion vectors to address directly neighboring pixels in the
corresponding low-band, we achieve sub-pixel accurate motion compensation. But if we choose optimal pairs of
complementary motion vectors, we perform the generic 2-hypothesis motion compensation.

In contrast to our previous work in Ref. 8 where only single motion compensation between two pictures is
considered, the here presented double motion-compensated orthogonal transform is able to consider up to two
motion fields per picture. Similar to our previous work, we factor the transform into a sequence of incremental
transforms that are strictly orthogonal and that maintain scale counters that are compatible with the scale
counters in Ref. 8. The decorrelation factors of each incremental transform are determined such that an energy
concentration constraint for double motion compensation is met. In the experiments, we compare the double
motion-compensated orthogonal transform to the double motion-compensated lifted Haar wavelet in Ref. 10.
We choose this adaptive lifted Haar wavelet as it permits also generic 2-hypothesis motion compensation. This
enables us to compare the two transforms while utilizing the same motion fields.

The paper is organized as follows: Section 2 introduces the double motion-compensated orthogonal transform
and discusses its incremental transform as well as the energy concentration constraint. Section 3 presents the
experimental results with the double motion-compensated orthogonal transform and lifted Haar wavelet.

2. DOUBLE MOTION-COMPENSATED ORTHOGONAL TRANSFORM

This section discusses how the transform is factored into incremental transforms. We outline the construction of
the incremental transform and the incorporation of the energy concentration constraint.

Let x1 and x2 be two vectors representing consecutive pictures of an image sequence. The transform T maps
these vectors according to

(

y1

y2

)

= T

(

x1

x2

)

(1)

into two vectors y1 and y2 which represent the temporal low- and high-band, respectively. Now, we factor the
transform T into a sequence of k incremental transforms Tκ such that

T = TkTk−1 · · ·Tκ · · ·T2T1, (2)
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where each incremental transform Tκ is orthogonal by itself, i.e., TκT
T
κ = I holds for all κ = 1, 2, · · · , k, where I

denotes the identity matrix. This guarantees that the transform T is also orthogonal.

It can be imagined that the pixels of the image x2 are processed from top-left to bottom-right in k steps
where each step κ is represented by the incremental transform Tκ.

2.1. Incremental Transform

Let x
(κ)
1 and x

(κ)
2 be two vectors representing consecutive pictures of an image sequence if κ = 1, or two output

vectors of the incremental transform Tκ−1 if κ > 1. The incremental transform Tκ maps these vectors according
to

(

x
(κ+1)
1

x
(κ+1)
2

)

= Tκ

(

x
(κ)
1

x
(κ)
2

)

(3)

into two vectors x
(κ+1)
1 and x

(κ+1)
2 which will be further transformed into the temporal low- and high-band,

respectively.
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Figure 1. The incremental transform Tκ for two frames x
(κ)
1 and x

(κ)
2 which strictly maintains orthogonality for any

2-motion field (~dκ, ~d∗
κ
) between the two frames.

Fig. 1 depicts the process accomplished by the incremental transform Tκ with its input and output images

as defined above. The incremental transform removes the energy of the l-th pixel x′
2,l in the image x

(κ)
2 with the

help of both the i-th pixel x′1,i in the image x
(κ)
1 which is linked by the motion vector ~dκ and the j-th pixel x′1,j

in the image x
(κ)
1 which is linked by the motion vector ~d∗κ (or the l-th block with the help of both the i-th and

the j-th block if the blocks in image x
(κ)
1 do not overlap and if all the pixels of the i-th and j-th block have the

motion vectors ~dκ and ~d∗κ, respectively). The energy-removed pixel value x′′2,l is obtained by a linear combination
of the pixel values x′1,i, x

′
1,j , and x′2,l with scalar weights h31, h32, and h33. The energy concentrated pixel value

x′′1,i is also obtained by a linear combination of the pixel values x′1,i, x
′
1,j , and x′2,l but with scalar weights h11,

h12, and h13. The energy concentrated pixel value x′′1,j is calculated accordingly. All other pixels are simply kept
untouched.
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To summarize, the incremental transform Tκ touches only pixels that are linked by the same motion vector
pair (~dκ, ~d

∗
κ). Of these, Tκ performs only a linear combination with three pixels that are connected by this motion

vector pair. All other pixels are kept untouched. This is reflected in the following matrix notation:

Tκ =





















































. . .
...

...
...

...
...

...
...

...
...

...
...

...
· · · 1 0 0 · · · 0 0 0 · · · 0 0 0 · · ·
· · · 0 h11 0 · · · 0 h12 0 · · · 0 h13 0 · · ·
· · · 0 0 1 · · · 0 0 0 · · · 0 0 0 · · ·
...

...
...

...
. . .

...
...

...
...

...
...

...
...

· · · 0 0 0 · · · 1 0 0 · · · 0 0 0 · · ·
· · · 0 h21 0 · · · 0 h22 0 · · · 0 h23 0 · · ·
· · · 0 0 0 · · · 0 0 1 · · · 0 0 0 · · ·
...

...
...

...
...

...
...

...
. . .

...
...

...
...

· · · 0 0 0 · · · 0 0 0 · · · 1 0 0 · · ·
· · · 0 h31 0 · · · 0 h32 0 · · · 0 h33 0 · · ·
· · · 0 0 0 · · · 0 0 0 · · · 0 0 1 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
. . .





















































(4)

The diagonal elements equal to 1 represent the untouched pixels and the elements hµν represent the pixels subject
to linear operations. All other entries are zero.

Now, the scalar weights hµν are arranged into the 3×3 matrix H. The incremental transform Tκ is orthogonal
if H is also orthogonal.

H =





h11 h12 h13

h21 h22 h23

h31 h32 h33



 (5)

We construct an orthogonal H with the help of Euler’s rotation theorem which states that any rotation can
be given as a composition of rotations about three axes, i.e. H = H3H2H1, where Hr denotes a rotation about
one axes. We choose the composition

H =





cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1









1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)









cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1



 (6)

with the Euler angles ψ, θ, and φ. The Euler angles will be determined in the next subsection which discusses
the energy concentration constraint.

Note that, to carry out the full transform T , each pixel in x2 is touched only once whereas the pixels in x1

may be touched multiple times or never. Further, the order in which the incremental transforms Tκ are applied
does not affect the orthogonality of T , but it may affect the energy concentration of the transform T .

2.2. Energy Concentration Constraint

The three Euler angles for each pixel touched by the incremental transform have to be chosen such that the
energy in image x2 is minimized. Consider the pixel triplet x1,i, x1,j , and x2,l to be processed by the incremental
transform Tκ. To determine the Euler angles for the pixel x2,l, we assume that the pixel x2,l is connected to the
pixels x1,i and x1,j such that x2,l = x1,i = x1,j . Consequently, the resulting high-band pixel x′′2,l shall be zero.
Note that the pixels x1,i and x1,j may have been processed previously by Tτ , where τ < κ. Therefore, let v1
and v2 be the scale factors for the pixels x1,i and x1,j , respectively, such that x′1,i = v1x1,i and x′1,j = v2x1,j .
The pixel x2,l is used only once during the transform process T and no scale factor needs to be considered. But
in general, when considering subsequent dyadic decompositions with T , scale factors are passed on to higher
decomposition levels and, consequently, they need to be considered, i.e., x′

2,l = v3x2,l. Obviously, for the first
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decomposition level, v3 = 1. Let u1 and u2 be the scale factors for the pixels x1,i and x1,j , respectively, after
they have been processed by Tκ. Now, the pixels x′1,i, x

′
1,j , and x′2,l are processed by Tκ as follows:





u1x1,i

u2x1,i

0



 = H3H2H1





v1x1,i

v2x1,i

v3x1,i



 (7)

Energy conservation requires that
u2

1 + u2
2 = v2

1 + v2
2 + v2

3 . (8)

The Euler angle φ in H1 is chosen such that the two hypotheses x′1,i and x′1,j are weighted equally after being
attenuated by their scale factors v1 and v2.

tan(φ) = −
v1

v2
(9)

The Euler angle θ in H2 is chosen such that it meets the zero-energy constraint for the high-band in (7).

tan(θ) =
v3

√

v2
1 + v2

2

(10)

Finally, the Euler angle ψ in H3 is chosen such that the pixels x1,i and x1,j , after the incremental transform Tκ,
have scalar weights u1 and u2, respectively.

tan(ψ) =
u1

u2
(11)

But note that we are free to choose this ratio. We have chosen the Euler angle φ such that the i-th pixel x1,i

and the j-th pixel x1,j have equal contribution after rescaling with v1 and v2. Consequently, we choose the scale
factors u1 and u2 such that they increase equally.

u1 =

√

v2
1 +

v2
3

2
and u2 =

√

v2
2 +

v2
3

2
(12)

Similar to the work in Ref. 8, we utilize scale counters to keep track of the scale factors. Scale counters
simply count how often a pixel is used as reference for motion compensation. Before any transform is applied,
the scale counter for each pixel is n = 0 and the scale factor is v = 1. For arbitrary scale counter n and m, the
scale factors are

v =
√
n+ 1 and u =

√
m+ 1. (13)

After applying the incremental transform, the scale counter have to be updated for the modified pixels. For the
single motion-compensated orthogonal transform in Ref. 8, the updated scale counter for low-band pixels is given
by m1 = n1 + n2 + 1, where n1 and n2 are the scale counters of the utilized input pixel pairs. For the double
motion-compensated orthogonal transform, the updated scale counters for low-band pixels result from (12) as
follows:

m1 = n1 +
n3 + 1

2
and m2 = n2 +

n3 + 1

2
(14)

For example, consider the transform in the first decomposition level where n3 = 0. The single motion-com-
pensated transform increases the scale counter by 1 for each used reference pixel, whereas the double motion-
compensated transform increases the counter by 0.5 for each of the two used reference pixels.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental results assessing the energy compaction are obtained for the QCIF sequences Bus, Crew, Soccer,
Mother & Daughter, and City. Our scheme with the double motion-compensated orthogonal transform is com-
pared to schemes which use a double motion-compensated lifted Haar wavelet10 with and without update step.
In addition, the performance of the single motion-compensated orthogonal transform8 is reported. Note that
we choose the double motion-compensated lifted Haar wavelet as depicted in Fig. 2 as it permits also generic
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Figure 2. Double motion-compensated lifted Haar wavelet10 with input pictures x1 and x2. Each lifting step averages
two motion-compensated signals which are generated by the 2-motion field (~d, ~d∗).

2-hypothesis motion compensation. This enables us to compare the two double motion-compensated transforms
while utilizing the same motion fields.

For the lifted Haar wavelet in Fig. 2, the prediction step averages two motion-compensated signals generated
by the integer-pixel accurate 2-motion field (~d, ~d∗). The update step performs the same operations with the inverse
motion field. Hence, each pixel that is used as reference pixel in the prediction step receives its corresponding
update signal in the update step. We achieve sub-pixel accurate motion compensation by averaging the two
integer-pixel accurate signals. For conventional sub-pixel accurate motion compensation, spatial filtering is
used to determine sub-pixel intensity values. If spatial filtering is used in the prediction step, the required
corresponding update step is difficult to achieve. The scheme in Fig. 2 does not require conventional spatial
filtering to achieve sub-pixel accurate motion compensation.

For the coding process with the orthogonal transforms, a scale counter n is maintained for every pixel of each
picture. The scale counters are an immediate results of the utilized motion vectors and are only required for the
processing at encoder and decoder. The scale counters do not have to be encoded as they can be recovered from
the motion vectors.

All schemes operate with a GOP size of 16 frames. Sub-pixel accurate motion compensation is achieved by
averaging two motion-compensated signals resulting from integer-pixel accurate 2-motion fields. The block size
for motion compensation is limited to 8 × 8. Conditional motion estimation is used for 2-motion estimation.
In particular, the first motion vector is obtained by block matching. Given the first motion vector, conditional
motion estimation optimizes only the second motion vector within a conditional search window of ± 5, centered
at the location of the first motion vector. For simplicity, the first motion vector is not refined conditionally.
If a 2-motion is not efficient for a block, the single motion-compensated orthogonal transform and lifted Haar
wavelet are used. Further, the resulting temporal subbands are simply coded with JPEG 2000. The temporal
high-bands are coded directly, whereas the temporal low-band is rescaled with (13) before encoding. For optimal
rate allocation, Lagrangian costs are determined where the distortion term considers the scale factors applied to
the temporal low-band.

Figs. 3, 4, 5, 6, and 7 depict the rate distortion performances for the luminance signals of the test sequences.
Results for the double motion-compensated (MC) orthogonal transform as well as the double MC lifted Haar
wavelet with and without update step10 are given. Note that all three schemes utilize the same motion vectors.
In order to assess the energy compaction, no intra modes have been used for all temporal coding schemes. For
Bus, Crew, and Soccer, the double MC orthogonal transform outperforms the double MC lifted Haar wavelet
with and without update step. For Mother & Daughter and City, the double MC orthogonal transform performs
similar to the double MC lifted Haar wavelet with update step, but outperforms the double MC lifted Haar
wavelet without update step. For the comparison with the single motion-compensated orthogonal transform,8
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Figure 3. PSNR over bit rate for the luminance signal of the QCIF sequence Bus at 15 fps with 64 frames.
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Figure 4. PSNR over bit rate for the luminance signal of the QCIF sequence Crew at 15 fps with 64 frames.

the second motion vector of the 2-motion is simply not used. The saved bit rate is not considered. For a direct
comparison with the single MC orthogonal transform, a rate-constrained transform selection is required. This is
possible, but currently not implemented.

For Bus, Crew, and Soccer, the significant motion in the sequences degrades the performance of the double
MC lifted Haar wavelet as the update step introduces additional noise. For Mother & Daughter and City, the
double MC orthogonal transform performs similar to the double MC lifted Haar wavelet with update step as the
weak/regular motion in the sequence does not substantially harm the lifted Haar wavelet.

Figs. 8 and 9 show the luminance PSNR over the frame number for the sequences Bus and City, respectively.
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Figure 5. PSNR over bit rate for the luminance signal of the QCIF sequence Soccer at 15 fps with 64 frames.
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Figure 6. PSNR over bit rate for the luminance signal of the QCIF sequence Mother & Daughter at 30 fps with 64
frames.

Compared to the double MC lifted Haar wavelet, the double MC orthogonal transform offers the smallest PSNR
fluctuations over time while providing the best rate distortion performance. For Bus, the standard deviation is
as small as 0.5 dB compared to 1.2 dB and 4.4 dB for the lifted Haar wavelet with and without update step,
respectively.

As noted above, limiting the second motion vector to address directly neighboring pixels in the corresponding
low-band will achieve sub-pixel accurate motion compensation. This will reduce complexity as well as efficiency
of the generic 2-hypothesis motion, but, on the other hand, will save the bit rate of the second motion vector.
Future work will investigate this trade-off between complexity and efficiency.
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Figure 7. PSNR over bit rate for the luminance signal of the QCIF sequence City at 15 fps with 64 frames.
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Figure 8. PSNR of the luminance signal over the frame number for the QCIF sequence Bus at 15 fps with 64 frames. The
standard deviation of the luminance PSNR over time for the double MC orthogonal transform is with 0.5 dB significantly
smaller than that of the double MC lifted Haar wavelet with 1.2 dB and 4.4 dB.

4. CONCLUSIONS

This paper presents a double motion-compensated orthogonal transform which strictly maintains orthogonality
for any 2-motion field. In terms of energy compaction, it outperforms the single motion-compensated orthogonal
transform and provides benefits over the double motion-compensated lifted Haar wavelet. The incremental
orthogonal 3 × 3 transform permits a linear combination of two integer-pixel accurate motion-compensated
signals. This achieves sub-pixel accurate motion compensation between two frames. This is in contrast to the
single motion-compensated orthogonal transform which uses only an incremental 2 × 2 transform and, hence, is
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Figure 9. PSNR of the luminance signal over the frame number for the QCIF sequence City at 15 fps with 64 frames. The
standard deviation of the luminance PSNR over time for the double MC orthogonal transform is with 0.5 dB significantly
smaller than that of the double MC lifted Haar wavelet with 1.0 dB and 4.1 dB.

limited to integer-pixel accurate motion compensation. In summary, the orthogonality principle improves energy
compaction, provides a highly robust video representation, and permits 2-motion compensation.
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