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Abstract— This paper considers a method for optimal input
design in system identification for control. The approach
addresses model predictive control (MPC). The objective of
the framework is to provide the user with a model which
guarantees that a specified control performance is achieved,
with a given probability. We see that, even though the system
is nonlinear, using linear theory in the input design can reduce
the experimental effort. The method is illustrated in a minimum
power input signal design in system identification of a water
tank system.

I. INTRODUCTION

Model predictive control (MPC) is a widely used model
based control strategy in industry [1]. As its name entails,
MPC predicts future states of the controlled process based
on a model of the system. Given these predictions, MPC
constructs the optimal control strategy which is then applied
to the process. The performance of the controller is highly
dependent on the quality of the model it is based on.

During the lifetime of the process, the accuracy of the
model will degrade as the system is effected by wear
and damages. Due to process—model mismatch, the control
performance will decrease. If the level of performance sinks
below a given threshold it may become necessary to re-
estimate the model while the process is running. Thus, it
is highly desirable to have an efficient and accurate method
of identifying such models in an MPC context. Reducing
the cost of the experiment is also often of importance and
optimal input design has been shown to give significant
reduction of the experimental effort [2].

In this contribution we build on the optimal input design
for models used in MPC developed in [3] and [4]. We present
a general method of performing optimal input design on
a process controlled by MPC. The approach is illustrated
on a water tank system. Given a model structure and a
measurement of the control performance degradation, the
method will provide the user with the optimal input signal
to be used in the identification experiment.

In Section II we outline the basic ideas of application
oriented experiment design presented in [5]. The specifics
for the MPC case are outlined in Section III. Section III-C
presents the experiment design procedure for MPC which is
then illustrated by examples in Section V-D.
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II. PROBLEM FORMULATION

We will consider identification of models on the form
(0) X1 =F(0)x +G(0)u; + vy o
' v =H(0)x +e

where x; is the state vector, {u;}), is a known input
sequence, v; and e, are zero-mean, Gaussian processes with
covariance matrices R, and R, respectively and 6 is an
unknown parameter vector. We assume that there exists a
parameter vector, say 6,, such that the model (1) describes
the true system, denoted .7

The process is assumed to be controlled using MPC with
the quadratic cost function
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where $; ., ;) and Au; ), are i-step predictions of the
output, input and input update of the system, respectively.
The known reference trajectory is denoted r,. The matrices
0, Ry and R, are tunable weights. The norm ||x||4 is equal
to v xTAx. The cost function is minimized with respect to
the input updates and the update Awu,; is applied to the
process. The optimization is performed in each timestep in
accordance with the receding horizon control philosophy.

A major advantage of MPC is the ability to handle signal
and state constraints on the process in the controller. This,
however, leads to that there is no explicit solution to the
optimization problem in the controller [6]. We will see that
this is a limiting factor in the experiment design and requires
numerical calculations.

To find the output predictions that are used in the optimiza-
tion, a model of the process is needed. The more accurate
the model, the better the MPC performance. The degradation
in performance due to using an inaccurate model will be
formalized in the next section.

A. Application cost

The performance of a controller design based on a model
of a process, will be directly related to the quality of the
model. If 6, were available for the design, the performance
specifications would be met. However, for model estimates
different from 6,, the performance will degrade. The ap-
plication cost relates model parameters to the performance
degradation and is denoted V,,(0).

We choose the cost function such that its minimal value
is zero and occurs when the true parameter vector 6, is

used, ie., Vapp(6,) =0, V,,,(8,) =0 and V,,,(6,) = o'.

A > B means that A — B is a positive semi-definite matrix.



A maximal allowed performance degradation gives an upper
limit

Vapp(0) < - 3

<~

for some real-valued positive constant y. The parameters
corresponding to acceptable performance degradation belong
to the set
®={9 Vapp(8) < 1}, “)
Y

which we call the application set. This leads to the idea that
the objective of system identification should be to deliver
parameter estimates that belong to the application set.

We can make a convex approximation of ® using a second
order Taylor approximation. Hence, the inequality (3) can be
approximated by
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For sufficiently large 7, the set of acceptable parameter (4)
can thus be approximated by the ellipsoidal set
2
Eupp = {e | [6—6,]"V,),(66)[6 — 6,] < y}. (6)
We will call this the application ellipsoid.

In [4] the scenario approach [7], [8], is presented as
another possible approximation of the application set. The
basis for that approach is to randomly select parameters that
satisfy (3), called scenarios. If enough scenarios are used,

the performance degradation can be guaranteed with high
probability.

B. System identification

Let 6 be the estimated parameter vector of the model
based on N input—output observations using the prediction
error method (PEM). A well-known result from the theory
of PEM for open-loop identification is the asymptotic (in
sample size) Gaussian distribution

\/N(é_eo) Nf/V(OaP)v (7N

d d
P'=Ed—9(t0)R, 91,0 8
{dey<,>e 57wt ®
of the estimates 6 [9]. The derivatives in the expression for
P! should be evaluated at the true parameter values.

We can find confidence ellipsoids for the estimates given
by

Oy € &5 = {e : [6—6,]"Ple -6, < ;} w. p. . (9)

The positive constant kK depends on the number of param-
eters to be estimated and the probability . Its value can
be obtained from the y2-distribution. This means that our
estimated model will lie inside the system identification set,
defined by (9), with probability «.

C. Input design

We want our estimated model parameters @ to be accept-
able with respect to control performance. Since the estimates
are random variables, this is hard to guarantee. Therefore,
we relax the condition and require only that the estimated
parameters satisfy the control performance with some (high)
probability. That is, we require the system identification set
defined by (9) to be contained in the application set defined
by (4), i.e.,

Es1 C 0. (10)

If we use the approximation (6), both sets are ellipsoids
and the region constraint is equivalent to the linear matrix
inequality (LMI)

Noa Y

P Vi (60). (1)
The LMI (11) together with (9) implies that our estimated
parameters will lie in the application ellipsoid, i.e., Oy €
&upp, With at least probability ¢r. This idea is presented in
[5].

If we instead use the scenario approach, we replace (10)
with the constraints

N__
[ek—eo}T;P 16— 60o] > Wapp(6), k=1,...,K, (12)

where 6; € ® are samples taken from, say, a uniform
distribution on . For sufficiently large values of K this
approximates the original constraint well. For more details
on the scenario approach in general see [8] and for the use
of scenario approach in identification see [4].

A natural objective of the input design is to minimize
some experiment cost while guaranteeing that (10) holds.
Experiment cost can, for instance, be experiment time, input
power or input energy. The key is that the inverse covariance
matrix P~ can be expressed in the frequency domain as
an affine function of the input spectrum. Hence, a linear
parameterization, and any convex objective function of the
input spectrum will lead to input design problems that are
semi-definite programs. This has been extensively discussed
in the literature, for a detailed discussion, see e.g., [10].

The application set gives the directions of high perfor-
mance degradation with respect to model parameters. Thus,
we can determine which linear combinations of elements
of @ are important to estimate with high accuracy. The
application set is linked to the identification through the input
design. When the optimal input is applied to the system,
the most sensitive parameter directions are excited while
unimportant dynamics are not.

III. IDENTIFICATION FOR MPC

In this section we bring together the theory outlined in
the previous section and present a scheme for optimal input
design in an MPC context. There are two major challenges
with the practical implementation of the method. The first is
the fact that the optimal input design relies on knowledge
of the true system parameters. These are, of course, not
known at the time of input design. The two proposed ways
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The method of optimal input design for MPC. The true system (.%) is excited by a white noise sequence (u). Initial parameter estimates () are

obtained from system identification (SYS ID). The control performance and how it is effected by different values of the parameters (6) is examined. This
is done by simulating a model of the system (.# ( )) controlled with an MPC using 6 and another MPC using 6 (MPC(G) and MPC(0) respectively).
Based on this, the approximate application cost (Vap,,(G 9)) is calculated (APP C). The application cost and initial estlmate is then used in the optimal
input design (OID) and the optimal input signal is obtained. The input is optimal if the system coincides with . (6 ) but might not be optimal for the

system ..

around this are to design inputs that are robust to parameter
variations, e.g., [11], or to use an initial parameter estimate
instead of the true parameters in the optimal input design.
The latter approach will be considered here.

The second challenge relates to the use of time domain
constraints in the MPC. There is, as of yet, no good way
of including such constraints in the input design formulation
that is considered here. The solution here is to include them
in the calculation of the application cost but not to consider
them in the identification part of the method. It may be
possible to enforce some time domain constraints when the
optimal signal is generated, e.g., [12].

A. Application cost

A reasonable application cost for the MPC case is the
difference between the output of the process controlled by
an MPC based on a model using 8 # 6, and one based on 6,
denoted y;(60) and y;(6,), respectively. Therefore, we choose

app Z [y (6. o)l

which has the desired properties mentioned in Section II-A.

In an application, it is unlikely that one can evaluate
(13) using outputs from the real process, as this would
require controlling the process based on models with more
or less arbitrary parameter values. Instead, we introduce an
approximation of V,,, where the true system is replaced with
the linear model using estimated parameter values. This gives

Z\Iyt (6,9)

where the first argument is the parameter used by the MPC
and the second argument the parameter used in the linear
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model replacing the system, cf. Simulation MPC block in
Figure 1.

The choice of acceptable performance degradation is
highly application dependent. Here we consider the reference
tracking capability of the MPC using a model with 6,,

1 N
)) = N ; lly:(6,)

and allow for a certain level of degradation, e.g., a 1 %
degradation of the performance corresponds to
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B. Input design

The optimal input design should minimize the experi-
mental cost while guaranteeing performance. Quantifying
experiment cost is not obvious but some possibilities are

« input power, var (),

« input energy, Nvar (u), or

« experiment length, N.

All measures have their own merits, however here we choose
to focus on the first option. To formalize, we can write the
full input design problem as

. L7
5?(1; trace (2” /77: (pu(co)da)) , (17)
st. &g C0, (18)
ou(0) >0 Vo, (19)

where ¢,(®) is the input spectrum. Depending on if we
choose the ellipsoidal approximation of ® or the scenario
approach, the set constraint is replaced by (11) or (12),
respectively. With linear parameterization of ¢,(®), this



optimization can be written as a semi-definite program. For
details on this, see e.g., [10].

C. Identification algorithm

We construct an optimal input design and identification
method to estimate models to be used in MPC, where the
true parameters in the expressions are replaced with estimates
thereof. The proposed method is described by the following
algorithm and further illustrated in Figure 1.

Algorithm

Step 0 Find an initial estimate of the model parameters us-
ing white noise as input in the system identification
experiment.

Step 1 Find the application cost based on simulations of
the model with the parameter estimates.

Step 2 Design the optimal input signal based on the appli-
cation cost and parameter estimates.

Step 3 Find a new estimate of the model parameters using
the optimal input signal in the system identification
experiment.

Note: If a good initial guess of the parameters are available,
e.g., through physical insight of the process, this guess can
replace the initial estimation in Step O.

The algorithm can be iterated so that the estimatew from
Step 3 are used in Step 1 and 2 to calculate a new input
design. As more and more data is used in the identification
step and if there exists parameters 6, such that . = .#(6,),
the estimates will converge to their true values. Therefore,
one can expect the input design to converge to what would
be obtained had 6, been known. A discussion on this and
a formal proof for the case with ARX systems are found in
[13].

IV. WATER TANK PROCESS

We have implemented the method of system identification
for MPC described in Section IIl on a version of the
water tank process presented in [14]. It consists of four
interconnected water tanks. The layout of the process is
shown in Figure 2. The control objective is to regulate the
water levels of the two lower tanks, according to a reference
trajectory, using MPC. The process is nonlinear, however, a
linearized and discretized model of the process is used in the
MPC. We want to estimate the parameters of the linearized
model.

A. Process description

The four water tanks are connected to two pumps that can
deliver water into the tanks. Two valves are used to control
the amount of water that is pumped into the upper and lower
tanks respectively. The input signals are the voltages of the
two pumps and the outputs are the water levels in the two
lower tanks. There are a number of physical constraints on
the process, such as the input voltages to the pumps and the
water levels in the tanks.

We derive a nonlinear model of the process from Torri-
celli’s principle,

d k
X1 :7(17] 2gX1+a73 /ng3+hul’
1
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where x; is the water level in centimeters of tank i and u; is
the voltage in volt of pump j. The parameters of the process
and their nominal values can be found in Table I.

TABLE I
PHYSICAL PARAMETERS OF THE FOUR TANK PROCESS.

Parameter  Nominal Description
a; {0.17 0.15 0.11 0.08} cm?®  area of outlet of tank i
A; 15.5 cm? area of tank i
Yi 0.625 parameter of valve j
kj 4.14 cm3/(sV) parameter of pump j

B. Linear Model

We derive a linear and time discrete model of the process
that will be used for predictions in the MPC. The nonlinear
model is linearized around its equlibrium points, X0 and O,
giving the state space model

r—1 A n
= 0 A 0 a0
aa_|0 5 Ak X+ 0 ol
a0 0 ' .
) -1 d-n)
100 0 5 Tﬂ 0
(20)
(1 0 0 0]._
y_ _O 1 0 0:| xt+etv (21)
_ 0 - 0 A; 2x9
where x=x—x", i=u—u" and ‘L',-:a—; ?'.The measure-

ment noise e, is assumed to be zero-mean Gaussian with
covariance matrix R,. The equilibrium points of our process
are x = [15 15 3 12]7 cm and «° = [7.8 5.25]" V.

The linear model is then discretized assuming zero-order
hold sampling at a sampling rate of 7y, = 1 Hz. The dis-
cretized model is used in the MPC.

The parameters to be estimated in the identification ex-
periment are the physical parameters presented in Table I.
The equilibrium points and gravity are considered known and

hence the factor /2x%/g in 7;, i=1,...,4, is also known.

C. Control Strategy

The objective of the controller is to perform reference
tracking of the water levels in the two lower tanks. The
controller implemented is the MPC provided by the MPC
Toolbox in Matlab. The MPC constructs an optimal control
strategy by minimizing the cost function defined by (2), with



the deviation variables used instead of §, r, Au and u, subject
to the constraints of the process. These constraints are listed
in Table II.

TABLE I
PHYSICAL CONSTRAINTS OF THE FOUR TANK PROCESS.

Parameter  Limit Description
Ximax 25 cm  maximum water level of tank i
Ximin 0 cm minimum water level of tank i
Uj max 15V maximum voltage of pump j
U min (VY% minimum voltage of pump j
X4
X3

X1 X2

Ui

] ()
| |

Fig. 2. The four tank MIMO process. Water is pumped from the reservoir
into the four tanks. The voltages to the pumps are input signals and the
levels in the two lower tanks, x; and x», are measured outputs. The setting
of the two valves regulate how much water is pumped into the upper and
lower tank respectively.

V. OPTIMAL INPUT DESIGN EXAMPLE

In this section we evaluate the proposed method on sim-
ulations of the water tank process presented in Section IV.
The optimal input design is found and identified models are
evaluated in control simulations.

A. Simulation Setup

The MPC prediction and control horizons are 10 time
steps. There are no constraints on the input rate in the MPC
control problem and the covariance matrix R, is set to zero
for the calculations of the scenarios in the input design.
For all other settings we use the default values provided by
the MPC Toolbox in Matlab (R2010a). The optimal input
design problem is (17) using the scenario approach, i.e.,
constraint (12). The problem is solved with R, = 10_31{2X2},
N =400 and K from the x?(10)-distribution with & = 0.95.
The number of scenarios used is 3,000.
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Fig. 3. The input spectra obtained using optimal input design based on
6, (solid) and an initial estimate of the parameters (dashed). ¢;;(®) is the
cross spectrum between u; and u;.

B. Input Design

We compare the optimal design obtained when using 6,
and one where the design is based on an initial estimate of the
parameter values. These estimates were obtained using a zero
mean white Gaussian excitation signal with variance 0.01.
The optimal input spectra for 1 % performance degradation,
i.e., ¥ given by (15) is shown in Figure 3. The optimization
problem is implemented in CVX and solved using SDPT3
[15], [16].

We see that the optimal spectrum is clearly temporally
colored but almost spatially white. The spectrum has high
energy at low frequencies, indicating that the static gain
of the system is important. This is expected since the
application cost relates to reference tracking and therefore
emphasizes the static gain. The design obtained from the
initial estimate is very close to the optimal.

We also constructed the Hessian of the application cost,
to see which directions of the model parameters give a high
performance degradation. We can conclude that it is most
important to estimate 7y; with high accuracy. This seems
reasonable since the pump corresponding to 7; is supplying
water to tank 1 and tank 4, which have the largest outflows
of the process. Thus, an error in ¥ would highly effect the
control performance. We can also see that it is important
to estimate the parameters related to tanks 2 and 4 of the
process, i.e., az, a4 and 7.
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Fig. 4. The trajectories of the process controlled by MPC with models

based on estimates from 100 identification experiments. In the upper plot
the optimal input has been used in the identification whereas in the lower
plot a white input has been used. For the upper plot 91 % of the trajectories
satisfy the performance degradation requirements while only 15 % of the
trajectories in the lower plot satisfy the requirements.

C. Control Performance Comparison

As a motivation to why we perform optimal input design,
we will estimate the water tank process using an optimal
input with minimum power and a white noise input with
the same power. We then compare the performance of the
MPC controllers based on these estimates. The simulation is
performed with the setting specified in Section V-A and y
is defined by (16). The resulting output trajectories can be
seen in Figure 4.

We can conclude that the optimal input signal outperforms
white noise in terms of satisfying the specification on control
performance. In total 91 % of the models estimated using the
optimal input satisfy requirement (3) compared to only 15 %
of the models estimated with white noise.

The reason that we do not reach the goal of 95 %
acceptable models is, at least to some extent, explained by the
fact that the identified system is nonlinear and no 6, exists.
If a linear system is estimated instead, using the same signal
realizations, 94 % of the models are deemed acceptable,
which is closer to the specifications.

D. Reducing Performance Degradation

We look at the effects of decreasing the upper limit on the
performance degradation when a linear model is used for a
nonlinear process. To decrease the application cost, we want
estimates with lower variance. Had the process been linear,
increasing input power, var (), or the experiment length, N,
would both reduce the estimate variance. We can always
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Fig. 5. The trajectories of the process controlled with MPC with models

based on estimates from 100 different identification experiments. In the
upper plot, only N = 100 samples are used to identify the system whereas in
the lower plot N = 10,000 samples are used in the identification. The higher
input power in the first case drives the system away from the linearization
point, giving estimates with high variance. Both experiments have the same
total input energy.

trade power for experiment time or vice versa. However,
when the process is nonlinear, increasing input power might
drive the process too far from the linearization point for the
model to be accurate. Therefore, one might have to increase
experiment time to reduce the variance.

To investigate this for the four tank process, we conduct
two experiments. In the first experiment we use N = 100 in
the input design which gives a high input power solution. In
the second experiment we use N = 10,000 which gives a low
power solution. Note that both designs use the same input
energy. We allow for 0.01 % performance degradation, i.e.,
vy = 10,000/V (6,). Figure 5 the resulting trajectories, when
the estimated models from the two experiments are used in
the MPC.

We see that increasing the power can degrade the quality
of the estimates when the identified plant is nonlinear.
If experiment time is allowed to increase, higher quality
estimates are obtained. In total 85 % of the models from the
low input power identification satisfy the requirements while
none of the estimates from the high input power identification
satisfy the requirements.

VI. CONCLUSION

We present a method for optimal input design for MPC.
The identified model is guaranteed, with high probability, to
give a prescribed control performance. The method thereby
links the system identification and the intended use of the
model.



The optimal input design method requires knowledge of
the true parameter values. These are obviously not available.
The proposed solution is to use an initial estimate instead.
These can be obtained in an identification experiment or
through knowledge of the system.

The proposed method requires an evaluation of the control
performance degradation with respect to the model parame-
ters. This evaluation may greatly effect the behavior of the
system, thus preventing it from being performed on-line. We
propose that it is instead based on simulations of a model of
the system. We use an estimated linear model to approximate
the process, even if the true system is nonlinear.

Our example shows that we have to be careful when trad-
ing power of the input signal with number of observations
made in the identification experiment. This is because we
use a linear model when designing the input but identify a
nonlinear process. A high variance of the input signal may
drive the process state far from its linearization point and
thus the model will no longer be accurate.
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