
DISTRIBUTED STEREO IMAGE CODING
WITH IMPROVED DISPARITY AND NOISE ESTIMATION

David Chen, David Varodayan, Markus Flierl, Bernd Girod

Information Systems Laboratory, Stanford University, Stanford, CA 94305
{dmchen, varodayan, mflierl, bgirod}@stanford.edu

ABSTRACT

Distributed coding of correlated grayscale stereo images is effec-
tively addressed by a recently proposed codec that learns block-wise
disparity at the decoder. Based on the Slepian-Wolf theorem, one im-
age can be transmitted at a rate approaching the conditional entropy
if the other image is referenced as side information at the decoder.
This paper improves the methods in the decoder design by refining
disparity estimates to pixel resolution, generating more accurate ini-
tial disparity estimates, and modeling noise as a nonstationary ran-
dom field. The new decoder enables up to an additional 9 percent
bit rate savings for lossless coding. When the rate is insufficient for
lossless reconstruction, the new decoder improves PSNR and signif-
icantly reduces visually unpleasant blocking artifacts.

Index Terms— image coding, data compression, estimation,
stereo vision

1. INTRODUCTION

A pair of stereo images, taken from two source cameras in a cam-
era array, share many common details. Conventionally, to transmit
these images, joint source coding would be performed to achieve
better compression than separate coding of the two images. The as-
sumption, however, is that the joint distribution of the two images is
available at the encoder. In a distributed coding scenario, where the
source cameras perform only limited computations or avoid interact-
ing with one another to conserve limited communication bandwidth,
conventional joint coding is not practical. Fortunately, the Slepian-
Wolf theorem from information theory states that lossless distributed
coding can achieve the same compression ratio as lossless joint cod-
ing, provided that the joint distribution becomes available at the de-
coder [1].

An existing codec treats the two source images as random fields
which are related through a disparity shift and additive noise, and
successfully performs unsupervised learning of the disparity at the
decoder [2]. It is an extension of earlier work for correlated binary
images [3]. Expectation maximization (EM) is applied to iteratively
estimate the disparity and progressively decode one image using the
other image as side information. In this statistical framework, the
efficiency of the entire system is primarily limited by the accuracy
of the disparity and noise estimates.

This paper presents improved techniques in disparity and noise
estimation. In Section 2, the distributed stereo image codec and the
limitations of its design are reviewed. In Section 3, improvements
in disparity and noise estimation are presented in three parts. First,
a pixel-wise disparity field is created by bilinear interpolation of a
block-wise disparity field. Second, shape-adaptive disparity initial-
ization is shown to be beneficial in the early iterations of EM. Third,
an edge-adaptive noise estimator is used to accurately predict the

Fig. 1. Distributed stereo image codec.

noise variance as a function of spatial position. Section 4 presents
experimental results that show bit rate savings of up to 9 percent for
lossless coding. At rates insufficient for lossless reconstruction, the
improved decoder shows several dB gain in PSNR and significantly
reduces blocking artifacts.

2. DISTRIBUTED STEREO IMAGE CODEC

The main blocks of the distributed stereo image codec in [2] are de-
picted in Fig. 1. One imageY is losslessly transmitted using a con-
ventional lossless encoder-decoder combination and is then available
at the decoder as side information. The other imageX is coded using
a rate-adaptive low-density parity-check (LDPC) code [4]. LDPC
codes have been shown to achieve good compression results for cor-
related sources [5]. The rate-adaptive LDPC code enables small por-
tions of the parity sequenceS to be incrementally transmitted. Then,
the LDPC decoder uses the received parity bits and the side informa-
tion in EM to iteratively updateθ, the soft estimate ofX, andψ, the
soft estimate of disparity-compensatedY . A reconstruction ofX is
formed fromθ by maximum a posteriori (MAP) estimation. If the
decoder cannot losslessly reconstructX, the decoder requests that
the encoder send more parity bits.

AssumingX andY are approximately related by a horizontal
shift, a correctly shifted version ofY can aid in lowering the trans-
mission rate forX on the basis of the Slepian-Wolf theorem. The
system in Fig. 1 includes a block-based disparity estimator to calcu-
late soft estimates of the horizontal disparityD between pixels inX
and pixels inY . The relation betweenX andY is modeled as

X(x, y) = Y (x−D(x, y), y) +N(x, y), (1)

where the noiseN accounts for differences remaining after dispar-
ity compensation. The disparity estimator in Fig. 1 supplies the
LDPC decoder with disparity-compensated side informationψ. If
this side information correctly reflects the true state ofX, then the
side information will help the EM algorithm to converge towards the
correct solution. The results in [2] show that disparity-compensated
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Fig. 2. ImageX (8-bit, 144-by-176 pixels) for test sets (a)Teddy
and (b)Barn. (c) Disparity legend. Block-wise disparity fields for
Teddy, with side information (d)Y1 and (e)Y2. Block-wise disparity
fields forBarn, with side information (f)Y1 and (g)Y2.

side information can yield significant bit rate savings over using the
uncompensated case ofD(x, y) = 0.

The system makes a simplification in disparity estimation by cal-
culating the distributionP (D) only on a block-by-block basis. For
example, the imageX from two stereo test setsTeddy andBarn [6]
are shown in Fig. 2, along with the optimal block-wise horizontal
disparity fields betweenX and the corresponding side information
imagesY1 andY2 in each test set. The block size is chosen to be
8. As can be observed from Fig. 2, the block-wise disparity field
has unnatural step-like transitions along rectangular boundaries. In
the improved decoder, the block-wise field is interpolated bilinearly.
This procedure avoids the block boundaries and achieves smooth
transitions.

Another issue with iterative disparity estimation is how to select
good starting estimates for the first few iterations of EM. Incorrect
disparity values can permanently bias the progression of EM towards
a suboptimal local minimum, particularly at low bit rates. In Section
3, shape-based disparity initialization is introduced to provide better
starting disparity estimates than those previously generated.

It has also been assumed that the additive noiseN in (1) has
stationary statistics and is zero-mean Laplacian distributed; that is,

P (N) =
λ

2
e−λ|N| (2)

whereλ is a space-invariant constant by the stationarity assumption.
To check this assumption, we examine Fig. 3 which shows the resid-
ualN following block matching betweenX andY1 for Teddy. The
block size is again 8. Also shown are the statistical distributions
P (N) across the whole image, in edge regions only, and in flat re-
gions only. As seen,P (N) is well modeled by a zero-mean Lapla-
cian. The assumption of stationarity, however, is not justified. Noise
variance is highest along edges of objects, where disparity compen-
sation on a block-by-block basis performs worst. In Section 3, a
nonstationary edge-adaptive noise model is employed.

3. IMPROVED DISPARITY AND NOISE ESTIMATION

Improved disparity and noise estimation is achieved with the decoder
in Fig. 4. Three new blocks are introduced. First, the block-wise
disparity estimator is equipped with a bilinear interpolator, so that it
now generates disparity-compensated side informationψ1 according
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Fig. 3. (a) ResidualN after optimal 8-by-8 block matching between
X andY1 for Teddy. (b)P (N) over the whole image. (c)P (N) in
edge regions only. (d)P (N) in flat regions only.

Fig. 4. Improved decoder for distributed stereo image coding.

to a smooth pixel-wise disparity field. Second, a separate disparity
estimator uses shape information fromY to calculate an alternative
disparity field, resulting in different side informationψ2. Whether
the LDPC decoder receivesψ1 or ψ2 is the decision of the side in-
formation selector. Third, a noise estimator uses edge information
from Y to provide the LDPC decoder with a space-variant Lapla-
cian parameterλ, which captures the nonstationary statistics of the
noise.

3.1. Disparity Field Interpolation

A block-wise disparity field can contain unnatural step-like transi-
tions, as explained in Section 2. Thus, the block-wise disparity
field is bilinearly interpolated, which results in smooth transitions
between blocks. Fig. 5 shows the pixel-wise disparity fields pro-
duced by using bilinear interpolation during the decoding process
for Teddy, usingY1 andY2 as side information. Each disparity field
is recorded after the iteration in which the LDPC decoder converged
to an errorless reconstruction. As desired, there are no longer any
sharp rectangular boundary transitions but instead smooth transitions
between the original disparity values at the block centers.
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Fig. 5. Bilinear interpolations of the block-wise disparities (a)D1

and (b)D2 for Teddy, after EM convergence. Rate = 4.73 bpp.

3.2. Shape-Adaptive Disparity Initialization

Disparity estimates in the early iterations of EM can be unreliable,
such as the noisy field shown in Fig. 6(a) used to relateX andY1 for
Teddy. These false starting estimates can cause the EM algorithm to
converge towards a suboptimal local minimum. Thus, a new shape-
based disparity estimator is used in the early iterations of EM. This
estimator extracts dominant shapes from the image and assigns a
single disparity value for all pixels in a single shape. For example,
a segmented version ofY1 is shown in Fig. 6(b). The regions of
the segmented image have been labeled so as to make this field look
similar to the optimal block-based field in Fig. 2(d). This properly
labeled segmented image is visibly a better early disparity estimate
than the noisy field.

The heuristic currently used to choose the disparity values for
each segmented region is to try different combinations of disparity
values until one combination causes convergence or all combinations
have been exhausted. The search begins by first assigning disparity
values near zero and gradually advances to more positive and nega-
tive disparity values. This heuristic is only practical if the number of
segmented regions is small, as is the case for the test images used.
For n different regions andD ∈ [−5, 5], there are at worst11n dis-
tinct combinations.

For the actual image segmentation, several popular algorithms
have been considered: K-means clustering [7], region growing [8],
and graph partitioning [9]. For our experiments, the method in [9]
outperformed the other two methods in terms of correctly extracting
dominant shapes.

3.3. Edge-Adaptive Noise Estimation

It is observed from Fig. 3 that the power of the noise is heavily con-
centrated around edges of objects and close to zero in low-frequency
regions. Therefore, our generalization of the statistical model ofN ,
from stationary to nonstationary, relies on the edge information. The
new noise estimator extracts a binary edge imageYedge(x, y) from
Y using a Canny edge detector [10], whereYedge(x, y) = 1 in-
dicates that an edge crosses the point(x, y). Compared to simpler
edge detectors, the Canny edge detector is known to perform better at
identifying actual object edges and rejecting spurious noise-induced
edges. From the observation that errors after disparity compensation
are higher along edges, the noise estimator assigns noise variance
σ2, or equivalently the Laplacian parameterλ =

√
2/σ, by setting

λ(x, y) =



λedge, for Yedge(x, y) = 1

λflat, for Yedge(x, y) = 0 (3)

whereλedge < λflat to reflect greater noise variance along edges.
This classification has the benefit of being a simple criterion to ap-
ply to any image while at the same time yielding a fairly accurate
prediction of spatial variations in noise power.
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Fig. 6. (a) Noisy disparity fieldD1 generated by the block-based
disparity estimator after one iteration of EM forTeddy. Rate = 4.72
bpp. (b) Segmentation ofY1 using graph partioning.

Table 1. Comparison of bit rates (bpp) for losslessly transmittingX.
T = Teddy and B =Barn.

Side Information Image Y T. Y1 T. Y2 B. Y1 B. Y2

Conditional Entropy 3.74 3.91 3.87 4.04
Decoder in [2] 4.45 4.55 4.45 4.64

Interpolation Only 4.33 4.33 4.24 4.30
Interp. + Noise Only 4.12 4.18 4.09 4.21

Interp. + Noise + Shape 4.09 4.12 4.09 4.21

4. EXPERIMENTAL RESULTS

Coding simulations are performed with the test images in Fig. 2.
Each image is 144-by-176 pixels and has 8-bit depth. Due to mem-
ory constraints, the length of the LDPC code is limited to 50688,
the same length as in [2]. For this reason, the test images used in
[2] were limited to 72-by-88 pixels with 8-bit depth. To process the
larger 144-by-176 image, we first subdivideX into four quadrants,
each 72-by-88. Each quadrant ofX can then be independently en-
coded and decoded using the 50688-long LDPC code, using as side
information the corresponding quadrant ofY .

A simple rate control scheme is employed. For lossless cod-
ing, if after a maximum number of 100 iterations of EM the LDPC
decoder still cannot reconstructX without error, it requests addi-
tional parity bits from the LDPC encoder. Every 100 iterations of
EM requires about 1 minute of simulation time. We also tested the
decoding performance at rates where perfect reconstruction is not
achieved, by measuring the quality of the resulting image after 100
iterations.

The initial distributionP (D(x, y)) for the first iteration is

P (D(x, y)) =



0.750, for D(x, y) = 0

0.025, for D(x, y) 6= 0 (4)

whereD ∈ [−5, 5]. If shape-based disparity initialization is acti-
vated, then the side information selector uses the output of the shape-
based disparity estimator for the first 10 iterations and thereafter uses
the output of the block-based disparity estimator with bilinear inter-
polation.

4.1. Bit Rate Savings for Lossless Decoding

In Table 1, a comparison is made between the rates needed for loss-
less transmission ofX using the discussed methods. Conditional
entropy is calculated as the entropy of the difference betweenX and
the optimal block-wise disparity-compensated version ofY , treat-
ing the flat and edge regions separately. ForTeddy, with all three
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Fig. 7. Quality of reconstruction when decoding at lower rates for
Teddy, comparing the decoder in [2] (+) and the improved coder (o),
evaluated for side information sources (a)Y1 and (b)Y2. The rate is
shown as a percentage of the minimum rate for lossless decoding.

(a) (b)

Fig. 8. Upper right quadrants of reconstructed images forTeddy
showing (a) blocking artifacts using the decoder in [2] and (b) show-
ing removal of block artifacts using the improved decoder. The side
information image isY1. Rate = 3.87 bpp.

proposed features are activated, the improved decoder achieves bit
savings of 8 and 9 percent withY1 andY2 as side information, re-
spectively, compared to the decoder in [2]. ForBarn, the improved
decoder again performs better, obtaining bit savings of 8 and 9 per-
cent withY1 andY2 as side information, respectively.

4.2. PSNR Gains for Decoding with Errors

The proposed decoder also improves performance when the trans-
mission rate ofX is insufficient for perfect reconstruction. The qual-
ity of reconstruction for the test images is shown in Fig. 7. Increases
in PSNR of several dB are obtained. Above 95 percent of the min-
imum rate for lossless decoding, an image with good visual quality
can be reconstructed. Neither the codec in [2] nor the proposed sys-
tem uses transform-based coding to exploit spatial correlation, so
the rate-distortion tradeoff can be further improved. A related DCT-
based codec demonstrates much better rate-distortion behavior [11].

4.3. Reduction of Blocking Artifacts

If the block-based disparity estimator chooses the wrong disparity
value at rates below the minimum rate needed for lossless decoding,
the reconstructed imagêX usually contains blocking artifacts, in
which blocks fromY are incorrectly copied into regions in̂X. The
improved decoder helps to mitigate this problem in two ways. First,
the bilinear interpolator smoothes the disparity field and increases
disparity resolution, so that errors in̂X manifest as pixel-wise errors
rather than block-wise errors. Second, shape-based disparity initial-

ization helps to avoid local minima in EM that cause incorrect block
matching betweenX andY . Fig. 8 shows the upper right quadrants
of partially decoded images forTeddy, comparing the decoder in [2]
and the improved decoder. The improved decoder avoids generating
the blocking artifacts on the bear’s left arm, chest, and face created
by the other decoder.

5. CONCLUSION

An improved decoder for distributed stereo image coding has been
presented. It is based on an LDPC codec that learns block-wise dis-
parity at the decoder. The proposed decoder refines the disparity
field to pixel resolution using bilinear interpolation, initializes the
disparity field using shape information, and estimates the nonsta-
tionary variance of the noise using edge information. For lossless
coding, these three improvements result in up to 9 percent bit rate
savings. At rates insufficient for lossless reconstruction, several dB
gain in PSNR are obtained and visually disturbing blocking artifacts
are significantly reduced.
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