
Master of Science Thesis
Stockholm, Sweden 2010

TRITA-ICT-EX-2010:28

M U H A M M A D S A R W A R J A H A N M O R S H E D

 Good cop/Bad cop

 Voice over IP and Lawful Intercept

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Voice over IP and Lawful Intercept

God cop/Bad cop

Muhammad Sarwar Jahan Morshed

msjmo@kth.se

Masters Thesis

2010.02.20

This thesis is submitted in partial fulfilment of the requirements for a
Masters of Science degree in Information & Communication Systems Security.

School of Information and Communication Technology
Royal Institute of Technology (KTH)

Stockhom, Sweden

Supervisor and Examiner: Professor Gerald Q. Maguire Jr.

mailto:msjmo@kth.se

ii

Abstract
Lawful interception is a common practice for monitoring a telecommunication network

by law enforcement agencies all over the world. It plays a vital role to ensure national
security and to control crimes by providing authorized monitoring of communicating parties
in a communication network. However, there are some important issues that need to be
addressed, such as the privacy of individuals, malicious use of lawful interception by a “bad”
cop, vulnerability of a lawful interception system to misuse by others, cost, legal liability, etc.
These issues have lead to opposition to lawful interception. Many researchers have been
looking for a secure and acceptable lawful interception system that would eliminate or
minimize the undesirable aspects of lawful interception. One of the approaches that gained a
lot of attention is a key escrow encryption system. For lawful interception a key recovery key
is escrowed with a trusted third party. This key can subsequently be used for decryption by
the law enforcement agency. The trusted third party might be a government agency or a
private company. The process for recovering keys should be based on a predefined security
policy. The trusted third party’s responsibility is to store the key and to protect it from
malicious use. This malicious use could be by a competitor, a telecommunication operator,
Internet Service Provider (ISP), a law enforcement agency, or other party. If the trusted third
party itself utilizes the key or improperly discloses the key to another party, then the data that
was protected by encryption could be compromised Unfortunately, there is no easy means to
detect if the data has been tampered with or not. This thesis focuses on therefore in the case
of voice over IP, where there is a need for a means to determine if a recorded conversation is
authentic or not. Hence the objective of the overall thesis project is to design, implement, and
evaluate a security mechanism that can be used with a trusted third party -based key escrow
encryption system that will prevent or reduce the risk of forgery by (a bad cop within) a law
enforcement agency using the escrowed key.

This thesis describes how a key escrow encryption system would be improved by the
proposed mechanism – with a focus on the actions of a party that has access to the escrowed
key. We do not examine how the party got access to this key, but for the purposes of this
thesis we assumed that this party is either a good cop or a bad cop. We have defined the
meaning of these terms and examine what operations a bad cop might attempt to perform –
given the access to the master key. For example, this party could capture the data packets of a
Voice over IP session, and then decrypt the packets using the key provided by the escrow
agent. After decryption we examined the ability of a bad cop to modify or forge data packets,
then encrypt these forged packets with the key – in order to fabricate evidence. We then
examined how to detect such modifications or forgery. The proposed system is able to detect
this forgery, based upon the inability of the forger to generate the correctly signed hashed
message authentication coded. We also examine additional extensions to the user agent and
the escrow agent to be able to identify which packets (or groups of packets) were not
generated by the original participant in the conversation. The goal is to understand if the
proposed mechanism could make lawful interception more secure, while increasing the
protection of the communicating parties’ conversation from undetected manipulation and
making the digital record of a conversion easier to authenticate.

Key words: Lawful Intercept, VoIP, Key Escrow, Secure IP telephony, Law Enforcement
Agency, Key Escrow Encryption System, Minisip, forgery detection, privacy, and bad cop.

iii

Sammanfattning
Avlyssning är en vanlig metod för att övervaka ett telenät för brottsbekämpande organ i

hela världen. Den spelar en viktig roll för att garantera nationell säkerhet och bekämpa brott
genom att ge tillstånd övervakning av kommunikation parter i ett kommunikationsnät. Men
det finns några viktiga frågor som behöver lösas, såsom den enskildes integritet, oönskad
användning av avlyssning av en korrupt polis, sårbarheten hos en laglig avlyssning för att
missbruk av andra kostnader, rättsliga ansvar, osv. Dessa frågor har lett till motstånd mot
laglig avlyssning. Många forskare har letat efter en säker och acceptabel avlyssning system
som skulle eliminera eller minimera oönskade effekter av laglig avlyssning. En av de
strategier som fått mycket uppmärksamhet är en nyckeldeposition krypteringssystem. För
avlyssning en nyckel återhämtning nyckel är escrowed med en betrodd utomstående. Denna
nyckel kan därefter användas för dekryptering av de brottsbekämpande myndigheterna. Den
betrodd utomstående kan vara en myndighet eller ett privat företag. Processen för att
återställa nycklar bör grundas på en fördefinierad säkerhetspolitik. Den betrodda
utomståendesansvar är att lagra nyckeln och att den skyddas från skadlig användning. Detta
skadlig skulle kunna användas av en konkurrent, en teleoperatör, Internet Service Provider
(ISP), en brottsbekämpande organ, eller annan. Om den betrodda utomstående själv använder
nyckeln eller felaktigt lämnar ut nyckeln till annan, då de uppgifter som skyddas av
kryptering kan äventyras. Tyvärr finns det inget enkelt sätt att upptäcka om data har
manipulerats eller inte. Denna avhandling fokuserar på därför i händelse av Röst över IP, där
det finns ett behov av ett medel för att avgöra om en inspelad konversation är giltig eller inte.
Syftet med det övergripande examensarbete är att designa, implementera och utvärdera en
säkerhet mekanism som kan användas med en betrodd utomstående-baserade
nyckeldeposition krypteringssystem som kan förhindra eller minska risken för förfalskning av
(en korruptmänniska inom) brottsbekämpande organ med escrowed nyckel.

Denna avhandling beskriver hur en nyckeldeposition krypteringssystem skulle kunna
förbättras med den föreslagna mekanismen - med fokus på de åtgärder som en som har
tillgång till escrowed nyckel. Vi undersöker inte hur partiet fick tillgång till denna nyckel,
men inom ramen för denna avhandling vi utgått från att detta parti är antingen en laglydig
polis eller en korrupt polis. Vi har definierat innebörden av dessa termer och undersöka vilka
åtgärder som en korrupt polis kan försöka utföra - ges tillgång till huvudnyckeln. Till
exempel kan detta parti fånga datapaketen i en Röstöver IP-session, och sedan dekryptera
paket med hjälp av nyckeln som depositarien. Efter dekryptering vi undersökt möjligheterna
för en elak polis att modifiera eller skapa datapaket, sedan kryptera dessa förfalskade paket
med nyckeln - för att fabricera bevis. Vi undersökte sedan hur man upptäcker sådana
ändringar eller förfalskning. Det föreslagna systemet kan upptäcka denna förfalskning,
baserat på oförmåga förfalskarens att generera korrekt undertecknade hashed meddelande
autentisering kodad. Vi undersöker också ytterligare utvidgningar till användarprogram och
depositarien att kunna identifiera vilka paket (eller grupper av paket) genererades inte av de
ursprungliga deltagarna i samtalet. Målet är att förstå om den föreslagna mekanismen skulle
kunna göra avlyssning säkrare, och samtidigt öka skyddet av kommunikation parternas
samtal från oupptäckta manipulation och göra den digitala register över en omvandling lättare
att verifiera.

iv

Formatting Conventions
I have used the following paragraph styles for easy readability of this thesis paper:

• “Times New Romans” has been used for the body of the report.

• An entity or component of a module is set in bold face.

• I have used italics to emphasize a paragraph or line or word.

Table of Contents
Abstract ... ii

Sammanfattning ... iii

Formatting Conventions ... iv

Table of Contents ... v

List of Figures .. ix

List of Tables .. x

Acknowledgements ... xi

List of Abbreviation and Acronyms ... xii

Chapter 1: Introduction .. 1

1.1 Motivation .. 1
1.2 Synopsis of the Thesis ... 2
1.3 Research Problem .. 4
1.4 Research Methodology .. 4
1.5 Outline of the Thesis .. 5

Chapter 2: Background .. 6

2.1 Voice over Internet Protocol (VoIP) .. 6
2.2 Session Initiation protocol (SIP) .. 6
2.3 Lawful Intercept ... 7

2.3.1 General Concept of Lawful Intercept .. 7
2.3.2 Reason for Lawful Intercept .. 8
2.3.3 Basic Requirements for Lawful intercept .. 8
2.3.4 Ways of conducting lawful intercept ... 9
2.3.5 Lawful interception solutions .. 9
2.3.6 Existing rules and regulations for lawful intercept 9
2.3.7 Problems with lawful intercept .. 10

2.3.7.1 Privacy concerns .. 10
2.3.7.2 Vulnerabilities of (and due to) lawful interceptions 11

2.3.8 Lawful Interception Architecture ... 12
2.4 Trusted Third Party (TTP) ... 13

2.4.1 Definition of a Trusted Third Party ... 13
2.4.2 Requirements to be a Trusted Third Party ... 13
2.4.3 Public Key Infrastructure ... 14
2.4.4 Components of a PKI ... 15
2.4.5 Operation of a PKI ... 16

2.5 Digital Signature .. 16
2.6 Key Escrow .. 17

2.6.1 Key escrow encryption system .. 17
2.6.2 User Security Component .. 18

2.6.3 Key escrow component .. 19
2.6.4 Data recovery components ... 20

2.7 Secure Real Time Transport Protocol (SRTP) ... 20
2.7.1 SRTP Architecture ... 20
2.7.2 SRTP Cryptographic Context (parameters and functions) 21
2.7.3 SRTP Algorithms ... 22
2.7.4 SRTP Procedure ... 23
2.7.5 Protection provided by SRTP .. 23

2.8 Secure Real Time Transport Control Protocol (SRTCP) 23
2.9 Multimedia Internet KEYing (MIKEY) .. 24

2.9.1 General Concept of MIKEY .. 24
2.9.2 MIKEY Key Management Procedure .. 25

2.10 Key Agreement Schemes ... 26
2.10.1 Pre-Shared Key .. 26
2.10.2 Public Key Cryptography .. 26
2.10.3 Diffie-Hellman ... 27
2.10.4 DH-HMAC (HMAC authenticated Diffie- Hellman) 28
2.10.5 RSA-R (Reverse RSA) .. 29

2.11 Minisip ... 29
2.12 Wireshark ... 30

Chapter 3: Related Work ... 31

3.1 C. Hett, et al. .. 31
3.2 Rafael Accorsi .. 31
3.3 V. Stathopoulos, et al. .. 32
3.4 Clipper Chip ... 32

Chapter 4: Design Analysis of the Proposed Model ... 33

4.1 Escrow Agent Module ... 33
4.1.1 Required Fields for Escrow Agent Module ... 33
4.1.2 Escrow Agent Database ... 34
4.1.3 User Agent Identification ... 36
4.1.4 Different URIs for User identification with the EA 36
4.1.5 Required parameters to escrow in future ... 37
4.1.6 Implementation Principles ... 37

4.2 LEA Module .. 38
4.2.1 Required parameters for the LEA module in order to provided the
information required by the EA ... 38
4.2.2 Possible Trade-offs of the LEA Module .. 39

4.2.2.1 The time required to decode the recorded SRTP packets 39
4.2.2.2 Security of the LEA module .. 40
4.2.2.3 Network overhead .. 41
4.2.2.4 Transparency of the LEA module .. 41

4.2.3 Implementation principles of the LEA module 41
4.3 Attacker Module .. 42
4.4 Validation Module ... 42
4.5 Communication between UA and EA .. 42
4.6 Should the EA generate session keys for the LEA 43

vi

Chapter 5: Implementation of the proposed LI model 44

5.1 User Agent ... 44
5.2 Escrow Agent (EA) module ... 44
5.3 LEA module ... 46

5.3.1 Algorithms of LEA module ... 47
5.3.2 Algorithm for calculating the ROC.. 47
5.3.3 Project Description ... 48
5.3.4 Capturing a Session.. 49
5.3.5 Operation procedure of the LEA module ... 49

5.4 Validation module .. 50
5.4.1 Algorithm for Validation module .. 50
5.4.2 Implementation of the Validation Module ... 51
5.4.3 Testing Forgery with the Attacker module .. 51
5.4.4 Algorithm for UDP Checksum Calculation ... 52
5.4.5 Working operation of the Attacker Module ... 53
5.4.6 Implementation of the attacker module ... 54

Chapter 6: Evaluation of the proposed LI System ... 56

6.1 Good cop Scenario ... 56
6.1.1 Time required for intercepting a session by the LEA 57
6.1.2 A Real-Life Example ... 61

6.2 Bad Cop Scenario .. 61
6.2.1 Possible ways of modifying a recorded call .. 62
6.2.2 Detection of the forgery ... 64
6.2.3 Shortcomings of the current Escrow Scenario ... 66
6.2.4 Overcoming this Limitation ... 67
6.2.5 Summary .. 67

Chapter 7: Future Work ... 68

Chapter 8: Conclusions ... 70

References ... 71

Appendices .. 75

A. Different Forgery Combination ... 75

B. Source code of LEA Module ... 84

C. Source code of Verification Module .. 94

D. Source code of Attacker Module .. 102

E. Required Time to derive Session Keys (SRTP packet/micro second) 126

F. Cumulative Percentage of the delays beyond the minimum required time to
generate session keys .. 137

G. Required Time to decrypt SRTP packet (SRTP packet/micro second) 138

vii

viii

H. Cumulative Percentage of the delays beyond the minimum required time to
decrypt an SRTP packet .. 148

I. CPU used for performance Evaluation .. 149

List of Figures
Figure 1-1: Proposed Lawful Interception Model ... 3

Figure 2-1: Flow chart of a lawful interception (Adapted from ETSI 101 331[2]) 7

Figure 2-2: HMAC (Adapted from [16][45]) .. 12

Figure 2-3: Packet Cable Surveillance Model (Adapted from [15][16]) 13

Figure 2-4: Digital Signature Workflow ... 16

Figure 2-5: Key Escrow Encryption System Components([16]) 18

Figure 2-6: SRTP Packet Format (Adapted from[11]) .. 21

Figure 2-7: Structure of a MIKEY Message (Adapted from [7]) 26

Figure 2-8: Key Exchange using Public key Cryptography .. 27

Figure 2-9: Key Exchange using DH-HMAC ... 29

Figure 2-10: Key Exchange in RSA-R .. 29

Figure 5-1: LEA Module Login Interface .. 45

Figure 5-2: Interface for Providing Target Information .. 46

Figure 5-3: Escrow Information returned by the EA ... 46

Figure 5-4: Workflow of the Session Key Generation and Payload Decryption 50

Figure 5-5: Packets with Incorrect UDP Checksum are highlighted by Wireshark 52

Figure 5-6: A Packet Forged by Replacing the Content .. 55

Figure 5-7: Replaced Block by whole Content .. 55

Figure 6-1: Session Key Generation and Payload Decryption 57

Figure 6-2: Validation output of a Valid SRTP Session .. 57

Figure 6-3: Time required generating Session Keys from TGK and other escrowed
information ... 58

Figure 6-4: Frequency vs. delay for Generating Session Keys 58

Figure 6-5: Cumulative frequency of the delay ... 59

Figure 6-6: Time required to decrypt an SRTP packet using session keys 59

Figure 6-7: Frequency vs. delay for decrypting SRTP packets 60

Figure 6-8: Cumulative frequency of the delay for decrypting SRTP packets 61

Figure 6-9: Forged block in the Front of the Session .. 65

Figure 6-10: Forged block in the Middle of the Session ... 65

Figure 6-11: Forged Block at the End of the Session .. 65

Figure 6-12: Visualized Form of a Forged Session ... 66

List of Tables
Table 1: Parameters that should be escrowed .. 34

Table 2: Used Database Tables .. 45

Table 3: All Possible Combinations of Forgery/modifications 63

Table 4: Examples of Forgery .. 64

Acknowledgements

I would like to start by thanking Professor Gerald Q. Maguire Jr., my thesis
advisor and mentor for the last five months. I am grateful to him for his wonderful
guidance, rapid support, encouragement, and as an endless sources of ideas. His
breadth of knowledge and enthusiasm inspired me to carry out the thesis project
successfully. I thank him for his valuable hours for discussing the thesis work with
me, reading, verifying my work, and editing my writings. The research experience
that I have had with him during this period, has given me confidence and
encouragement for doing further research work in the future.

I want to thank Errik Eliasson for his support and valuable time. Additionally, I
want to thanks my friends those who encourage me during this research work.

Finally, I would like to express my deep love to my wife Nurunnahar and my son
Saanyaan for their continuous support and sacrifice during this thesis project. I also
acknowledge to my parents for inspiring me to do a good thesis project that would
serve as a base for my future career.

List of Abbreviation and Acronyms

AES Advance Encryption System
AES-CM Advance Encryption System in Counter Mode
ASP Active Server Page
AVP Audio/Video Profile
CA Certificate Authority
CALEA Communications Assistance for Law Enforcement Act
CC Contents of Communication
CD Call Data
CDR Call Detail Records
CERT Certificate
CFML ColdFusion Markup Language
CODEC Compression/decompression or Code/decode
CRL Certificate Revocation List
CS Crypto Session
CSBID Crypto Session Bundle Identifier
CSID Crypto Session Identifier
DH-HMAC HMAC-based Diffie-Hellman
EA Escrow Agent
ETSI European Telecommunications Standard Institute
FISA (U.S.)Foreign Intelligence Surveillance Act
GCKS Group Controller/Key Serve
GPL General Public License
HMAC Keyed Hash-based Message Authentication Code
HMAC-SHA Keyed Hash-based Message Authentication Code-

Secure Hash Algorithm
HTTP Hyper Text Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IIF Internal Intercept Function
IP Internet Protocol
ISP Internet service provider
IV Initial Vector
JSP Java Server Page
LADP Lightweight Directory Access Protocol
LEA Law Enforcement Agency
LGPL Lesser General Public License
LI Lawful Interception
MAC Message Authentication Code
MIKEY Multimedia Internet KEYing
MIME Multipurpose Internet Mail Extensions
MKI Master Key Identifier
NSA National Security Agency
NTP Network Time Protocol
PEM Privacy Enhanced Mail
PGP Pretty Good Privacy
PHP Hyphertext Preprocessor
PKI Public Key Infrastructure

xii

xiii

PRF Pseudo Random Function
PSTN Personal Switched Telephone Network
PTN Public Telephone Network
RAND Random
ROC Roll Over Counter
RSA Rivest Shamir Adleman
RSA-R Reverse - RSA
RTCP Real Time Transport Control Protocol
RTCP-XR RTCP Extend Report
RTP Real- Time transport Protocol
RTSP Real-Time Streaming Protocol
SAP Session Announcement Protocol
SAVP Secure Audio Video Profile
SDP Session Description Protocol
SIP Session Initiation Protocol
SMTP Simple Mail Transfer Protocol
SRTP Secure Real-Time Transport Protocol
SSRC Synchronization source
SRTCP Secured Real Time Transport Control Protocol
TEK Trafic Encryption Key
TGK TEK Generation Key
TLS Transport Layer Security
TTP Trusted Third Party
UA User Agent
UDP User Datagram Protocol
URI Uniform Resource Identifier
VoIP Voice over Internet Protocol

Chapter 1: Introduction

The goal of this thesis project was to design and evaluate a Trusted Third Party
based Lawful Interception (LI) system which would protect user’s privacy from a bad
cop within a Law Enforcement Agency (LEA), while serving the purpose of lawful
interception to protect the homeland security as well as to investigate crime. This
chapter provides the thesis overview, research problem, and the research methodology
to carry out the thesis.

1.1 Motivation
LI is widely used by the LEAs for monitoring telecommunication traffic. It plays

a vital role to ensure national security and to control crime by providing authorized
monitoring of the communicating parties in a telephone (or other communication)
system. While many people claim that intercepting of a conversation violates basic
human rights and individual privacy, many national governments have passed laws
and regulations enabling lawful interception. Because of the need to balance the
interests of society and the rights of individuals there are some important issues that
need to be addressed, such as the privacy of individuals, malicious use of lawful
interception by a “bad” cop, vulnerability of a lawful interception system to misuse by
others, cost, legal liability, etc. These issues have lead to opposition to lawful
interception. This has been discussed further in section 2.3.7.

Traditional telephony was introduced ~100 years ago and lawful interception of
traditional telephony has been well established in both law and practice for many
decades. However, with the introduction of Voice over IP (VoIP), users have rapidly
switched from traditional telephony to VoIP because of its speed, support for
mobility, and due to its digital nature encryption is easy to do – hence greater privacy
can be implemented. Unfortunately, VoIP has also become popular for criminals – as
it enables them to have a secure conversation, frustrating intercepting of VoIP
conversations by the law enforcement agencies. The difficulties of interception are
due to the VoIP architecture and the use of smart end devices – thus it is hard to
intercept both the signaling and the call contents. For details of these problems see
[15].

In recent years, a number of proposals have been presented by research and
academic organizations to create a more secure and more acceptable lawful
interception system. One of the approaches that has gained a lot of attention is a key
escrow encryption system. For lawful interception a key recovery key is escrowed
with a trusted third party. This key can subsequently be used for decryption by the law
enforcement agency. The trusted third party might be a government agency or a
private company. The process for recovering keys should be based on a predefined
security policy. The trusted third party’s responsibility is to store the key and to
protect it from malicious use. This malicious use could be by a competitor, a
telecommunication operator, Internet Service Provider (ISP), a law enforcement
agency, or other party. If the trusted third party itself utilizes the key or improperly
discloses the key to another party, then the data that was protected by encryption
could be compromised. For example, if the key was disclosed to a “bad” cop, then this
person would not only be able to decrypt the data, but as the encryption that is

Chapter 1: Introduction

generally used is symmetric encryption – they now have the ability to generate data
and encrypt it with the key – thus forging evidence. Unfortunately, there is no easy
means to detect if the data has been tampered with or not. Therefore in the case of
voice over IP, there is a need for a means to determine if a recorded conversation is
authentic or not.

1.2 Synopsis of the Thesis
Use of VoIP is increasing daily as it provides both additional services and lower

costs than traditional telephony system. However because of the ease of encrypting
the contents of a media session, the use of VoIP became an issue of concerning for
law enforcement agencies in all countries. For this reason and concerns of
competition with government owned telecommunications operations the use of VoIP
is restricted in many countries. In a traditional telephony system the government can
easily monitor the communicating parties who are using a telecommunication network
as the network has centralized control and all of the communication passes through
telephone exchanges that are controlled by the telecommunications operator.
However, the architecture of a VoIP system makes it more difficult to intercept traffic
because the call signaling and the communication between the parties may travel
along completely different paths and need not even travel through the same network
operators. Additionally, the end points of the communication are intelligent and
capable of doing encryption/decryption, using a mutually agreed but non-standard
CODEC, etc. All of these characteristics make successful interception much harder
than the case of a traditional telephony network.

Additionally, lawful interception has become a contentious issue between law
enforcement agencies and the citizens of the country. Many argue that lawful
interception violates basic human rights as the individual’s expectation of privacy
may be substantially compromised. While at the same time lawful interception is a
useful tool for ensuring national security as well as for investigating criminal activity
that may lead to a criminal prosecution. Further compounding the problem is evidence
that lawful interception may introduce security holes in communication systems, thus
making it easier for criminals or terrorists to interrupt or manipulate the operation of a
communication network for their own benefit. Therefore a secure lawful interception
mechanism is highly desirable, but it should be reliable and acceptable to all (lawful)
parities. Several proposals have been presented over the last three decades. Some of
these proposals offer good prospects for increasing the reliability and security of
lawful interception [4][5][47]. Key escrow encryption is one such proposal. In this
approach the master key (also known as a key recovery key) will be escrowed with a
trusted third party for future use. For example, a court might issue a warrant to the
third party to disclose the escrowed key for a specific session (or sessions during a
period of time) to enable a law enforcement agency to access the signaling or contents
of this session or sessions. The trusted third party must be very reliable (i.e., they need
to be able to provide the escrowed key when appropriate). Additionally, the trusted
third party must be trusted to only provide the escrowed key when presented with a
lawful order to do so; otherwise they must not provide a key to a law enforcement
agency or any other party.

Figure 1-1 shows an overview of the process of escrowing a key and the
subsequent recovery of a key for the purposed of lawful interception (LI) by a law
enforcement agency (LEA) following presentation of a warrant to the trusted third
party (TTP). We will examine the details of these interactions in the next chapter.

 2

Chapter 1: Introduction

Figure 1-1: Proposed Lawful Interception Model

The objective of the overall thesis project is to design, implement, and evaluate a
security mechanism that can be used with a trusted third party -based key escrow
encryption system that will prevent or reduce the risk of forgery by (a bad cop within)
a law enforcement agency using the escrowed key. As part of this project, Md.
Sakhawat Hossen has designed and implemented the proposed security mechanism
using an open source session initiation protocol user agent (minisip), for details see
his thesis [43]; minisip was developed at the Royal Institute of Technology (KTH),
Sweden [8]. Minisip supports both MIKEY and SRTP. In MIKEY, a master key is
established by MIKEY to perform a key exchange. This master key is used to derive a
key to be used by SRTP to protect a media stream and by SRTCP to protect the
associated RTCP information. The modified version of this user agent escrows the
session “Master Key” with a trusted third party. Additionally, Md. Sakhawat Hossen
has extended the user agent’s MIKEY+SRTP security by utilizing a digital signature
to sign Hashed Message Authentication Codes (HMACs) computed over the RTP and
RTCP message contents.

This thesis describes how a key escrow encryption system would be improved by
the proposed mechanism – with a focus on the actions of a party that has access to the
escrowed key. We do not examine how the party got access to this key, but for the
purposes of this thesis we will assume that this party is either a good cop or a bad cop.
We will define the meaning of these terms and examine what operations a bad cop
might attempt to perform – when given access to the master key. For example, this
party could capture the data packet using Wireshark [19], a third party network
analyzer, then decrypt the packets using the key provided by the escrow agent. After

 3

Chapter 1: Introduction

decryption a bad cop might attempt to modify or forge data packets, then encrypt
these forged packets with the user’s session key – in order to fabricate evidence. We
will examine how to detect such modifications or forgery. The proposed system
should enable detection of this forgery, based upon the inability of the forger to
generate the correctly signed HMACs. We will also examine additional extensions to
the user agent and the escrow agent in order to be able to identify which packets (or
groups of packets) were not generated by the original participant in the conversation.
The goal is to understand if the proposed mechanism can make lawful interception
more secure, while increasing the protection of the communicating parties’
conversation from undetected manipulation and making the digital record of a
conversion easier to authenticate.

1.3 Research Problem
Lawful interception is a useful tool for law enforcement in almost all countries to

investigate crimes. In fixed and mobile telephony systems the signaling and media are
carried over a network operated by a telecommunications operator over whom the
government generally has a lot of control (in some cases the government may even
operate this network). In many countries all such operators have to provide facilities
for lawful interception as a requirement for offering telecommunication services
[15][16]. In addition to the mandatory requirement to provide facilities for law
enforcement agencies to conduct lawful intercepts, the laws in most countries provide
clear descriptions of how lawful interception is to be carried out, who must pay (and
when), and who is responsible for doing (or not doing) what.

In contrast, successful interception of VoIP communications is difficult as the
packets exchanged between two (or more) communicating parties may follow one or
more routes from the source to the destination over the Internet [15]. Additionally,
the signaling to establish a session and the media traffic of a session may take
completely different paths through the network. Hence the distributed nature of VoIP
architecture versus the centralized nature of traditional telephony systems makes
capturing the raw traffic difficult.

Moreover, many people and organizations do not support the use of lawful
interception to protect national security or to control crime in a country. Rather they
more concern about preserving the individual’s privacy and consider lawful
interception an abuse of human rights. To address these conflicting issues, many
proposals have been presented [4][45]. A trusted third party based key escrow
encryption system is a widely accepted solution in this regard. In this system a master
key for each session is escrowed with a trusted third party, this key could be used for
subsequent decryption by a law enforcement agency. However, there is limitation in
this mechanism - as a bad cop within the law enforcement agency could decrypt the
captured data, modify this data, and then encrypt the resulting data using the session
key. Unfortunately, the communicating parties will be unable to prove themselves
innocent in the court, since the modified data is indistinguishable from the original
data. In this thesis, we will examine enhancements made to a key escrow encryption
system to provide a solution for lawful interception of VoIP communication while
avoiding the possibility for undetected modification or fabrication of session contents.

1.4 Research Methodology
The overall thesis project was conducted as two related projects. Both projects

have built upon the existing minisip [8] open source session initiation protocol user

 4

Chapter 1: Introduction

 5

agent. The work was divided into two sub-projects: enhancements to the user agent
(described in the thesis by Md. Sakhawat Hossen [43]) and attacks upon this system
by a potentially "bad" cop (the topic of this thesis). Additionally, the later contributed
to the former thesis by suggesting additional data that should be escrowed given the
needs of a LEA.In more detail these two subprojects were:

1. Design, implementation, and evaluation of a modified Minsip that can escrow

the session’s master key at the end of a session with an escrow agent. This
escrow agent will act as our trusted third party. This sub-project is the topic of
Md. Sakhawat Hossen’s thesis [43].

2. Further development of the escrow agent and the design, implementation, and
evaluation of (a) a law enforcement module, (b) an attacker module, and (c) a
validation module. The law enforcement module should enable a Law
Enforcement Agency to decode a captured VoIP session using the master key
provided by the escrow agent. The attacker module will modify a captured
VoIP session. Finally, the validation module will be used to detect the
modifications or fabrication of a VoIP session. These three modules will be
used to help analyze and improving the overall solution (i.e., the modified
minisip and the escrow agent). This sub-project is the topic of this thesis.

The second thesis project was conducted in a number of steps:

1. Studying existing IP telephony systems, trusted third party based key escrow
encryption systems, and the lawful interception process.

2. Analyzing and finding out the limitations of the above systems.

3. Conducting a feasibility study of the proposed enhancements to create a secure
and reliable lawful interception system.

4. Implementing the proposed mechanism of the lawful interception system.

5. Performance analysis in a real-time environment and comparison with other
existing key escrow encryption systems with respect to the lawful interception
process.

1.5 Outline of the Thesis
In Chapter 2, background study has been presented while Chapter 3 describes

some related works of this thesis project. The design analysis of the proposed LI
model has been stated in the Chapter 4. Implementation of the proposed model has
been described in the Chapter 5. Evaluations and the results have been shown in the
Chapter 6. Finally, Chapter 7 and Chapter 8 describe the future work and conclusions
respectively.

Chapter 2: Background

This chapter presents some background studies that are required for the reader to
understand the whole thesis. As the previous chapter presented the research problem
concern a secure IP telephone system with key escrow encryption requires some
means to prevent a bad cop in a Law Enforcement Agency from successfully
fabricating a recorded session. This chapter describes the basics of an IP telephone
System (along with the required protocols for such a systems, specially SIP, RTP,
SRTP, MIKEY, and SRTCP). Following this details of LI are presented including (its
architecture, existing rules for LI, problems with lawful interception, etc. Finally, the
basic of a Key Escrow Encryption Mechanism are presented along with the relevant
components of such a system, specifically the trusted third party, public key
infrastructure, etc.

2.1 Voice over Internet Protocol (VoIP)
Voice over Internet Protocol (VoIP) is a widely used means of sending voice

communication over Internet Protocol (IP) based networks, such as the Internet or
other packet switched networks. VoIP is also known as Internet telephony, broadband
telephony, voice over broadband, and IP telephony. To make a VoIP call requires
setting up a communication session, then in real-time performing the following steps:

1. Sample the analog voice signal and encode it in a digital format

2. Add timing and sequence number information and send this encoded audio via
a transport protocol (eventually producing IP packets) to a destination

3. At the destination use the timing and sequence numbers to reorder packets

4. Decode the digitized signal and output as analog audio.

A session control protocol is used to initiate a VoIP call and to decide upon a
mutually acceptable audio CODEC. The audio CODEC performs the encoding of the
voice signal and decodes the digital data into an analogue voice signal. We will not be
concerned with the details of CODECs or impairments to the real-time media stream.
Instead we have focused on VoIP with regard to lawful interception (from several
points of view – see section 2.3for details).Note that we will focus only on voice calls
in this thesis, but the results are also applicable to multimedia sessions.

2.2 Session Initiation protocol (SIP)
The session initiation protocol (SIP) is a widely used application layer standard

for initiating, modifying, or terminating a multimedia session between SIP user
agents[35][37]. SIP messages are similar to those of HTTP – as the syntax of the
message header and status code are reused. SIP uses e-mail style addresses, for
example sip:user@kth.se. SIP was designed to be extensible. SIP uses Multipurpose
Internet Mail Extensions (MIME) to define the SIP message’s contents.

SIP works together with other Internet Engineering Task Force (IETF) protocols
such as the Real-Time transport Protocol (RTP), Real-Time transport Control
Protocol (RTCP), Session Description protocol (SDP), and others. RTP is used to

Chapter 2.Background

transmit real-time data and to provide quality of service feedback (via RTCP); while
SDP is used to describe a multimedia session. Details of SIP, RTP, and SDP can be
found in [51]. Sections 2.7, 2.8, and 2.9 of this thesis will present some details of
secure RTP, secure RTCP, and MIKEY at these protocols are particularly relevant to
this thesis.

2.3 Lawful Intercept

2.3.1 General Concept of Lawful Intercept
The term “Lawful Intercept” describes the process by which law enforcement

agencies conduct electronic surveillance of circuit and packet-switching
communications as authorized by a judicial or administrative order. When the concept
of lawful interception was first introduced there was no legal procedure for
authorizing interception of communications. Today most countries have adopted
legislative and regulatory requirements that providers of public and private
communication services (service providers) design and implement their networks with
facilities to explicitly support authorized electronic surveillance. International
standards organizations have also developed standards to guide service providers and
manufacturers about how to implement specific lawful intercept capabilities

Lawful interception is widely used by law enforcement agencies for monitoring
network communication. Law enforcement agencies use lawful interception as
effective tool for investigating criminal and national security related activities. Lawful
intercept is not only used to collect evidence of criminal activity, but can also be used
to identify a network of criminals or terrorists. There are two types of information that
may be collected: call identifying information and call contents. Generally the
requirements to get a lawful intercept order for collecting call identifying information
is lower than required for intercepting call contents.

The U.S. Justice Department has defined lawful interception as acquiring call
identifying information and/or interception of a call’s contents by law enforcement
agencies after having a definite authorization by the relevant governing body or by the
court[15][16]. Lawful Interception is a legal and authorized process for secretly
intercepting communication by a law enforcement agency or intelligence service [4].
The legal authorization is based on judicial or administrative law. Based upon a
lawful order, a network operator, access operator, or service provider carries out the
actual interception. This interception of a call’s contents is popularly known as
“wiretapping” or “phone tapping” [1][2].

Figure 2-1: Flow chart of a lawful interception (Adapted from ETSI 101 331[2])

 7

Chapter 2.Background

A law enforcement agency generally cannot access the communication network
directly. Each country has its own laws that apply to telecommunication companies
and one or more of these laws set out the specific requirements and procedures that
must be followed. For each lawful interception, a law enforcement agency must
present a specific lawful interception order to a network operator, access operator, or
a service provider to provide access to a lawful interception facility for the purpose
specified in the order [5]. This order generally specifies which party (or parties), line
(lines), … are targets of the order and for what period of time the order is effective.
Figure 2-1 shows a flow chart of a lawful interception based upon a lawful
interception (LI) order and ending with the communication service provider providing
the information to the law enforcement monitoring facility.

2.3.2 Reason for Lawful Intercept
Lawful intercept is a useful tool for maintaining law and order within a country.

The reasons for lawful interception are varied and vary by country. One of the
currently most widely emphasized purposes is for national security, specifically to
prevent terrorism. Here there is a great emphasis on learning who communicates with
who and when they communicate, in order to learn who is a member of a terrorist
network and when there is likely to be some action taken by this human network. Law
enforcement agencies also use lawful interception as effective tool for investigating
criminal activity, such as cases of cyber stalking, industrial espionage, drug dealing,
etc.

2.3.3 Basic Requirements for Lawful intercept
The criteria for lawful intercept differ from country to country. However, there

are some common criteria [15]:

• A lawful interception must occur only on a specific target and the subject
should not be aware of being the target for interception.

• Lawful interception should be transparent.
• During an interception, telephone users must not be affected with respect to

their service.
• A specified minimum amount of data must be collected and recorded for

future use by the law enforcement agency.
• The identity and location of communicating parties in a specific

communication should be determined in each interception. In some countries
this includes determining their physical location (both for fixed and mobile
calls).

An additional criterion for lawful interception in many countries is that no traffic
other than the specific target traffic can be captured (although as noted in the next
section it may have to be processed to determine that it is not the specific traffic that
is targeted). In some countries (such as the U.S.A.) it may be permission to intercept
traffic of non-targeted subjects if they are physically near the target – this is generally
applied to mobile telephony traffic where a cellular phone is being used by someone
else near the targeted subject.

 8

Chapter 2.Background

2.3.4 Ways of conducting lawful intercept
There are three ways of conducting lawful interception:

 With a warrant: A warrant is issued by the court for a specific lawful
interception.

o Interception by a Law Enforcement Agency: After being presented
with a warrant the communication service provider provides access to
the designated law enforcement agency for carrying out interception.
In this case, the interception is conducted by the law enforcement
agency.

o Interception by the communications service provider: After being
presented with a warrant the communication service provider carries
out the interception as specified and stores the intercepted data for the
law enforcement agency.

 Without a warrant: This is a special type of lawful interception by a law
enforcement agency without a warrant. This type of lawful interception takes
place for various reasons, such as for terrorism and homeland security.

For various reasons, law enforcement agencies sometimes violate the law with
regard to lawful interception. The most commonly stated reason is in conjunction with
homeland security. Carrying out an unlawful interception can be punished. (Note that
both employees of the law enforcement agency and the communication service
provider can be prosecuted for unlawful interception.)

2.3.5 Lawful interception solutions
Lawful interception solutions are classified into three solutions:

Active lawful
Intercept

In an active Lawful Intercept, the intercept device directly
interacts with the network equipment in order to intercept
the specified user’s or service’s traffic.

Passive lawful
intercept

In passive lawful intercept the traffic is sniffed, and then the
traffic is analyzed offline to extract the targeted traffic.

Hybrid Lawful
Intercept

In a hybrid lawful intercept the network equipment is
initially set to passively sniff traffic and analyze it to
determine the specific targeted traffic, then the network
equipment is configured for active intercepting of the
relevant target media streams.

2.3.6 Existing rules and regulations for lawful intercept
Although there are disputes about lawful interception all over the world, most

countries have their own defined rules and regulations for lawful interception that
allow government agencies to monitor (tele) communication networks. Generally
these laws and regulations are designed to enable lawful interception while ensuring
citizen’s privacy is not violated due to possible abuse of power or misuse by a
government employee in a law enforcement agency. (This is the reason why unlawful
interception is generally severely punished.)

 9

Chapter 2.Background

The rules and regulations for lawful interception vary from country to country
due to the respective circumstances of that country. The U.S.A. was the first country
that introduced a legal framework for lawful interception. The first law for lawful
interception is known as “Title III of the Omnibus Safe Streets and Crime Act of
1968”[51]. Due to concerns about national security, another law was passed to expand
the lawful electronic monitoring of communications focused on “foreign intelligence
information”[17]. This new act concerns lawful interception within the U.S.A. of
“foreign intelligence information”. This act is known as the Foreign Intelligence
Surveillance Act (FISA)[17]. Under this act a warrant is not required for lawful
interception of radio communication and permits observing both citizens and
foreigners. Subsequently a modified version of FISA, called “Communications
Assistance for Law Enforcement Act (CALEA)” was introduced in 1994. This
legislation compels every telecommunication operator to provide the required
facilities and equipment for lawful interception in the U.S.A. It also specified the
volume of interception capacity that the operator must provide as a function of the
number of lines that they serve (i.e., serving small numbers of lines requires only
limited interception capacity, but serving large numbers of lines requires significantly
more capacity).

In Europe, the EU directive (95/46/EC)[44] for lawful interception of
telecommunication has been depicted as ensuring the privacy of EU citizens. This
directive specifies how lawful interception will occur and how the intercepted data
will be used. Initially there were disputes among the countries over this directive.
Finally, the member states of the EU accepted the directive after an amendment in
2002; the result is known as “Directive 2002/58/EC”. Due to Europeans’ concerns
about their privacy, the directive was further modified, resulting in a final version of
directive (Directive 2006/24/EC) being accepted by the EU in 2006. This directive
specifies the data that can be captured and defines a storage policy for this data.
According to this directive communication operators must store data for future
investigations by law enforcement. In the case of telephony, this data is usually
referred to as a Call Detail Record (CDR). The CDR includes detailed information
concerning incoming and outgoing calls. Duration of the data storage depends on each
country’s specific policy, but the directive sets a minimum and maximum time period.
The storage periods usually range from six months to two years. The directive does
not specify who has to pay for this storage, leaving this up to national laws. For
example, in the case of Finland the government must pay for the costs of storage, but
has free access to the stored data; while in the case of Sweden the operator must pay
for the storage and the government must pay to access this stored data.

2.3.7 Problems with lawful intercept

2.3.7.1 Privacy concerns
Individual’s privacy is the main debating point concerning lawful interception.

This is because most people consider the communication network as providing a
private communication channel for their communication with others. Generally
privacy includes the ability of a person or group to select the individuals with whom
they wish to share his/her/their information. However, with lawful interception there
is no guarantee of privacy in the telecommunication network. Lawful interception is
also a threat to the privacy of Internet users – as under the EU Directive Internet

 10

Chapter 2.Background

service providers (ISPs) are also subject to both lawful interception and the data
storage requirements.

One of the concerns frequently raised in debates on lawful interception is that
employees of a law enforcement agency may personally misuse lawful interception,
for example for a personal attack by disclosing a target’s communication to a third
party. Another concern is that the government might misuse lawful interception to
target political opponents. Unfortunately there are many examples of both types of
misuse.

In the worldwide debate regarding the privacy, some individuals are willing to
sacrifice their privacy for greater social benefits – for example, for national security,
especially to prevent terrorism. In contrast, other individuals do not want to lose their
privacy for any reason. Many countries (including all of the EU, U.S.A., and
Australia) have laws concerning the right to privacy. However, these laws to not
provide absolute privacy to their citizens, but rather try to achieve some balance
between privacy and orderly society. Not surprisingly, privacy is a matter of
considerable concern when designing any lawful interception system. Part of the
motivation for this thesis project is to re-balance the issue of personal integrity when a
lawful interception has been conducted, i.e., to see that information that would be
collected to be presented in court would be accurate and that any attempt to tamper
with this collected information would be detectable.

2.3.7.2 Vulnerabilities of (and due to) lawful interceptions
Privacy is not the only issue of concern, as the security of the communication

system is a significant factor when the network equipment (and software) provides
features for lawful interception. Unfortunately, these features for supporting lawful
interception may create a security hole -- compromising the network [1]. Lawful
interception makes the system less secure in the following ways [1][33]:

1. To intercept the communication in a network, there must be some access
points to the network for use by a law enforcement agency. Eavesdropping
may easily occur using such an access point.

2. In a trusted third party based system, the trusted third party has access to the
master key. Using this master key the trusted third party itself or one of its
employees may abuse this trust by improperly disclosing this key or directly
utilizing this key themselves.

3. A bad cop in the law enforcement agency may misuse information learned
from interception of the communicating parties for his/her own personal
interests. (Such misuse includes threatening to disclose information, disclosing
information, or using the information gained for personal enrichment.)

4. Forward secrecy guarantees that a session key obtained from a durable public
and private key pair will not be compromised even if the private key is
compromised In order to ensure forward secrecy, session keys must be
destroyed as soon as the communication session terminates. However, key
escrow retains the key after the communication session, thus there is an
opportunity to break forward secrecy.

5. The trusted third party becomes a prime target for an attacker, since all master
keys and/or session keys are stored in a database by the trusted third party.

 11

Chapter 2.Background

The main disadvantages of a key escrow system are its design complexity and its
ability to scale. For example, if session keys are to be escrowed, then the key escrow
system must be capable of supporting both the storage of the aggregated number of
session keys and the peak rate of requests to escrow them. Note that the rate of
escrowing keys can be reduced by escrowing master keys from which session keys
are derived, but this means that a compromise of the trusted third party has an even
greater effect and the escrow agent can no longer limit the use of the disclosed master
to the derivation of session keys for a limited period of time (as might be required for
a lawful interception order). Operating a key escrow system is likely to be expensive
and no one has yet introduced a successful business model to support the operation of
such a key escrow system.

2.3.8 Lawful Interception Architecture
Although lawful interception is a useful tool for maintaining law and order as

well as supporting homeland security, sometimes it is misused. Therefore, lawful
interception should be designed in such a way (especially in Europe and U.S.A. where
privacy is an important issue to citizens) as to protect against the intentional
compromise of communication by an employee of a law enforcement agency. The
basic lawful interception architecture is similar in nearly all countries. The first lawful
interception architecture standard was introduced by the European
Telecommunications Standard Institute (ETSI) and by the U.S.A. The ETSI
architecture for lawful interception is depicted in Figure 2-2. This architecture is
applicable to fixed line, mobile calls, instant messaging, e-mail, and VoIP calls.

Figure 2-2: HMAC (Adapted from [16][45])

In contrast, after the introduction of CALEA, the Packet Cable Surveillance
Model architecture was introduced in the U.S.A. (see Figure 2-3). Call data are
grouped into two types: Intercept Related Information (IRI) (used in Europe) or Call
Data (CD) (used in USA), and the Contents of Communication (CC). IRI/CD is
information about the communicating parties such as the sender’s address and
receiver’s address, duration of the call, and the starting time of the call. In contrast,
CC carries the actual contents of the communication.

 12

Chapter 2.Background

Figure 2-3: Packet Cable Surveillance Model (Adapted from [15][16])

There are three main modules (as shown in Figure 2-3) that are directly involved
with lawful interception: an Internal Intercept function (IIF), Administration Function,
and a Mediation Function. The Internal Intercept function is placed in the Public
Switched Telephony Network (PSTN) operator’s node. This is used for collecting
target traffic including both IRI and CC based on the lawful intercept order [15][44].
The Administration Function is placed in the Public Telecommunication Network.
This is interfaced with the Internal Intercept function and Mediation Function via an
Internal Network Interface. The Administration Function controls the interception
orders. The Mediation Function is also placed in Public Telecommunication Network,
and communicates with Internal Intercept function via an Internal Network Interface
and Handover Interfaces (HI2 and HI3) to manage communication with a Law
Enforcement Monitoring Facility.

2.4 Trusted Third Party (TTP)

2.4.1 Definition of a Trusted Third Party
A trusted third party is an entity that facilitates interactions between two

communicating parties, for example by ensuring the authenticity of credentials. The
participants rely on the trusted third party to ensure the security of their
communication. For example, a trusted third party acting as a Certificate Authority
(CA) might issue a signed digital identity certificate. The CA signs the certificate; this
enables others to verify the certificate using the public key of the trusted third party.
The trusted third party must not have any common interest with any of the
participating parties in order to be trusted by all the parties. Ideally, a trusted third
party is highly reliable and recognized by both governments and commercial
organizations.

2.4.2 Requirements to be a Trusted Third Party
The G4 security group (consisting of law enforcement agents from Germany,

England, France, The Netherlands, and Sweden) has introduced a list of pre-requisites
to be a trusted third party. They set forth the following major requirements to be a
trusted organization [28]:

 13

Chapter 2.Background

 All legitimate users of a trusted third party must benefit from its infrastructure.
Integrity, authenticity, and confidentiality must be supported for any financial
transactions in an electronic commerce system.

 It should be a universally/widely accepted entity -- supporting both national
and international transactions.

 The trusted third party should be a public and unclassified entity.
 Techniques used by the trusted third party should be well known.
 A trusted third party system should support all popular communication

techniques.
 The operations of the trusted third party need to be compatible with the laws

and regulations of the participating countries with regard to interception, use,
supply, and export.

 A trusted third party system must provide access to real-time transactions after
presented with a warrant. Additionally, the communicating parties must not
know that an interception of their communications is taking place.

 A trusted third party must be assured that a warrant has been issued before
allowing a law enforcement agency to access a particular communication
session. This access should only allow the law enforcement agency to access
the plain text version of the communication, but it should not allow the law
enforcement agency access to the subject’s master keys.

 The sender must be allowed to limit the time period that a key can used for a
single communication session.

 A trusted third party must support a range of cryptographic algorithms (both in
hardware and software).

 Modification of the evidence should be protected by the trusted third party,
even though there may be warrant.

 The trusted third party should ensure non-repudiation, i.e., receiver must
recognize the sender.

 A user does not need to deal with a third party in another country. In this case,
communication may be established between the third parties, i.e., trusted third
parties authenticate themselves and a user will be authenticated to another
third party by its own trusted third party.

A trusted third party may be government agency; a government authorized
agency, or a certificate authority (CA). The third party with receive and store the key,
while providing it upon being satisfied that the request meets the legal requirements
for disclosure. In our implementation we will implement our own trusted third party –
simply for testing purposes.

2.4.3 Public Key Infrastructure
A public key infrastructure (PKI) allows communicating parties to share

information and securely perform financial transactions through an insecure
communication network (such as the Internet) using a public and private key pair. PKI
uses a private key and public key pair together with public key cryptography. Public
key cryptography is based on the use of asymmetric key cryptography, i.e., they keys
are duals – unlike the case of symmetric key cryptography where a single key is used
both to encrypt and decrypt messages.

 14

Chapter 2.Background

The public key can be made available together with authentication of the ownership
of this key signed by a Certificate Authority (CA). This digital certificate can be used
to identify an individual or an organization. These digital certificates can be made
available to applications by a variety of means, such as a directory service (for
example, LDAP). Additionally, the CA can maintain and distribute a certificate
revocation list. Thus the validation of a certificate can be explicitly revoked (for
example, when a certificate holder or Certificate Authority (CA) is compromised, or a
user wishes to prevent the future use of this key). Additionally, these digital
certificates have a finite lifetime that is recorded in the certificate, after this time the
certificate is no longer valid.

2.4.4 Components of a PKI
A traditional public Key Infrastructure contains of the following components:

Certificate Authority A Certificate Authority (CA) is an entity that is responsible
for issuing and verifying a digital certificate. There are
different kinds of certificate authorities: User CA, Top CA,
and Root CA. The User CA deals directly the user’s
certificate, while a Top CA deals with the UCA’s
certification systems. Similarly, a Root CA deals the Top
CA’s certificate system.

Public Key certificate The public key or information about the public key is added
to the certificate. X.509 is a standard for a certificate’s
structure.

Registration
Authority

Before issuing a certificate to a user a registration authority
performs verification on behalf of the CA. The registration
authority is delegated this function with the CA’s
authorization. A registration authority is a common, but
optional, component of a PKI system. The primary purpose
of the registration authority is to verify the end entity’s
identity and to determine whether a certificate is issued or
not. This registration authority will impose policies and
perform the functions defined in a Certificate Policy and
Certificate Practice Statement [30].

Directories for
holding certificates

The certificate directory is also known as the certificate
depository. This is a common, but optional, component in a
PKI system [30]. Certificate distribution is performed by
publishing each certificate in a certificate directory. The
CA or a registration authority manages this directory; in
order to simplify certificate distribution. Therefore, the CA
simply updates the certificate list, rather than needing to
update each entity that might wish to use this certificate.

Certificate
management system

A certificate management system manages the complete
flow of certificate processing. It is used for generating,
storing, and verifying certificates. For further details see
[31].Moreover, the structure and functionality of a global
certification hierarchy is described in the Internet PEM
specification [54].

 15

Chapter 2.Background

LDAP is a well-known directory access protocol. It is optimized for providing
read access to a database, this is appropriate as there are many requests for certificates
in comparison to the number of new certificates. Thin clients can easily use LDAP.
An alternative certificate directory access protocol is X.509.

2.4.5 Operation of a PKI
A user (either an individual or organization) first registers with a registration

authority and requests a certificate. Usually this registration authority has been
delegated by the CA to perform authorization [31]. The registration authority first
verifies the requester’s information and determines whether the requester has met the
requirements to be issued a certificate or not. If the requester qualifies, then the
registration authority sends the requester’s information to the CA, so that the CA can
issue a certificate for the requester. The CA issues the certificate and deposits it in the
certificate repository. To issue the Certificate Authority may generate a public and
private key pair1. The private key is communicated to the user through a secure
channel and is not sent using the Internet or published anywhere in order to ensure its
secrecy. In contrast, the public key is added to the certificate and made accessible to
all.

When another user wishes to send information to the certificate’s user, the
information will encrypted using the user’s public key (obtained from the user’s
certificate as available in the certificate directory). When the certificate’s user
receives the encrypted information, it can decrypt the information using the private
key.

In a similar fashion if a user wants to authenticate information that is to be sent
to another user, he or she can sign the information by encrypting the information
using his private key. The recipient can decrypt this encrypted information by using
the user’s public key – since only the user has the corresponding private key only the
user could have sent it. The details of digital signatures will be described in the next
section.

2.5 Digital Signature
A digital signature ensures a message’s integrity. A digital signature is an

electronic signature that can be used to authenticate the sender’s message. A recipient
can use this digital signature to verify that the message was not modified during
transmission.

Figure 2-4: Digital Signature Workflow

1 Note that in some cases the user may generate their own public-private key pair and simply provide
the public key to the CA. In this case, the CA does not have the private key; hence there is no risk that
the CA could disclose it.

 16

Chapter 2.Background

Digital signatures are widely used for software distribution, financial
transactions, and other instances when forgery or modification of a message might
occur. This process is illustrated in Figure 2-4. A digital signature can be used for
both plain text messages and enciphered messages. The first step is to compute a
message digest by hashing the message using a hash function (see Figure 2-4). This
message digest is encrypted using the sender’s private key to create the signature.
After creating the signature, it is added to the message and sent to the recipient. To
verify the signature, the recipient creates a message digest using the same hash
function. Using the sender’s public key the recipient decrypts the sender’s signature to
extract the hash of the received message (as generated by the sender) and compares it
with his locally generated hash. If the hashes match, then the message is authentic
(i.e., it is neither forged nor modified). In this way, message integrity is confirmed by
the digital signature.

2.6 Key Escrow
Generally, a cryptographic key (secret key) is not disclosed to parties other than

the sender or the receiver. In a key escrow system these cryptographic keys are stored
by a trusted third party. Escrowing keys is commonly done to protect against the key
being lost through accident, death, etc. Key escrow provides an encryption system
with a backup decryption capability, thus authorized persons can decrypt the
encrypted information using the secret key which is obtained by the authorized party
from the trusted third party according to the escrow agreement [16].

Key escrow has also been proposed for use with secure communication systems
to ensure that the government can access the encrypted material. The first widely
known key escrow system was the Clipper Chip developed by the U.S. Government
[36]. Following this, several other proposals have been presented, such as
[37][38][39][40]. Some of these may be practical with respect to implementation.
However, key escrow systems are considered risky because disclosure of the key may
violate the individual’s privacy and introduce vulnerabilities into the communication
system.

2.6.1 Key escrow encryption system
There are three basic logical components of an escrowed encryption system (see

Figure 2-5) [16]: user security, key escrow, and data recovery components. The user
security component may be a hardware device or program that performs encryption
and decryption along with the key escrow function. A data recovery field may be
attached to the encrypted data as part of a general key distribution system. The key
escrow component is used to control the storage and release of the data recovery keys.
The key escrow component is managed by the key escrow agent and may be part of a
public-key certificate management system [16]. The data recovery component is
composed of algorithms, protocols, and other tools for decrypting the cipher text. The
data recovery component only becomes active when authorized data recovery is
necessary [16].

 17

Chapter 2.Background

Figure 2-5: Key Escrow Encryption System Components([16])

2.6.2 User Security Component
Following attributes describe the user security component [16]:

Application Domain A user security component is involved during
communication, when processing stored data, or a
combination of them. A law enforcement agency uses
emergency decryption based upon a warrant for intercepting
the target’s communications. Stored data might be a simple
data file, in this context emergency decryption might be need
by the owner to recover lost or damaged keys, or by a law
enforcement agent to decrypt the cipher text under a valid
court order [16].

Data Encryption
Algorithm

Among the characteristics of a data encryption algorithm
three characteristics are relevant to the escrowed encryption:
algorithm name and mode of operation, key length, and
classification of algorithm [16]. The first two characteristics
can influence exportability. Moreover, an encryption
algorithm can be either classified or unclassified.

Stored Identification
and Keys

The user security component stores identifiers and keys for
future decryption. Identifiers contain a user or user security
component identifier, identifiers for keys, and identifiers for
the key escrow component or escrow agents [16].

Data Recovery Field
and Mechanism

If a key encrypts data, then the user security component has
to bind the cipher text and key with one or more data
recovery keys. This binding is performed by adding a data
recovery field to the encrypted data.

Interoperability Interoperability of a user security component is designed for
protecting security measures while functioning with a
compromised user security component. A user security
component is not interoperable with another user security
component that does not support key escrow.

 18

Chapter 2.Background

Implementation Hardware, software, firmware, or combination may be used
for implementing the user security component. Hardware is
preferable for implementing the user security component,
since it is more resistant to modification than software.
Specific purpose cryptographic processors, random number
generators, and/or a high-integrity clock can be part of
hardware implementations.

Assurance Assurance is provided by the user security component for
preventing user from creating denial of services of the key
escrow mechanism.

2.6.3 Key escrow component
The key escrow component stores all the data recovery keys and assigns the data

recovery component to provide the needed data or services. The following attributes
characterize key escrow components:

Role in Key
Management
Infrastructure

The key escrow component can be used as a key management
infrastructure. It can operate as an independent key infrastructure
or a public key infrastructure. The escrow agent acts as a public
key certificate authority.

Escrow Agents As a trusted third party, escrow agents operate the key escrow
component. In order to managing the operation and services for
the user security component and data recovery component
performed by the escrow agents, they need to be registered with a
key escrow center. Escrow agents can be a government entity
(used for controlling escrow agent’s services by the government)
or as a private sector entity (used internally by an organization for
commercial purposes). A name and location are required for the
escrow agent’s identification. Accessibility of the agent is
determined by the location of escrow agent and their schedule of
operations. Accountability is another characteristic of an escrow
agent. The escrow agent also has a certain level of liability. To
qualify as an escrow agent, one is required to meet particular
standards and to be certified by the government or a globally
recognized body.

Data Recovery
Services

The key escrow component provides various services, such as
release of data recovery keys, derived keys, and decryption keys;
and to carry out threshold decryption. The data recovery service is
defined by its authorization procedures, services, and transmission
of data to and from the data recovery component.

Safeguards for
Escrowed Keys

To protect the escrowed keys, a combination of technical,
functional, and legal procedures can be introduced. The security of
keys is the responsibility of the key escrow component.

 19

Chapter 2.Background

Data Recovery
Keys

Data recovery keys have the following characteristics:
• Data recovery keys consist of data encryption keys,

product keys, user keys, and master keys. A data recovery
key might be a session key, network key, or file key. A
product key is unique for each user security component,
while user’s keys indicate a public-private key pair that is
used for data encryption. The master keys work only with
the key escrow component.

• Storage of keys can be off-line or on-line.
• Keys can be escrowed partly or absolutely.
• Keys are usually be escrowed for specific time period,

such as: system initialization period, user registration
period, or manufacturing period.

• Key updates may be allowed based upon policy.
• Keys can be generated by the key escrow component, user

security component, or combination of theses.
• Keys can be split for restoring by the all escrow agents or

by a subset of escrow agents.

2.6.4 Data recovery components
The data recovery component can decrypt data from a cipher text message based

upon parameters obtained from the key escrow component and the data recovery
field. The data recovery component can be defined by its capabilities: data encryption
key recovery or data decryption key recovery. Capabilities of a data recovery
component are: timely decryption, real-time decryption, transparency, independency,
and post-processing.

2.7 Secure Real Time Transport Protocol (SRTP)
The secure real-time transport protocol (SRTP) is an important protocol for

protecting voice over IP since it has no effect on the sound quality – while the payload
overhead is modest [11]. It is an extension of the real-time transport protocol (RTP)
and it provides security features, such as encryption, message authentication and
integrity, and replay protection for RTP-based applications. Among these, integrity
protection of the message is mandatory (since modification of an RTCP packet might
disrupt the RTP streaming process) while other functions are optional and do not
depend on each other. SRTP supports both unicast and multi-cast applications [8].

2.7.1 SRTP Architecture
SRTP describes an RTP profile known as Secure Audio Video Profile (SAVP);

an expansion of the audio/video profile (AVP) [8][11]. Security features are added to
AVP to create SAVP. SRTP operates between the RTP and transport layer. After
intercepting an RTP packet, SRTP transmits a SRTP packet to the sending entity. In
the reverse direction, after intercepting an SRTP packet, SRTP transmits the

 20

Chapter 2.Background

equivalent RTP packet to the receiving party [49].The encrypted part of an SRTP

Figure 2-6: SRTP Packet Format (Adapted from[11])

packet contains the encrypted RTP payload of the RTP packet. This encrypted part
may be equivalent or larger than the plain text in size [8].Since predefined transforms
do not use any padding, the size of RTP and SRTP packets is similar. If new
transforms are included in SRTP, padding made be need – this would increase the
payload’s size. RTP has a specific format for padding that is used as the default
method for transform requiring padding. An SRTP packet is shown in Figure 2-6.
SRTP consists of all RTP fields and two additional fields: Master Key Identifier
(MKI) and authentication tag. MKI is a variable length and optional field. The key
management protocol is responsible for defining and controlling this value. The MKI
is used to identify the master key that is used to produce the session key. This session
key authenticates and/or encrypts a packet. Another field “Authentication tag” is a
configurable and recommended field that is required to transform message
authentication data. If both encryption and decryption are required, encryption is
performed before authentication in the sending participant and vice-versa in the
recipient participant. The 16 bit sequence number field in the RTP packet is re-used in
SRTP for synchronization. The value of this field rolls over every 216 packets [8][49].
This roll over process requires that the security algorithms re-key. Re-keying may
occur frequently for application with high bit rates and short packets [49].

2.7.2 SRTP Cryptographic Context (parameters and functions)
The components such as the peer-packet index, keys, algorithms used to carry

out the process, etc. are required by SRTP in order to perform its function. Some of
these components functions operate on a per session basis, while others function on a
per packet basis. All these combined components are called a cryptographic context.
The main components of SRTP are:

 21

Chapter 2.Background

Keys SRTP uses two types of keys such as session keys and
master keys. SRTP carries out its functions depending on
six session keys which are derived from a master key by a
key derivation function. Key Management protocol is
responsible for executing the key derivation function that
splits the master key into six session keys. A pseudo-
random function (PRF) performs the key splitting. The
pseudo-random function requires three additional
parameters:
• Key derivation rate as per the configured rate.
• The master salt key to prevent key collision attacks.
• A label whose value generates the distinguishing

session keys.
The pseudo-random function is implemented using the
Advanced Encryption System (AES) algorithm. Here AES
is used in counter mode. Lengths of the six session keys
can be customized and are used by SRTP to protect the
media. Depending on the security functions, a triplet of
keys is required to protect the RTP packet´s payload.
These keys are: a session encryption key, a session
authentication key, and a session salt key.

Rollover Counter (ROC) The rollover counter is a 32-bit unsigned counter that is
responsible for recording the number of times that the 16-
bit RTP sequence number has been reset to zero after
passing through 65,535.

S_1 S_1 is a 16 bit sequence number which is considered as the
highest received RTP sequence number. This parameter is
only used by the receiver.

Encryption Algorithm
Identifier

This parameter indicates the encryption algorithm and its
mode of operation.

Message Authentication
Algorithm Identifier

This field indicates the message authentication code.

Replay list This is only used by the receiver. This component contains
the recently received and authenticated RTP packet(s).

MKI indicator (0/1) This indicates whether an MKI is present in the SRTP and
SRTCP packet.

2.7.3 SRTP Algorithms
Selection of a cryptographic algorithm for SRTP is a crucial issue in order to

function efficiently. The efficiency of SRTP is measured by the overhead in terms of
additional bytes in each message, the run-time efficiency of the code, the code size,
and how well SRTP works in a heterogeneous network. Default algorithms are
specified for the SRTP in order to simplify the signaling of the algorithms and
parameter identifiers, as well as to facilitate interoperability. SRTP provides integrity
using HMAC based on SHA1 [8][49]. It is notable that the integrity of RTP means

 22

Chapter 2.Background

ensuring the integrity of the RTP header, RTP payload, and the local rollover counter.
On the other hand, SRTP uses two stream ciphers to offer confidentiality. Since the
SRTP ciphers operate separately on each packet, security processing of one packet is
independent from its preceding packet. Hence SRTP handles both packet loss and
packet re-ordering. The AES block cipher introduces two ciphers that are
distinguished by the mode of AES: counter mode and f8 mode. The input parameters
to AES are the session encryption key and an Initialization Vector (IV). The output of
the stream cipher is X-ORed bit-by-bit with the plain text to encrypt the data. The
default encryption transform is AES in counter mode. In this mode the Initial Vector
is composed using the SRTP index of the packet, the SSRC field carried in the RTP
packet header, and the SRTP session salt key. An optional cipher in SRTP is AES f8
mode. In this mode, the Initial Vector is composed of an additional RTP header field
along with fields used in the IV in counter mode. This added field is used to offer
implicit authentication.

2.7.4 SRTP Procedure
As described in [8][49], SRTP at the sender’s side performs the following steps

(assuming that the initialization of the cryptographic context has already been
performed through key management):

 Intercepts the RTP packet
 Transforms the intercepted RTP packet into an SRTP packet
 Forwards it to the lower layers for transmission

At the receiver’s side SRTP performs the following steps (again assuming that
the cryptographic context has already been initialized):

i) SRTP packet is intercepted

ii) The packet is processed as per the SRTP rules (which included
transforming the SRTP packet into an RTP packet)

Finally the RTP packet is delivered to the application.

2.7.5 Protection provided by SRTP
SRTP provides security both for RTP stream and the associated RTP Control

Protocol stream. The protection is offered while RTP packets are transmits over UDP.
By encrypting the RTP payload SRTP ensures confidentiality of the RTP packet and
by adding an authentication tag to each packet, the integrity of each RTP packet and
the packet header are protected. A Master Key Identifier may be added to each packet
if multiple master keys are simultaneously in use.

2.8 Secure Real Time Transport Control Protocol (SRTCP)
As noted above, SRTP also provides security for the associated RTP Control

Protocol (RTCP) stream in the same way as for the RTP stream. While RTP integrity
protection is optional, integrity protection is mandatory for RTCP.

The design goal of RTP was to deal with real-time media streams that usually
use time stamps and buffering. For real time transport two components are needed:

 23

Chapter 2.Background

Data Transport and control [13]. RTP provides the data transport and RTCP provides
control during a real-time communication session. RTCP information can be used by
applications to adapt their network traffic to the available bandwidth. The main
function of RTCP is to keep track of received packets and to convey additional
information (such as user and domain name, e-mail address, phone number, etc.)
regarding the source of the media stream. RTCP also helps to synchronize multiple
RTP streams. While RTP packets are generally sent at a high rate, due to the
information in the real-time media stream; RTCP packets are normally sent at a much
lower rate (typically using a total of less than 5% of the session bandwidth). The
RTCP- Extended Report (RTCP-XR) is an extension of RTCP which allows a node to
convey detailed voice quality measurements in a VoIP network [11].

The Secure Real-time Transport Control Protocol (SRTCP) builds upon security
features of the Secure Real-time Transport Protocol. STRCP add three additional
mandatory fields to the RTCP information, specifically: an SRTCP index, an
encrypted flag (E-flag), and the authentication tag; as well as an optional MKI field.
The SRTCP Index is a 31-bit field. The E-flag is a one bit required field that identifies
whether the current SRTCP packet is encrypted or unencrypted. If E-flag is equal to 1,
the packet is encrypted. On the other hand if E-flag is equal to zero, the packet is
unencrypted. A 31-bit SRTCP index is mandatory field that performs a counter for
SRTCP packet and explicitly added with every packet instead of implicit approach
that used in the SRTP packet. Index value is initialized to zero before transmitting the
first packet and increased by one for the successive packet. “Authentication tag” is a
configurable length required field that requires carrying message authentication data.
Master key Indicator (MKI) is also configurable length optional field. It performs
similar to the SRTP as depicted in section 2.7.

The encrypted part of each SRTCP packet contains the encrypted RTCP payload
of a compound RTCP packet and the range that is encrypted starts from the first
RTCP packet to the end of the compound packet [8]. In contrast, the authenticated
part of an SRTCP packet includes the whole corresponding RTCP packet, E-flag, and
the SRTCP index.

2.9 Multimedia Internet KEYing (MIKEY)

2.9.1 General Concept of MIKEY
To protect a real-time application running over a heterogeneous network using

SRTP, a key management scheme is required, as manually managing keys does not
scale well. MIKEY is such a key management protocol. It has been introduced for
peer-to-peer, simple one to-many, and small size groups to offer a suitable key
management system for use with real-time applications [5]. To enable a secure SIP
based call between two peers requires that the security is set up by mutual agreement
of the parties or that each party sets up the security for its outgoing stream. In the case
of a simple one-to-many session the sender is responsible for setting up the security.
In a many to many session, a centralize controller unit sets up the security. As a key
management protocol, MIKEY features end-to-end security, simplicity, tunneling, and
independence from any specific security functionality of the underlying transport
protocol. MIKEY is also efficient in terms of its low bandwidth consumption, low
computational workload, small code size, and minimal number of round trips.
MIKEY produces a Data Security Association for the security protocol which

 24

Chapter 2.Background

includes a Traffic-Encrypting Key (TEK) [7]. This TEK is used as input to the
security protocol and is obtained from a TEK Generation Key (TGK).

A secured MIKEY session is known as Crypto Session (CS). This session may
consist of uni-directional or bi-directional data streams. A pool of one or more crypto
session is known as Crypto session Bundle (CSB) -- also called a multimedia session.
Several media sessions (consisting one or more uni-directional streams, bi-directional
video stream, and/or HTTP streams) can be part of a multimedia session. Each Crypto
Session has its own unique ID within a Crypto Session Bundle. The concept of a
Crypto Session Bundle was introduced for circumstances when groups of one or more
crypto sessions have the same TEK Generation Key and security parameters, but the
TEKs obtained from MIKEY are separate.

The Group Key Management Architecture (GKMARCH) is a common
architecture for a group key management protocol. As a part of this architecture,
MIKEY is used as a registration protocol. The essential objects of this architecture are
Group Controller/Key Server (GCKS), the sender(s) and the receiver(s). Sometimes a
sender acts as a GCKS in MIKEY to forward keys to the receiver. Under specified
conditions, MIKEY uses the same transforms as used for SRTP, such as [7]:

 Key data Transport encryption: AES-CM
 Hash functions:SHA-1
 Pseudo random number generator: SHA-1
 MAC and verification Message function: HMAC-SHA1

2.9.2 MIKEY Key Management Procedure
A crypto session bundle is created when a group of security parameters along

with the TGKS are agreed upon. Each TGK helps to create a corresponding TEK in a
secure way. The TEK and security parameters are combined to create a Data Security
Association (SA). This Data SA is input to the crypto security protocol. Depending
upon the security protocol, the TEK is used in one of two ways: (i) the TEK can be
used directly by the security protocol or (ii) session keys can be generated for TEKs.
The transport exchange phase of the MIKEY protocol can be used further to derive
new TGKs or specific security parameters. After the transport exchange phase,
MIKEY can modify the TEKs and crypto session in a crypto session bundle. During
the key transport exchange phase, MIKEY uses the following five key agreement
methods to establish a common secret (these methods are described in detail in
section 2.10):

• Pre-Shared Key
• Public Key Cryptography
• Diffie-Hellman
• DH-HMAC (HMAC authenticated Diffie- Hellman)

For providing point-to-point security between the conversing parties, MIKEY
messages are encrypted and integrity protected. Thus MIKEY generates keys in order
to encrypt the message and the security parameters that will be signaled in-line. The
key data transport payloads (also known as KEMAC) consist of encrypted key data
sub payloads. A KEMAC may have several key data payloads and the last key data

 25

Chapter 2.Background

sets its NEXT PAYLOAD field to the value LAST PAYLOAD. In Figure 2-7, a
payload in MIKEY is depicted.

Figure 2-7: Structure of a MIKEY Message (Adapted from [7])

The NEXT PAYLOAD field is an 8 bit field that indicates the subsequent
payload. The 8 bit ENCR ALG field indicates the encryption algorithm that was used
to encrypt the data field, ENCR LENGTH is the length of the data in bytes,
ENCRYPTED DATA is the encrypted data, MAC ALG indicates the authentication
algorithm used, and MAC/Signature is the message authentication code for the entire
message.Session initialization protocols (such as SIP, SAP, RTSP etc.) can transport
MIKEY. 3GPP uses MIKEY in a standalone mode [5].

2.10 Key Agreement Schemes

2.10.1 Pre-Shared Key
In a pre-shared key-agreement protocol, the two communicating parties, client1

and client2, share a secret key through a secure channel before establishing
communication. The secret key is denoted as S. From this secret key S, both
participants generate an encryption key Ke. As a sender client1, creates a session key
Ssession and encrypts this session key using the encryption key Ke and send it to the
receiver (client2). For authentication, an authentication key Kauth can also be derived
from the shared secret key S. A MAC is generated using this Kauth.

2.10.2 Public Key Cryptography
Public key cryptography is a widely used method that underlies several internet

standards such as Transport Layer Security (TLS)[23], Pretty Good Privacy
(PGP)[24], GNU Privacy Guard (GPG)[22], etc. The distinguishing feature of public
key cryptography compared to symmetric key cryptography is the use of an
asymmetric key algorithm instead of symmetric key algorithm or in addition to a
symmetric key algorithm. In an asymmetric key algorithm, the key used for
encryption is not used for decryption. For asymmetric encryption a key pair is
generated. The public key is generated based on a private key and some shared
constants. If Kpvtis the private key of a communicating party (or device) and C is a

 26

Chapter 2.Background

pre-shared constant known by all communicating participants, then the public key can
be generated using function F(Kpvt, C).

Figure 2-8: Key Exchange using Public key Cryptography

For example, consider communicating peers (clients) A and B. A has the private
key KA and public key FA(KA, C).While B has the private key KB and public key
FB(KB, C). A calculates the shared key after getting B’s public key FB(KB, C) using its
own private key KA. Thus the shared key generation algorithm “sharedKey” generates
a shared key for A as:

SA= sharedKey (KA, FB(KB, C))

Similarly, B calculates the shared key after getting A’s public key FA(KA, C)
using its own private key KB Thus the shared key generation algorithm “sharedKey()”
generates the shared key for B asSB= sharedKey(KB, FA(KA, C)).

The function “sharedKey()” uses an algorithm such that the shared key generated
by both A and B will be identical, i.e. SA = SB.

Two main features of public key cryptography are:

Confidentiality A message encrypted by the recipient’s public key cannot be
decrypted by others unless they have the private key.

Authenticity If someone has access to the sender’s public key, then he or she
can verify that the message is signed by the sender’s private key.
Thus public key cryptography ensures the authenticity of the
message and that the message has not been modified.

2.10.3 Diffie-Hellman
The Diffie-Hellman key agreement protocol is used when two communicating

parties have no prior knowledge of each other, but they need to establish a shared
secret key through an insecure channel [21]. In this protocol two communicating
parties (client1 and client2) first agree on two shared parameters p and g, where p is a
prime number and g is an integer that is less than p. Both of these numbers are
assumed to be both public (hence they could be used by any user). Client1 chooses a
random number for his private key and client2 also chooses a random number b as his
private number. Client1 calculates:

 27

Chapter 2.Background

A=ga (modp)

and sends A to client2. Similarly client2 calculates:
B=gb (mod p)

and sends B. After that both client1 and client2 computes their shared key as
K=gab (mod p)

In this case client1 computes K as:
K= Ba (mod p) = (gb)a (mod p) =gab (mod p)

And client2 computes K as:
 K= Ab (mod p) = (ga)b (mod p) =gab (mod p)
This K is used by client1 and client2 to share their information.

2.10.4 DH-HMAC (HMAC authenticated Diffie- Hellman)
HMAC authenticated Diffie- Hellman is modified version of Diffie-Hellmann

MIKEY. This protocol uses Hashed Message Authentication Codes (HMACs) instead
of certificates and an RSA signature to authenticate the communicating participants to
each other[24]. The following parameters are used for the key exchange:

xi Secret, (pseudo) random Diffie-Hellman key of the Initiator

xr Secret, (pseudo) random Diffie-Hellman key of the Responder

IDi Identity of initiator

IDr Identity of receiver

DHi Public Diffie-Hellman half key g x
i of the Initiator

DHr Public Diffie-Hellman half key g x
r of the Responder

SP MIKEY Security Policy (Parameter) Payload

T Timestamp

TEK Traffic Encryption Key

TGK MIKEY TEK Generation Key, as the common Diffie-Hellman shared
secret

Key exchange in DH-HMAC occurs as in Figure 2-9 [25]. The initiator sends a
HMACed message along with g x

i and timestamp T to the responder by choosing
pseudo random value xi. Initiator also sends the initiator identity payloads IDi and
responder identity payloads IDr with the initiator message. Then the communicating
parties can calculate TGK as g(xi * xr). To avoid man-in-the-middle attack, the HMAC
authentication provides authentication of the DH-half keys. Since both
communicating parties calculate one exponentiation and one HMAC first and after
that perform HAMAC verification and another exponentiation, digitally signed Diffie-
Hellmann is more expensive than DH-HMAC.

 28

Chapter 2.Background

Figure 2-9: Key Exchange using DH-HMAC

2.10.5 RSA-R (Reverse RSA)
In Reverse RSA mode the shared secret key is exchanged without any PKI, and

public key encryption performs this task [48]. One full round trip is required to
accomplish this. In this mode (as shown in the Figure 11), the initiator sends a signed
I_MESSAGE asking the Responder to send traffic keying material. Here the
I_MESSAGE consists of the Initiator’s CERT or a link to the CERT.

Figure 2-10: Key Exchange in RSA-R

Subsequently a Responder reply with a R_MESSAGE that consists of the Responder’s
CERT or a link to it. To send the encrypted TGK in the R_MESSAGE, the Responder
uses the Initiator’s public key from the CERT learned in the I_MESSAGE. While the
Initiator uses the CERT in the R_MESSAGE to verify the authentication of the actual
communicating party and after verifying the Responder the Initiator accepts the TGK.
In contrast, for group conferencing using MIKEY-RSA-R, all group members initiate
MIKEY with the group key server in order to download secure session information.
Either a group key server or a group key sender may act as the responder. In this case,
the initiator must not send the SP payload. Instead the responder sends all payloads
required to introduce a group policy and the payloads that are used for key derivation.

2.11 Minisip
Minisip is a SIP user agent that can be used for making phone calls, instant

messaging, and video calls between two (or more) parties in the same SIP network
[8]. For security purposes, minisip uses authenticated key exchange by using MIKEY,
TLS for signaling, and SRTP for media. Minisip is implemented in C++. It is
available as open source code as several libraries under the GNU Lesser General
Public License (LGPL) and applications under the GNU General Public License
(GPL) agreement [8]. Minisip’s features were mainly developed in eight projects,
where each project contains several classes for implementing a specific set of
technical features. This is a huge project and describing all the feature of minisip is

 29

Chapter 2.Background

 30

out of the scope of this thesis. Further details of the overall design of minisip can be
found in the licentiate thesis of Erik Eliasson [17]. Only the parts, libMikey,
libMcrypto, libmutil, libminisip, and minisip have been used to carry out this thesis
project.

2.12 Wireshark
Wireshark [19] is a widely used tool for network traffic analysis. It is widely

used by the network administers, network engineers, developers, and by anyone who
wants to know about the details of network traffic in detail. Wireshark is regarded as
one of the best open source network analyzers available today. Like other network
analyzers, Wireshark can capture network packet in real-time and can decode the
captured packet contents in detail. This can be used both by a bad cop and a good cop.
Wireshark can also be used to measure network performance as each captured packet
is timestamped. Wireshark can also perform several types of statistical analysis of the
captured packets. Wireshark runs on both UNIX and Microsoft’s Windows. Features
of Wireshark include [19]:

 It can capture network packets in real-time from different media.
 It has many protocol decoders.
 It can import files from other network capturing tools; as well as exporting

captured packets to other tools.
 Moreover, one can analyze packet contents in a variety of ways.

A bad cop could use Wireshark for secret key recovery, sniffing, packet
injection, etc. In our thesis project, we have used Wireshark to capture and analyze
the RTCP and SRTP packets. Using this captured traffic we can extract the encrypted
payload, keys, and other information. Additionally, a recorded session can be
modified by deleting packets; we have used wireshark to do this. In order to the
libpcap file captured by the wireshark, a standard library libpcap [60] has been
used.Five functions from this library have been used in this thesis project to deal with
the libpcap or tcpdump file:

pcap_open_offline() This function opens a tcpdump or libpacp file captured by
Wireshark for reading.

pcap_loop() This function calls a user defined function to process each
packet read from the tcpdump or libpcap file until it detects
the end of file.

pcap_dump_open() This function opens a libpcap file for writing.

pcap_dump() This function writes a packet into a tcpdump or libpcap file.
Before calling this function, pcap_dump_open() function
must be called.

pcap_dump_close() This function closes an open libpcap file.

Chapter 3: Related Work

Many researchers have studied the VoIP security, lawful intercept, and key
escrow mechanisms. This section describes some of the most relevant research to this
thesis project.

3.1 C. Hett, et al.
C.Hett, et al. have presented a proposal to provide security of RTP packets over

the transmission line by splitting the VoIP stream into intervals and by building a
cryptographic chain [33]. Their security model splits RTP streams at an interval of
adjustable length – based on the time, number of packets, or any other criteria. Hash
chains are used to protect the RTP packets from an attacker (who can modify or
truncate the message interval) during a conversation between two peers. Every
interval has a hash of the last interval including its signature. This interleaving of
signatures and hashes confirm that there is a constant stream of signatures that builds
an indestructible chain. The goal of their proposal is non-repudiation of a
conversation between a caller and a callee.

3.2 Rafael Accorsi
Rafael Accorsi, in his survey [47], presents several Log Data protocols for digital

evidence. He claims that log data are increasingly used as evidence in judicial
disputes, although existing logging protocols are insufficient. In his analysis he shows
that each protocol stores log data in a different format for a future audit. He translated
Cohen’s trustworthiness into security requirements which will ensure the authenticity
of the log data. He classifies the requirements of the log data into two phases:
transmission of the log message and storage of the transmitted message.

Rafael Accorsi has proposed an approach based upon secure logs [48]. In the
first phase, a log message travels through the communication network between a
device and the collector and the requirements for this phase are:

 Origin authentication: To ensure that a log message was sent by the
authorized device.

 Message confidentiality: To ensure that a log message is not being disclosed
during transmission.

 Message integrity: To ensure that a message is not be modified during
transmission.

 Message uniqueness: To ensure that each log message should be logged only
once.

 Reliable delivery: To ensure that each log message reaches the collector.

During the storage phase the following requirements are needed:

 Entry accountability: To ensure that log entries include information about the
device and the collector.

 Entry integrity: To ensure that audit trails cannot be modified after the log data
is entered.

Chapter 3.Related Work

 32

 Entry confidentiality: To ensure that the log data is not entered in clear text.

All logging protocols should follow these requirements during their design and
implementation in order to enable them to provide digital evidence. The “syslog-ng”
protocol is a trustworthy log data protocol with the backward compatibility [46][47].
It uses TCP as its transport protocol, supports IPv6, and communication is tunnel via
TLS. Another syslog protocol named “syslog-sign” uses a cryptographic signature
block with the sent message [46]. To do this it first generates a hash of each message
block, and then signs the block. The sender then sends both the message and the
signature of that block along with the signatures of the previously sent message. The
necessary cryptographic keys are generated during an initialization phase.

3.3 V. Stathopoulos, et al.
In [48], Stathopoulos et al. present a logging protocol for public communication

networks. The goal of their work is to protect against an insider attack, since assessing
the trustworthiness of an employee is difficult. In an insider attack, the impostor could
reconstruct part of the audit trail or log data without any possibility of detection. They
apply an approach similar to “syslog-sign” with the addition of a “regulatory
authority” to grantee that the logging is performed according to the protocol. In this
protocol the regulatory authority receives a signed block periodically from the
collector for future use. In the future if there is a need for verification of specific data,
the stored signed block stored by the regulatory authority can be used for the
comparison with the signed block stored by the collector. The authors claim that in
their analysis data forgery is not possible as a copy of the signed block is stored by the
regulatory authority.

3.4 Clipper Chip
The Clipper chipwasa cryptographic device introduced by the National Security

Agency (NSA) of the USA [9][10]. This is the first widely known key escrow
mechanism which was developed for protecting private communication while
facilitating law enforcement interception of targeted conversations. The algorithm
used for cryptographic operation in this chip is known as Skipjack and the key
exchange algorithm was Diffie-Hellman. Every Clipper chip had a unique secret key
and unique identifier embedded into the device. A session key was generated
dynamically and was used to encrypt the conversation’s data.The device’s secret key
was encrypted using the device's secret key and transmitted before the start of the
session. The encryption key was stored with one or more trusted third party for
potential later use by a Law Enforcement Agency to decrypt any conversation.

Matt Blaze claimed in his published paper that the Clipper chip was vulnerable
to mis-use. This chip transmitted a 128 bit field which was known as the Law
Enforcement Access Field (LEAF). This field contained the information necessary to
recover the session’s encryption key. Additionally a 16 bit hash was also included
with the LEAF to prevent the forgery of the LEAF field. Blaze found that a brute
force attack is sufficient to generate a new LEAF field that would have a valid hash,
but would not contain the encrypted session key. Hence this LEAF data could not be
used to recover the encrypted contents of the session. This was possible because a16
bit hash was not sufficiently strong to prevent replacement of the real-session key
with another value. Subsequently the Clipper Chip was abandoned by the NSA.

Chapter 4: Design Analysis of the Proposed
Model

The goal of this thesis project, relevant background studies, and related work has
been stated in the previous chapters. This chapter presents a design analysis of a
Trusted Third Party based Key Escrow method that will prevent the bad cop which
access to a recorded lawful interception from modifying a recorded session without
being detected and thus will protect the integrity of the user’s conversation. The
methods, parameters, and the advantages and disadvantages of four modules: Escrow
Agent Module, module for the Law Enforcement Agency (LEA), a Validation
module, and an attacker module will be examined. The first three modules are
required to establish a TTP based key escrow mechanism that would prevent a bad
cop from misusing lawful interception. The fourth module has been used to validate
the proposed approach.

4.1 Escrow Agent Module

4.1.1 Required Fields for Escrow Agent Module
The Escrow Agent (EA) maintains a database in which it stores information to be

escrowed for some party. This party may subsequently be a target of a LEA intercept
for a particular session. Initially we found that six fields needed to be stored in a
record corresponding to each session. These fields are: User ID, TGK, RAND value,
CSBId, Signed Hash of the last block, and the time of escrowing [7][11]. The first
five fields will be escrowed by the User Agent (UA), while the sixth value contains a
locally generated timestamp. The User ID is the user’s SIP URI or another URI of the
UA. The TGK is the TEK generation key and it has a variable length. RAND is a 128-
bit or more pseudo-random bit string sent by the initiator in the initial exchange.
CSBId is the Crypto Session Bundle ID and it is a 32-bit unsigned integer [7]. Table 1
shows the parameters that should be escrowed.

The Crypto session ID (CSId) is an 8-bit unsigned integer [7]. The CSId value is
initialized when a cryptographic session is established between two UAs following
the key agreement protocol. In minisip, the value of CSId is initialized after the
MIKEY-SRTP mapping [8]. This mapping occurs at the beginning of the dialogue
when the key exchange occurs. Values that are used during this mapping are: policy
number, ROC, and SSRC. The policy number is fixed, as minisip currently uses only
the SRTP protocol [11]. The ROC is calculated from the SSRC [8]. Initially, the ROC
is set to zero. When the sequence number exceeds 216, the sequence number is reset to
zero and ROC is incremented by one. Therefore the ROC will be zero for the first 216
packets of the captured file. It will increment ROC by one when a packet sequence
number is found to be zero again in the same captured tcpdump file. The ROC of that
packet will be one plus the previous packet. For this purpose a packet will be
identified by the time together with the sequence number.

Using the SSRC, the appropriate CSId is identified by the sender module and
receiver module of both initiator and responder. For the Initiator, CSId value for the

Chapter 4.Design Analysis of the Proposed LI Model

sender module is 1 and receiver module 2. For the Responder, CSId value for the
sender module is 2 and receiver module 1.

If the LEA captures the complete session, then the LEA can tell who is the
initiator (and/or responder) and CSId value will be easily identified. In contrast, if
LEA starts wiretapping after the start of a conversation, how will be CSId value be
determined? As a third party, the EA has no information other than the escrowed
information regarding the cryptographic session between two UAs, thus it does not
know who the initiator was. One of the thesis goals was to reduce the number of
parameters to escrow, but to escrow the information that would be required to
generate the session keys from the TGK. This analysis leads to the minimal set of
parameters that must be escrowed-these are stated in the Table 1.

Table 1: Parameters that should be escrowed

Escrow Parameters Currently
Escrowing

Escrow
in

Future

Reasons

CSBID Yes Yes This is generated by the initiator
and transformed with the
responder during initial
conversation.

RAND Yes Yes This is generated by the initiator
and transformed with the
responder during initial
conversation.

CSID No Yes To identify whether the target is
initiator or responder.

Signed Hash Yes Yes To determine whether any packets
are inserted after the end of the
session.

Policy Number No Yes If more protocols than SRTP are
used.

Seq. No. of 1st SRTP
packet

No Yes It will detect forgery that inserts
packets before the session
actually started.

User ID Yes Yes To identify the target user session.

4.1.2 Escrow Agent Database
The escrow agent utilizes a database for storing the escrowed information for

each session. The EA indexes the escrow information based upon the User Id and the
time when the information is escrowed. The EA uses four tables in its database. These

 34

Chapter 4.Design Analysis of the Proposed LI Model

tables are: User Authentication table, Escrowed Information Table, LEA
Authentication table, and LEA request table. Each of these tables is described below.

Table Type Table Information
User
Authentication
Table

The User Authentication table contains a User Id and
information about the corresponding user, at a minimum this
might contain a password, but might include other
information. In our implementation we have used the user’s
SIP URI as the User Id. When new users are added to a VoIP
service, the EA's User Information Table could be updated
directly using information provided by the VoIP service
operator or the EA might receive this information when a
user subscribes to this EA’s service. When a UA wants to
escrow information, the EA will first authenticate the UA
based upon the provided User Id, then the EA will store the
information provided by the UA in the Escrowed Information
Table.

Escrowed
Information Table

The Escrowed Information Table has (at least) the following
fields: Escrow Id, User Id, TGK, CSBId, RAND, CSId,
Signed hash, and a local time stamp. This escrowed session
information will be identified by the User Id and time (i.e.,
these two fields will be used a index for this table). In our
implementation we have used the SIP URI as the User Id and
we have used a 64 bit time stamp using the same format as
used for the network time protocol (NTP). We have assumed
that the EA is synchronized with an NTP time server; hence
all time stamps will have a common global meaning.

LEA
Authentication
Table

The LEA Authentication table contains the information
necessary for authenticating the LEA. Fields in this table will
vary depending upon the agreement between the EA and
LEA. In our implementation we have use three fields: LEA
Id, Agency Address, and password. The Agency Address
will contain the IP address of the LEA entity authorized to
receive escrowed information, the text name, and street (or
postal) address of the LEA. For our implementation we have
assumed that the LEA Id is a positive integer, while the other
two fields are variable length text strings.

LEA Request
Table

When a LEA asks for the escrowed information of a target,
the LEA must provide its identity, the court order, and some
other optional information. The optional information
depends on the laws of the country where the Escrow Agent
is operating. The information identifying the LEA must
correspond to that stored in the LEA authentication table of
this EA’s database. The court order and other relevant
optional information for a request for escrowed information
of a target will be stored for future use. For the EA some
information that must be stored is the time when the request
was received by the EA and the time when the response was
provided. The EA will also need to store information about

 35

Chapter 4.Design Analysis of the Proposed LI Model

which records from the Escrowed Information Table were
delivered at the time of the response.

4.1.3 User Agent Identification

As was noted above, the User ID of a conversation peer may be the SIP URI of
the User Agent, rather than the user’s personal SIP URI. There are several reasons for
selecting a SIP URI as the User Id:

• All VoIP users must have a SIP URI and need to register with one or more SIP
registrars in order to receive calls directed to themselves. If the proposed key
escrowing mechanism is implemented, then this SIP URI could be used as the
identification for escrowing information with the Escrow Agent.

• The communications cost of adding the SIP URI to the information that the
UA escrows is small.

• Since each UA is registered with a SIP registrar, this same authentication
mechanism could also be used for authentication when accessing the Escrow
Agent. In a SIP registration, the SIP proxy server maintains an authentication
database for the registered User Agents. When a User Agent wants to start a
session, then the SIP proxy server authenticate it using the SIP URI stored in
the SIP URI database2.The Escrow Agent could obtain an up-to-date list of the
SIP URI(s) of the registered User Agent(s) from the VoIP service provider. To
update the User List in the Escrow Agent, the VoIP service provider can send
batch updates; i.e. the current Registered User list could be update at a certain
time of the day. In this case, after registration, service for a new user will be
activated after the next update of the User List in the Escrow Agent.

• Note that a SIP device also has a SIP URI representing the UA itself. In the
case of “pay phone” or other device, this might be the only SIP URI that is
available. Thus it may not be possible to identify a call with a specific user –
only with a specific UA.

4.1.4 Different URIs for User identification with the EA

If the EA uses a URI other than the SIP URI, there are some issues that need to be
addressed:

• The EA and the UA have to use a consistent URI to identify the user. If this
URI is different from that used by the UA for sessions, then this other URI is
additional information that the UA needs to maintain and the EA needs to
learn the URI used by the UA during a dialogue between SIP peers; as the

2The issue of authenticating the user before making or receiving a call is outside the scope of this
thesis project; but for convenience we assume that users making calls have registered with their SIP
service provide (for example, in order to receive incoming calls).

 36

Chapter 4.Design Analysis of the Proposed LI Model

URI that is used for a session is likely to be the identifier that would be used
by a LEA.

• If the UA uses its own SIP URI to authentication itself to the EA, then the EA
can validate this URI with the VoIP domain (as all SIP URIs in this domain
are assigned by the VoIP domain authority). For example, this means that the
SIP URI can easily have a PKI CERT that is signed by the VoIP domain
authority.

Instead of the user’s SIP URI we could use the Call Id to index the escrow
information in the Escrow Agent, since the Call-Id is a globally unique identification
of a call. This Call Id is generated by a combination of a random string and the
soft/hardware phone’s host name or IP address. Three fields (To Tag, From Tag, and
Call-Id) uniquely identify a peer-to-peer SIP relationship between two parties.

It is not clear if there should be any interaction between the SIP user’s VoIP
domain authority and the escrow agent. For example, a user might want to choose an
escrow agent that has no business relationship with the user’s SIP provider - helping
ensure that there is less risk of collusion between the two (as that might reduce the
user’s privacy).

4.1.5 Required parameters to escrow in future
In the future there will be some additional values that need to be escrowed, such

as the policy number. In the current implementation the only policy number is 0, as
minisip only uses the SRTP protocol. However, in the future several different
protocols might be used; hence the policy number will also be needed to be escrowed.
Because protocol initialization happens during initialization phase of the conversation
between the peers the value will be known at the end of the session, but might not be
known before the session and can vary from session to session and from UA to UA
(as not all UAs will implement all security policies).

4.1.6 Implementation Principles
The Escrow Agent has two interfaces – one with the User Agent module and

another with the LEA module. After arrival of the escrowed information from the
User Agent, the Escrow Agent module verifies the authenticity of the received data
and stores it in the database table. In our implementation, the SIP user ID and
corresponding password have been used for authentication.

Similarly, when requesting escrow information of a target, the LEA must submit
some mandatory information to the EA, such as the agency identification of the LEA,
a surveillance order, target information, surveillance type, and court warrant[57]. Any
user of the LEA with valid authentication can access the EA module using a web
browser. After authenticating the LEA and court order, the EA module will deliver
the escrowed information concerning the target during the time period indicated in the
court order3. This may result in the escrow agent releasing records of escrowed
sessions either in a batch or in a stream, depending upon whether the ending time is
before or after the current time. In the event of a stream of records, the court order

3How the EA authenticates this court order is outside the scope of this thesis project.

 37

Chapter 4.Design Analysis of the Proposed LI Model

may specify a bounded delivery time (for example, requiring that the records be
provided in “real-time” or within “1 hour”). For our current implementation we have
only implement batch delivery of records, the implementation of a stream of escrowed
information has been left for future work.

The information that is to be provided by the user or by a LEA will be entered
into a web form and the response will be a web page. Note that this access in many
case will be via a programmatic interface and not via a web browser.All
communication from users, LEA, and UAs to the web service will utilize TLS to
protect the communication. Mutual authentication of all the parties in a TLS session
will be based upon certificates. For testing purposes we have used self-signed
certificates that are manually issued and directly provided to the various participants.
The provisioning of certificates is assumed to occur before there is any
communication, hence the details of this process lie outside the scope of this thesis –
but should be addressed in a future thesis. The implementation has not implemented
certificate revocation lists or any other form of checking whether a certificate is still
valid – only that the certificate was valid for the time it is being used.

4.2 LEA Module
A LEA module was implemented (1) to provide the information required by the

EA to release the desired escrowed information for one or more sessions, (2) using
this escrowed information the module can decode a previously captured session, and
(3) the module can check if the captured information has been modified (based upon
the signed hashes generated by the senders during the session).

4.2.1 Required parameters for the LEA module in order to provided the
information required by the EA

The LEA module generates the session keys from the TGK along with other
Security Association parameters. For this reason the LEA requires:

• TGK, RAND, CSBId, and CSId from the escrowed information provided by
the EA.

• SSRC and Sequence number obtained from the packet header.
• ROC from the SSRC.
• The policy number is assumed to be fixed since SRTP is the only protocol

currently used.

Moreover, as noted earlier the sequence number of the first SRTP packet must
also be escrowed. Because if this sequence number is not sent, it would not be
possible to detect in which block a modification had been made.

To get the escrowed information, the LEA will send a request to the EA through
a web based application. The EA will authenticate the LEA's identity and verify that
the court order is valid, and then the EA will return the information escrowed by the
target during the specific time. Given the escrowed information, the LEA module will
save this information in a local text file. Subsequently the LEA module will read the
captured packets and using the escrowed information provided by the EA the LEA
module will generate the relevant session keys from the TGK using the parameters
mentioned above. These session keys will be used to decrypt the captured packet
payloads.

 38

Chapter 4.Design Analysis of the Proposed LI Model

4.2.2 Possible Trade-offs of the LEA Module
The LEA module is an important module in the Lawful Interception architecture.

Its efficiency and reliability are - a function of the time required to analyze the
captured data, the security during the LEA operations, the network overhead, and the
desired transparency of the LEA module. In our analysis of the proposed LEA
module, we have found the following trade-offs:

4.2.2.1 The time required to decode the recorded SRTP packets
Assuming that the SRTP packets have already been captured, then the time delay

before they can be decode is a function of the time to get the court order, the time to
get the escrowed information, the time to generate the session keys, and the time to
actually decode the SRTP packets.

The time for the LEA to get a valid court order to intercept the contents of the
target is out of the scope of the LEA module (and also outside the scope of this
thesis). Thus we will begin our timing from the time that the LEA has received the
court order. The LEA module needs to authenticate itself to the EA, and then it will
submit the court order and other information. The EA will return the escrowed
information. After receiving a request, the amount of time taken by the EA to generate
a response – depends on the EA module’s efficiency and the time required for the
LEA module to transmit the information required for the request and the time for the
EA to transmit the reply, along with the delay due to the communication channel. If
we assume that the LEA module and EA utilize a TLS protected connection, then we
have to add to the above delay the processing time for mutual authentication plus the
time to transmit the authentication information and challenges and responses between
these entities.

tres =tTLS + tEA+Σ ttransmission_delay + Nround_trips * RTT

It is not possible to reduce the required time for establishing the TLS connection
(tTLS) due to the number of required round trips, as the number Nround_trips required
establishing a TLS connection is fixed. Therefore, a question arises as to whether we
should keep the connection open between the EA and LEA module or not. In this
case, two options can be considered:

 Since communication between EA and LEA will not be frequent, if the
LEA works offline, it is not necessary to keep the TLS connection open.
Instead, a new TLS connection can be established for each instance of
escrow information retrieval.

 On the other hand, if the communication between EA and LEA is often,
the secure pause and resume session by TLS [58] can be utilized to re-
establish the TLS connection once it has been established. After providing
the escrow information, the open connection between EA and LEA
module can be paused. When a new connection is required between these
two modules, both modules can search for the paused connection in their
cache and after finding it they can resume the connection in a secure

 39

Chapter 4.Design Analysis of the Proposed LI Model

manner.The design and implementation of this procedure is out of the
scope this thesis, but should be considered in future work.

The time required for responding by the EA (tEA)will depend on the how the
system is implemented. For example, if the EA module stores the escrowed
information in a distributed system, tEA must include the time to reconstruct the
information from its distributed elements (Note that the details of the EA's implement
of its database are outside the scope of this thesis.).

Transmission delay (ttransmission_delay) includes the preprocessing time required to

transfer packets to/from the wire [59]. In a packet switching based network, a store-
and-forward mechanism is used to store the packets in the buffer and then checks for
errors before forwarding the packet. In addition to the processing time, we must also
include the propagation delay for sending the packets across the link. Note that this
transmission delay includes the time to transmit all of the response to the LEA. As
noted earlier we are only considering batch requests & responses, hence the amount of
data that must be transferred may be substantial.

Next we have to consider the time required by the LEA module to calculate the

session keys from the TGK and add to this the required time for decoding the
captured SRTP packets with these derived session keys. We can divide these two
steps into: Time required to derive session keys (tkd) and the time required to decode
SRTP packets using the session keys(tdecode) = tper_packet_decode * Npackets.

The some of all these delays is the total time required to decode the captured
SRTP packets:

t = tTLS + tEA+Σ ttransmission_delay + N * RTT+ tkd + tdecode

Therefore, efficiency of the LEA module is inversely proportional to this total
delay. If the Law Enforcement Agency is doing this processing offline, there may not
be a big concern for the total time required. This time can also be speedup by doing
parallel processing – as the decoding is highly parallelizable since (1) the packets are
encrypted independently they can be decrypted independently and the resulting audio
(and video) combined together and (2) separate sessions can be decoded in parallel.
Given that the UA that was actually receiving the SRTP packets needs to decode the
packets in real-time, it seems reasonable to expect that the LEA should be able to
decode captured traffic at least as fast as real-time and perhaps many times real-time
speed. It also seems reasonable to expect that as the UA that actually participated in
captured session also had to derive the session keys that the time required by the LEA
will be comparable (assuming that the LEA can use a processor that is at least as fast
as the processor used by the UAs). As the information being sent to and from the LEA
to the EA is relatively a small amount of data per session, the time required to transfer
this data should be small, but might not be if there are many sessions during the
period of time that is subject to the request.

4.2.2.2 Security of the LEA module
The LEA module needs to protect the previously escrowed information that it

received from the EA module. It must also protect the derived session keys and the
decoded contents of the captured SRTP file. While it might seem that the captured

 40

Chapter 4.Design Analysis of the Proposed LI Model

SRTP (and SRTCP) traffic does not need to be protected especially well (because it is
encrypted), unfortunately this is not the case since the time stamps, source and
destination IP address and port addresses are not encrypted – this information could
be used to learn when and where the intercept was taking place, whose traffic was
being intercepted, etc. Additionally, if the results are to be presented as evidence in a
legal proceedings there may be a need to use secure logging techniques (as described
in section 3.2) to preserve the “chain of evidence”. A complete security analysis of the
security of the LEA module is outside the scope of this thesis, but should be
considered in future work.

4.2.2.3 Network overhead
If the LEA module works offline and the LEA makes only infrequent requests for

escrowed information from the EA, then the network overhead of this communication
is not expected to be a significant problem. However, if there is a need for real-time
(or near real-time) interception, then there are two problems (1) the key escrow
architecture that has been used in the minisip client – prevents real-time interception –
since the key information is only escorted after the session has been terminated and
(2) there is no requirement that the UA escrow this information immediately after the
call terminates. Hence network overhead in the communication between the LEA
module and the EA module should not affect any solution. Note that this situation
would change if there was a requirement for the UA to escrow the material as soon as
it was available to the UA; however, further consideration of this lies outside the
scope of this thesis project.

4.2.2.4 Transparency of the LEA module
Transparency of the LEA module depends on its design and implementation. The

LEA module should be designed and implemented so as to avoid (or discourage)
misuse of the system and to avoid forgery or modification of the captured and
decoded data. (See the note above concerning providing an evidentiary chain.).

4.2.3 Implementation principles of the LEA module
A LEA module consists of three sub-modules:

1. A capturing module that will capture a target session.

2. Escrow information retrieval module that will communicate with the EA
and retrieve the relevant escrowed information.

3. A session decryption module that will derive session keys from the TGK
and other information; then decrypt the recorded session with this
session’s keys.

The web based application used the LEA module to communicate with the EA
can be developed using any web server language such as ASP, CFML, PHP, JSP, etc.
The LEA module that will generate the session keys from the escrowed information
and that will be used to decrypt the packets will be implemented in C++. We assume
that wireshark was used earlier to capture a session; hence the “libpcap” library will
be used to read the file containing the captured packets.

There are two major alternatives for implementing the decryption of the packets.
Either this could be implemented as a plug-in for wireshark or it could be
implemented as a stand-alone program. Additionally, the code could either be written

 41

Chapter 4.Design Analysis of the Proposed LI Model

from scratch or the minisip code could be re-used (since this is essentially the SRTP
receive part of minisip’s UA code).

4.3 Attacker Module
The attacker module cannot be designed in a fixed way, as there are many

potential forms of attacks. In our first implementation, the attacker module will
receive voice from an external device, packetize it, and encrypt it as SRTP traffic (i.e.,
this code will be used to generate a completely fabricated SRTP stream). This
fabrication is possible because the LEA module has all of the information necessary
to both decrypt and to encrypt the SRTP traffic.

A “bad cop” could replace the original packet payloads with this newly encoded
set of packet payloads. The LEA module will of course be able to decrypt this traffic
and will output the same audio that the “bad cop” used to generate this traffic.
However, the attacker does not have the information necessary to generate correct
signed hashes, thus it should be possible to detect such a case of data fabrication.

The attacker module will be implemented in C++. This module will also use the
“libpcap” library. As with the LEA module it may be possible to use the existing
minisip libraries for most of this (since it is essentially the SRTP transmitter part of
minisip’s UA code).

4.4 Validation Module
A major focus of the thesis project has been evaluating the performance of the

validation module. This module will be used to detect forgery of a captured session.
This module will decrypt the signed hashes (captured during wiretapping by the LEA)
using the UA’s public key found in the UA’s PKI certificate. The hash of the
decrypted data will be compared to the decrypted hash. The hash generated from
forged packets will not match the original hash captured during the session. Note that
this module also needs to decrypt captured SRTCP traffic.

4.5 Communication between UA and EA
The UA will escrow the session information with the EA after a TLS [23]

handshake between them. This is done to ensure mutual authentication, to avoid a
man-in-the-middle attack, and to protect the information that they will communicate
with each other. To perform the TLS handshake, the UA and EA perform the
following steps before any information can be communicated regarding the
escrowing of session information:

 First hello messages are exchanged between the UA and EA to agree on
algorithms, exchange random values, and check for session resumption.

 The necessary cryptographic parameters are exchanged to allow them to agree
on a pre-master secret.

 Certificates and cryptographic information are exchanged to allow the UA and
EA to mutually authenticate each other.

 A master secret is generated from the pre-master secret and the exchanged
random values.

 TLS can now provide security parameters to the record layer.
 Finally the UA and EA can verify that their communication peer has

established the same security parameters.

 42

Chapter 4.Design Analysis of the Proposed LI Model

 43

This result of the above steps is to establish a secure handshake without
interception by an attacker.

The efficiency of the communication between the UA and EA is important as
they work online. We need to consider the amount of time required to perform the
above steps and to escrow the required information and the security of the data to be
escrowed. We must also consider the scalability of this – particularly from the point
of view of the EA.

Since we assume that EA and UA will communicate through TLS handshake, we
can separate the total required time into a key exchange time and time for exchanging
application data. During key exchange TLS may need several round trips. If the
required number of round trips can be reduced, then the communication time (and
network delay) would be significantly reduced.

Additionally, frequent calls by (or to) a UA will cause frequent escrowing. In
this case, the UA and EA can cache the key exchange information locally once they
are initialized. Thus for subsequent calls the TLS session can be quickly re-
established, reducing the network overhead, the communication time, and the
computational load on both parties.

4.6 Should the EA generate session keys for the LEA
Generation of session keys in the EA module is not desirable for the following
reasons:

1. The EA is a Trusted Third Party (TTP) and should simply & reliably
store & retrieve the escrowed information. Having the EA perform these
other computations increases the complexity of the EA, potentially
leading to greater security risks.

2. The EA must communicate with all of the UAs that want to escrow
information and it needs to do this quickly and efficiently for both
performance reasons and for scalability, hence adding additional
computational burdens on the EA will decrease scalability.

If session keys were generated in the EA module, there is an increased risk of
disclosing the session keys, since more people (both at the TTP and LEA) would
know the session keys.

Chapter 5: Implementation of the proposed
LI model

This chapter describes the implementation part of this thesis project. Our
previous analysis in section Chapter 4: showed that we have to design four modules to
achieve our goals. The main system consists of four key components: User Agent,
Escrow Agent, LEA module, and Verification module. We have worked with the last
three modules. We have also designed and implemented another module (an attacker
module to forge recorded session) for verifying and evaluating the performance of the
proposed key escrow based Lawful Interception System.

5.1 User Agent
In this project, we have used an open source SIP user agent called minisip,

which is being developed at KTH. To implement this module, the minisip User Agent
was extended as described in the companion thesis project by Md. Sakhawat Hossen
[43]. In this earlier thesis project, a module was added to minisip to create a block of
packets of the media stream, compute a hash over this block, then signs this hash
using the user’s public key and sends these signed hashes as packets. In addition, this
module escrows information with the Escrow Agent so that the session key could be
re-generated.The module was been implemented in C++. For hashing the block, the
popular hash algorithm HMAC-SHA1 has been used. For signing the hash the RSA
algorithm has been used. The User Agent escrows the key and the other information
about the session after termination of a successful session. The details of the modified
User Agent can be found in [43].

5.2 Escrow Agent (EA) module
In the proposed lawful interception mechanism, the Escrow Agent is a key

components since it works as a Trusted Third Party for storing the TEK generation
key (TGK) along with other escrowed information to be used to derive the session
keys later. A complete analysis of the EA module’s design and requirements has been
performed in section 4.1. This earlier section considered the design, parameters,
communication between UA module and LEA module, and trade-offs that may be
arise during its practical operation in the real world. Based upon this analysis, a
simple EA module has been implemented. However, for a more sophisticated EA
module, further technical issues need to be addressed; these are considered to beout of
the scope of this thesis project.

The EA module is web based and co-located with an Apache web server. It
maintains a database named db_escrowAgent consisting of four tables (see Table 2).
MySql is used for the database and Apache has been used as the web server. PHP has
been used for accessing the web server programmatically. Using this module, an LEA
employee login to access the Escrow Agent module (as shown in the Figure 5-1) in
this implementation a LEA user name and password are used for this login.

Chapter 6: Evaluation of the Proposed LI Model

Table 2: Used Database Tables

Table Name Table Type Reasons

t_userAgent User Authentication
Table

To store SIP User Agent
authentication information

t_escrowed_info Escrowed Information
Table

To store escrow information.

t_lealogin LEA Authentication
Table

To store LEA authentication
information

t_escrwoinfo_request LEA Request Table To store information about the
requested escrowed information

Figure 5-1: LEA Module Login Interface

The EA module verifies the LEA employee’s login information and returns
another web form for the employee to provide the relevant information to get the
escrow information along with the TGK.The information required in our simple EA is
simply the target's SIP URI and a date and duration in hours, as shown in Figure 5-2. A
better version of this interface might have two fields for the time period, i.e., start of
time period: xxxx-xx-xx yy:yy:yy and end of time period: xxxx-xx-xx yy:yy:yy.

 45

Chapter 6: Evaluation of the Proposed LI Model

Figure 5-2: Interface for Providing Target Information

After providing the required information the EA module replies with the TGK
and other escrowed information (as shown in the Figure 5-3). An actual lawful
intercept application would require the LEA user to provide more information, such
as Agency identification of the LEA, surveillance order, surveillance type, and court
warrant [57]. The exact requirements depend on the specific law for the electronic
surveillance in the country where the intercept is to be conducted.

Figure 5-3: Escrow Information returned by the EA

In our implementation the escrowed information will be saved in a simple text
file on the local machine from which the EA web page was accessed (i.e., the LEA
employee’s local machine). The escrowed information should be sent using HTTPs.
For testing with HTTPs, a self-signed certificate has been used.

5.3 LEA module
In section 4.2, the design principles of the LEA module were described. Based

upon these design principles, a LEA module has been implemented using the
algorithms described in the following sub section.

 46

Chapter 6: Evaluation of the Proposed LI Model

5.3.1 Algorithms of LEA module

The LEA module was implemented using C++. To develop this module, some
existing minisip and Open SSL modules are reused. The LEA module performs the
following steps:

 The LEA must capture the conversation between two parities. Developing a
module to capture an online conversation is out of the scope of this thesis;
however, numerous tools exist for this.

 The captured packets must be filtered to include only the SRTP packet and
RTCP packet of the intercept target. Filters for SRTP and RTCP packet (as
used in Wireshark) are respectively:

Ip.src==<ip address>(eg.130.237.15.252)&&rtp && !icmp

and

Ip.src==<ip address>(eg.130.237.15.252)&&!rtp && !icmp

 The LEA module begins by reading the packets from the captured tcpdump
file (for example, a file with the extension .libpcap) and re-packetizes them
into SRTP format.

 Next the LEA module reads the previously escrowed information from the
previously saved text file provided by the EA module.

 The LEA module scans for the Sequence number and SSRC of each packet of
the captured SRTP packets.

 The LEA module calculates ROC using the Sequence Number and SSRC
value. For ROC calculation, we assume that LEA captured the full
conversation between two communicating peers for any electronic
surveillance. An algorithm to perform this computation is depicted in section
5.3.2.

 A cryptographic context is computed based upon the previously escrowed
information, ROC, Policy number, and CSId. This cryptographic context is
generated according to the MIKEY-SRTP protocol. Since SRTP is only
implemented protocol, the policy number is fixed and its value is 0. As it is
mentioned in section 4.1.1, the CSId value for initiator is 1 as a sender and 2
as a receiver and vice -versa for the responder. Therefore if the target is the
initiator, then the CSId value will be 1; while if the target is responder then the
CSId value will be 2.

 Next the LEA module generates the Master Key, Master Salt Key, and
Authentication Key.

 Then using these keys and the Cryptographic context, the session keys are
generated to decrypt each SRTP payload.

 Using the derived session keys, the LEA module decrypts the encrypted SRTP
payload of each of the captured SRTP packets (similarly the SRTCP packets
can be decrypted).

5.3.2 Algorithm for calculating the ROC
Since ROC is calculated locally by the receiving User Agent and the LEA

module works as a receiving User Agent, it needs to calculate the ROC locally. As

 47

Chapter 6: Evaluation of the Proposed LI Model

stated in the previous subsection, we assume that the full conversation was captured.
The algorithm is used to calculate ROC:

Initialize ROC to zero (0).

Get sequence number of a captured SRTP packet (sequentially from the
first SRTP packet until the end of the session).

If sequence number!=65535 then return ROC.

Else If (sequence number==65535) {

Current_ROC=ROC.

ROC=ROC+1.

Return Current_ROC.

}

5.3.3 Project Description
The LEA module is more or quite similar to the receiving User Agent. The main

difference between these two is that the User Agent works on-line and in real-time,
while LEA module will work off-line. Additionally, the User Agent locally generates
some values using real-time parameters, while the LEA module receives these values
from the Escrow Agent. We have used some of the libraries of the existing minisip
code for our implementation. Because we want some additional functionality, we
have also overloaded some functions of the minisip code. In this implementation we
categorize functions into three classes: readEscrowinfo, SetCryptoinfo, and
Mainclass. A summary of these three classes are given below.

In the new readEscrowinfo class we have place the previously escrowed
escrowed parameters that are read from the text file stored previously at the local
machine of the Law Enforcement Agency by using the web interface of the LEA
module.

In the SetCryptoinfo class session keys are generated from the TGK using the
escrowed parameters. The resulting session keys are used to decrypt the encrypted
payloads of the captured SRTP packet that will be read from the libpcap file. In this
class we have added some of the functions to the libminisip library of the existing
minisip. Some existing minisip functions are also reused in this class to derive the
session keys and to decrypt the packets. The existing classes that are reused are:

 SrtpPacket::SRtpPacket() [creates SRTP Packet]
 SrtpPacket::readpacket(), [Read SRTP packet]
 SrtpPacket::protect(), [encrypt the payload of an SRTP packet]
 SrtpPacket::unprotect(), [decrypt the payload of an SRTP packet]
 SrtpPacket::getBytes(), [retrun total bytes of the SRTP packet]
 SrtpPacket::getContent(), [retrun contents of the SRTP packet]
 SrtpPacket::size(), [return the size of the SRTP packet]
 CryptoContext::CryptoContext(), [Create the Cryptographic context of the SRTP
 packets]
 CryptoContext::rtp_encrypt(), [encrypts the RTP packet]
 CryptoContext::rtp_authenticate(), [authenticate the RTP packet]
 CryptoContext::derive_srtp_keys(), [derive SRTP session keys from the TGK]
 Certificate::load(), [load the certificate file for the public key]
 OsslCertificate::verifSign(), [verify the signed hash]

 48

Chapter 6: Evaluation of the Proposed LI Model

 OsslPrivateKey::privateDecrypt() [decrypt the signature with the RSA private key]
 void hmac_sha1(), [generates hash]
 void AES::get_ctr_cipher_stream(), [return encrypted stream of the SRTP packet]
 void AES::ctr_encrypt(), [encrypts data]
 unsigned char * mcrypto::base64_decode(), [decode base64 data]
 Mobject, and CryptoContext. Pseudo rendom functions void prf(), void p().

We have modified and overloaded the following functions for using off-line
working operation in the LEA module:

void KeyAgreement::genAuth(), [generates authentication key]
void KeyAgreement::genEncr(), [generates encryption key]
void KeyAgreement::genSalt(), [generates master salt key]
void KeyAgreement::genTek(), [generates master key]
void KeyAgreement::keyDeriv(), [derives keys]
realtimeMediaSender::handleRtpPacket(), [read SSRC, sequence number,generates
ROC and process SRTP packet]
realtimeMediaSender::initCrypto(). [Initialize cryptographic context]

Since minisip works online while LEA module works offline, we have written
some functions so that the existing functions (mentioned above) can be re-used.

SrtpPacket::readPacketF1(), [re-packetized a captured libpcap or tcpdump packet as
SRTP packet]

SrtpPacket::readPacketF2(), [authenticate a captured libpcap or tcpdump packet as
SRTP packet]

RtpPacket::readpacketF1(), [re-packetized and authenticate a captured libpcap or
tcpdump packet as an RTP packet]

In the Mainclass class packets are read from the captured libpcap file. Third
party library libpcap is used for this purpose. In the main class pcap_open_offline()
and pcap_loop() are used to read the packets from libpcap file [60].

The source code for this module is in appendix B and the reused minisip
modules are available at www.minisip.org [8].

5.3.4 Capturing a Session
The first step of any electronic surveillance is to capture a communication

session between two (or more) communicating peers from the communication
channel. In this case, different Law Enforcement Agency uses many different sniffing
methods and/or tools. Some times the telecommunication operator or a third party
organization performs this job on behalf of the Law Enforcement Agency. To
evaluate the proposed TTP based secure Key Escrow method, Wireshark [19]was
used to capture a target session. After capturing a full session, we filtered out the
SRTP and RTCP packets of the target user and saved these packets on the local
machine as a libpcap file.

5.3.5 Operation procedure of the LEA module
After capturing and filtering a session, the saved libpcap file is feed into the

LEA module to decrypt its content and to generate an audio file for replay. The whole

 49

http://www.minisip.org/

Chapter 6: Evaluation of the Proposed LI Model

procedure was described in detail according to the algorithm depicted in
section5.3and it visualize form is shown in Figure 5-4.

Scan libpcap file
&

Read packets

Repacketized as
SRTP

Get SSRC &
Seq no. Of each

packet

Calculate ROC
Create cryptographic

context, Generate
masterkey and

mastersalt

Derive session
keys

Decrypt payload

Read Escrow
information

Figure 5-4: Workflow of the Session Key Generation and Payload Decryption

5.4 Validation module
A validation module has been implemented for evaluating the forgery detection

mechanism.The algorithm is described in the next subsection, followed by its
implementation in the subsequent subsection.

5.4.1 Algorithm for Validation module
1. Read an RTCP packet and stores the signed hash from each RTCP in a

vector A.

2. Read the escrowed information.

3. Generate the authentication key using the escrowed information.

4. Check the sequence number of the first SRTP packet.

5. Read SRTP packets and create blocks of n packets.

6. Create a hash of these SRTP packets in the block with the authentication
key (generated in step 2).

7. Save these hashes in vector B.

8. Check the last signed hash of A with the escrowed last signed hash.

 50

Chapter 6: Evaluation of the Proposed LI Model

9. Load public key certificate for the target and create a certificate object.

10. Call the VerifySign function within the OsslCertificate class and pass the
hashes (one by one) from vector B to compare with the hashes contain in
A (obtained from the signed hashes of the RTCP packets).

11. If the return value is -1, then the certificate file or require a certificate is
invalid or missing, if the return value is less than zero (0) we cannot verify
the signature, if return value is zero (0), then the data is forged, and if the
return value is one (1), then block is valid, i.e., it has not been forged or
modified.

5.4.2 Implementation of the Validation Module
We have implemented a validation module to detect all possible types of forgery.

In the verificationRun class two functions such as: VerificationRun::run() and
VerificationRun::runRtcp() are used to read SRTP and RTCP packet respectively.
These two functions use thepcap_open_offline function to open the libpcap file and
pcap_loop function to read the libpcap file. Both of these functions are from the third
party library libpcap [60]. The function rtcpvector (unsigned char *userv variable,
const struct pcap_pkthdr * packet header, const u_char *packet) is used store
signatures from the RTCP packets into a vector. Function setsig::setsig(unsigned char
*signature value, unsigned int signature length) is used to create a vector object.

On the other hand, the function readblock() is called with for each SRTP
packets. This readblock()function creates the SRTP blocks using the
VerificationRun::ProcessBlock (MRef<SRtpPacket *>). The function
VerificationRun::CreateHash()generates authentication keys using the escrowed
information and creates a hash of each SRTP block with authentication key. The
function sethash::sethash(unsigned char *hash value, unsigned int hash length) stores
the hash of SRTP blocks into another vector.

For verification, validation module first checksthe sequence number of the first
SRTP packet with the sequence number of the first SRTP packet of the escrowed
information to check if any forgery or modification has been made in the front of the
session. After that, a newly generated hash of the last captured SRTP block is
compared with the last signed hash of the escrowed information. This ensures that no
forgery has occurred in (or after) the last block. Performing these tests, new hashesare
generated from each SRTP block then compared with the signed hash of the captured
RTCP blocks sequentially. Another function verify_hash() reads the user's public key
from his certificate using theOsslCertificate::load("../*_cert.pem") function and
creates an object with this certificate. With this certificate object the verifySign
function are called to verify the sent hash (after decrypting the signed hash obtained
from the RTCP packet) with the newly generated hash of the captured SRTP blocks
fromthe validation module.

5.4.3 Testing Forgery with the Attacker module
In this thesis project, goal of an attacker module is to evaluate the proposed SIP

User Agent with Key Escrow [43]. A bad cop in the Law Enforcement Agency can
forge a captured session by deleting, inserting, or replacing one or more packets, or by
combinations of other operations. Using the attacker module any of these types
forgery can be performed. For any modification of an SRTP packet, the checksum
value of the UDP header of the each packet must be recalculated with the modified
content or payload of each packet. Without re-calculation of the UDP checksum,

 51

Chapter 6: Evaluation of the Proposed LI Model

forgery would be easily detectable. As shown in the Figure 5-5 wireshark shows the
each UDP checksum error. To re-computing the UDP checksum, the algorithm in
section 5.4.4 has been used.

Figure 5-5: Packets with Incorrect UDP Checksum are highlighted by
Wireshark

5.4.4 Algorithm for UDP Checksum Calculation
For any successful off-line forgery of a packet, the checksum must be

recalculated and inserted into a packet, since without correct checksum value forgery
of packets can easily detected. The checksum of a UDP packet is calculated using
octets of the pseudo header, UDP header, and data [55][56]. The pseudo header
consists of the IP Source Address (4 bytes), IP Destination Address (4 bytes),
Protocol (2 bytes), and UDP length (2 bytes). Additionally, the checksum value in the
UDP header must be set to zero before computing the checksum value. The checksum
computation is as follows:

1. Read pseudo header of the packet.

2. Read UDP header of the packet.

3. Set checksum byte of the UDP header to zero (0).

4. Read the data octets of the packet.

5. Check the length of the data. If the data octet is odd add a zero padding byte at
the end of the packet.

6. Initialize a variable sum =0.

 52

Chapter 6: Evaluation of the Proposed LI Model

7. Make 16 bit words with two adjacent 8 bit octets of the data.

8. Sum all 16 bit words to create the new checksum.

9. Add the contents of the pseudo header to the sum.

10. Keep only the last 16 bits of the 32 bit calculated sum and add the carries with the
sum.

11. Take one's complement of the sum and assign the sum to store the sum in the
checksum field.

12. Return checksum.

5.4.5 Working operation of the Attacker Module
The attacker module has been developed in C++ to forge packets in a libpcap or

tcpdump file that containing SRTP packets of a target session. Capturing the
conversation is performed by using Wireshark [19]. In this case, a libpcap file is
captured and saved by using the Wireshark. Before, saving the captured file, it is
filtered to contain the SRTP and RTCP packets of the target. Examples of Wireshark
filters code for SRTP and RTCP packet are respectively:

Ip.src== <ip address> (eg. 130.237.15.252) && rtp && !icmp

And

Ip.src== <ip address> (eg. 130.237.15.252) && !rtp && !icmp

Modification of the tcpdump file can be made by inserting, replacing, or adding a
packets or block of packets or blocks of packets. In this thesis project, we began by
deleting packets or block of packets using the Wireshark. Deleting packets (or groups
of packets) are quite easy to do and enable us to quickly check that we could detect
these missing packets.

Next we have implemented a module in C++ to forge a libpcap file by inserting
and/or replacing, and/or modifying a packet, and/or a block of packets, and/or blocks
of packets in the front, middle, at the end, or any combination of these. To read the
.libpcap file, a third party library named “libpcap” [60]was used. Functions such as
“pcap_open_offline”, “pcap_loop”, pcap_dump(), and pcap_dump_open() have been
used to deal with the libpcap or tcpdump file. Purposes of these functions have been
depicted in these functions were described in section 2.12. The implemented module
first reads a tcpdump or libpcap file, then modifies it with the various combinations of
forgery (more details about the possible forgery described in the section 6.2.1). A
summary of the forgery combinations tested using this module is:

1. Delete a packet, a block of packets, or blocks of packets.

2. Insert a fake block that does not have the correct SRTP authentication.

3. Insert a fake block that has the correct SRTP authentication (computed
using the secret obtained from the escrow agent).

4. Insert a fake block with the same sequence number as a valid block, but
insert this before the block with this sequence number without the correct
SRTP authentication.

 53

Chapter 6: Evaluation of the Proposed LI Model

5. Insert a fake block with the same sequence number as a valid block, but
insert this before the block with this sequence number with the correct
SRTP authentication.

6. Insert a fake block at the end of the session (after the last valid block in the
real recorded session) without the correct SRTP authentication.

7. Insert a fake block at the end of the session (after the last valid block in the
real recorded session) with the correct SRTP authentication.

8. Insert a fake block before the start of the session (i.e., before the first valid
block in the real recorded session) with the correct SRTP authentication.

9. Insert a fake block before the start of the session (i.e., before the first valid
block in the real recorded session) without the correct SRTP
authentication.

10. Repeat each of the above, but rather than doing the step with a single
SRTP block - use a set of 128 SRTP blocks (Where 128 was be block size
used in the original captured session.).

5.4.6 Implementation of the attacker module
In the implementation of the attacker module, we have tested all possible forgery

described in section 5.4.5 and in section 6.2.1. Rather than writing separate functions
we reuse the same function to test all types of forgery. This was done by modifying a
line or few lines of the functions in the C++code (see Appendix C). This allowed us to
write seven functions to forge the sessions in different ways. Additionally, three
functions are required to read libpcap file, create blocks, and compute UDP
checksum:mainattacker::RunAttacker(), rblock (), and compute UDPChecksum()
respectively.

For forgery, we have performed the followings tests:

1. Forge by removing packets or a Block of packets: We simply delete a
SRTP packet, or a block of SRTP packets, or several blocks of packet
from the recorded pcap file using Wireshark.

2. Forge by inserting packets or a Block of packets: We have read the
tcpdump or pcap file of the target session by using a function
mainattacker::RunAttacker() and another pcpap file (that contains
either a SRTP packet, a block of packets, or multiple blocks of
packets) that would be used to forge a recorded session. Packets
produce by combining these two files will be written to new file. The
implemented module can insert any combination of forged packets in
any where in the recorded session. To open and write packets into a
libpcap file pcap_dum_open() and pcap_dump() functions from the
pcap library have been used.

3. Forge by replacing packets or a Block of packets or revealing the
content of packets: In this case, the functions rblock (), and compute
UDPChecksum() are used. Figure 5-6 shows that the data of a SRTP

 54

Chapter 6: Evaluation of the Proposed LI Model

 55

packet has been replaced and Figure 5-7 shows that some other packets
have been inserted without changing the sequence number.Note that to
do an actual forgery new time stamps have to be calculated to avoid
the huge difference in time between packet number 128 and packet
number 129 in Figure 5-7.

Figure 5-6: A Packet Forged by Replacing the Content

Figure 5-7: Replaced Block by whole Content

Chapter 6: Evaluation of the proposed LI
System

Design analysis and implementation of the proposed LI mechanism in the VoIP
have been described in previous chapters. This chapter starts with the good cop
scenario that shows how a good cop working for a Law Enforcement Agency (LEA)
can utilize the proposed approach for intercepting a conversation. Finally, a bad cop
scenario depicts showing many different ways that a bad cop could fabricate a
recorded session.

6.1 Good cop Scenario
In the first phase of our evaluation, we consider the case of a good cop in a LEA

who has captured a real-time session of a target peer using a sniffing tool. In this case,
the good cop has captured both SRTP and RTCP packets of full sessions, i.e. from the
start of the sessions until end of the sessions. In our implementation we have used the
Wireshark [19] to capture a session. Capturing a conversation between two peers will
be conducted according to the algorithm in the section 5.3.1. After capturing a
session, the god cop asks the Escrow Agent for the TGK and other escrowed
information relevant to this session. In this case, we have used a web based interface
(web page) for this interaction between the Escrow Agent and the LEA module (as
this was shown earlier in the Figure 5-1). Through this web page, an employee of the
Law Enforcement Agency will authenticate himself as a valid user of the Escrow
Agent module. After validating the LEA User Id another web form will be return to
enable the LEA employee to provide the provide target session related information
(target User ID and time of the session) and corresponding court warrant. In our
implementation (as shown in the Figure 5-2), the interface only requires the target User
ID and time of the session. After verification of the target session, the Escrow Agent
module returns a page with the TGK and other relevant escrowed information (as was
shown in the Figure 5-3). Then God cop can save the escrowed information in a file on
the local machine of the Law Enforcement Agency.

For deriving the session keys from the TGK and other escrowed information,
LEA module will first read the escrowed information from the text file that previously
saved in the local machine by the good cop of Law Enforcement Agency. Using this
information LEA module first generates the master key, master salt key, as well as the
cryptographic context that is required to derive the session keys and to decrypt the
encrypted SRTP payload. In our implementation (as described in section 5.2), the
LEA module generates the master key and master salt key as shown in the Figure 6-1
(all values shows in hexadecimal format). Using these keys, session keys are
generated and these can be used to decrypt the encrypted payloads as shown in the
Figure 6-1. Therefore, using the LEA module, Law Enforcement Agency can generates
the session keys for the target session and can decrypt the session to generate an audio
file for replay for investigating criminal activities.

Chapter 7: Future Works

Figure 6-1: Session Key Generation and Payload Decryption

After deriving the session keys, the LEA employee may validate the captured
session with the validation module whether the session has been fabricated during
transmission in the communication channel between two User Agents. The validation
module works according to the algorithm as described in the section 5.4.1. For a valid
captured session, the user should see a session as shown in the Figure 6-2. This
indicates that each of the blocks has been successfully validated.

V V

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
Start of session

Valid SRTP Block

End of session

Figure 6-2: Validation output of a Valid SRTP Session

6.1.1 Time required for intercepting a session by the LEA
We have found in our experiment that the average time required for generating

the session keys from the TGK and other escrowed information is ~136 micro second
(see Figure 6-3). This is a very short time which will have less affects on an off-line
session analysis. During evaluation of the performance of the LEA module, we have
tested several times with different recorded sessions for finding the time required to
derive session keys from the TGK and other escrowed information.

 57

Chapter 7: Future Works

Figure 6-3: Time required generating Session Keys from TGK and other

escrowed information

In the statistical analysis of the required time (for details see Appendix E) to
derive session keys from the TGK, we have found the following statistical
information based on the part of the 1st test as in the Appendix E.

Data analysis on required time for deriving Session keys from TGK and other
escrowed information

Mean 136.5
Median 136
Mode 132
Standard Deviation 4.8
Sample Variance 23
Range 19
Minimum 129
Maximum 149

Here we can see that the lowest time to generate session keys is 129 micro
seconds from the TGK, while maximum time required for doing the same thing is 149
micro seconds. Based on the statistical data of the experiment, Figure 6-4 shows the
frequency of the SRTP packets and the time to generate session keys.

0

10

20

30

40

50

60

70

80

90

100

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

M
or

e

Fr
eq

ue
nc

y

delay in ms

Frequency

Figure 6-4: Frequency vs. delay for Generating Session Keys

 58

Chapter 7: Future Works

Figure 6-5 shows the cumulative frequency of the delays that beyonds the
minimum required time 129 microseconds (see Appendix F for statistical data).

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

M
or

e

C
um

ul
at

iv
e

fre
qu

en
cy

delay in ms

Cumulative %

Figure 6-5: Cumulative frequency of the delay

Similar experiment has also been performed to find the time required to decrypt
an SRTP packet using the generated session keys. Experiment showed that the mean
time required for decrypting a SRTP packet is ~19 micro seconds using the generated
session keys. To decrypt the SRTP packets of a recorded session has been shown in
the Figure 6-6 (for more details see appendix G).

Figure 6-6: Time required to decrypt an SRTP packet using session keys

Based on the experiment for finding out the time required to decrypt SRTP
packets, following statistical information has also been measured (for more details see
appendix H and I). In this case, the minimum required time is 17 micro seconds while
the maximum is 29 micro seconds.

 59

Chapter 7: Future Works

Data analysis on required time for decrypting an SRTP packet

Mean 19.2
Median 19
Mode 19
Standard Deviation 1.4
Sample Variance 1.96
Range 9
Minimum 17
Maximum 29

Moreover Figure 6-7 shows the frequency of the the time required to decrypt the
SRTP packets using the generated session keys, based on the statiscal data of the
experiment.

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

delay in ms

Frequency

Figure 6-7: Frequency vs. delay for decrypting SRTP packets

Besides, Figure 6-8 shows the cumulative frequency of the delays that beyonds
the minimum required time 17 microseconds (see Appendix H for statistical data). As
it has been stated in the section 4.2.2.1 that other required delays (such as time for
getting court order, getting escrow information from the Escrow Agent, transmission
delay, hence the time to generate session keys and then to decrypt a session depends
on the specific scenario. For example, to get a court warrant depends on the co-
ordination between the judicial department and the crime investigation department of
that specific country.

 60

Chapter 7: Future Works

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Delay in ms

Cumulative %

Figure 6-8: Cumulative frequency of the delay for decrypting SRTP packets

6.1.2 A Real-Life Example
Suppose Mr. X is an employee of a Law Enforcement Agency responsible for

generating session keys from a TGK and other information as well as decrypting
recorded session using the generated session keys. Mr. Y (boss of Mr. X) called Mr.
X into his office and gives him a DVD contained with a recorded session of six
months worth of calls by a target User Z. Mr. Y tells Mr. X that the sum of the
recorded sessions consists of n SRTP packets and m RTCP packets, and asked him to
decrypt the session. How long should it take Mr. X to generate a plain-text audio file
of the sessions?

From the analysis in section 4.2.2.1and section 6.1.1, Mr. X can easily calculate
the required ଵܶ time required to generate a session key from the TGK, and the time to
decrypt the SRTP payloads with this key. If we ignore the time to compute the session
keys (since this only has to be done typically once per session), then if the required
time is 155 (136+19) micro seconds per SRTP packet, then the time to decrypt the
session(s) will be n * 155 microseconds once the TGK and other parameters are
determined. We can estimate that even if the sessions were continuous for 6 months
that the time required to decrypt the session(s) would be less than 33 hours.

To get the TGK Mr. X has to contact the EA and request the escrowed
information for the sessions during this period of time. Based upon experience with
prior request Mr. X should be able to estimate the amount of time it will take the EA
to process the request. If this time is less than the time remaining in the day, then
there is a good chance that Mr. Y can have the plain-text version of the capture traffic
by the next day.

6.2 Bad Cop Scenario
The aim of this research project was to prevent a bad cop within the Law

Enforcement Agency from misusing the key escrow system. Since misuse of the key
escrow system is already a controversial issue between users and the governments, a
solution for this is required to provide a balanced lawful interception solution. This
means that we have to prevent a bad cop from misusing the key escrow system. In this

 61

Chapter 7: Future Works

thesis project we have focused on being able to detect any attempted modification or
forgery of a recorded session by a bad cop. In the proposed approach, it is possible to
prevent an insider attack from the bad cop as we have shown that we can successfully
detect any combination of modifications to the session. To evaluate the proposed Key
Escrow approach, we followed Ashby’s Law of Requisite Variety, which says variety
in a control system must be equal to or larger than the variety of perturbations in order
to achieve control [61]; i.e., we must implement more varieties of detection
capabilities to identify a forgery that might be done by a bad cop. In this thesis for
forgery analysis, we have considered all forgeries/modifications that can be made to a
captured session. The proposed approach has been tested against all of these possible
forgeries and been shown to detect each of them.

6.2.1 Possible ways of modifying a recorded call
Given a recorded call (as a Wireshark pcap dump file), there are a number of

ways that this recording could be modified. In this section we attempt to enumerate
each of these possible modifications. Note that any modification represents either
some type of error in the recording or an attempt at forgery. We will enumerate these
possible modifications in order to be able to show that the method proposed in this
thesis can detect each of these modifications. Note that in some cases we cannot
distinguish between a single packet being modified, inserted, or deleted and a group
of packets being modified, inserted, or deleted – since the signed hashes are computed
over blocks; thus in most cases a block is our minimum granularity of detection of a
modification. Table 3 enumerates some of the possible modifications of a recorded call
that we consider.

Before going into specific types of modifications, we begin with a reminder of
how to compute the number of possible combination of n things taken r at a time:

nCr = n! / (n - r)! r!

First one must consider the size of the modification. The change could either be a
single packet being added, a block of packets being added, or multiple blocks being
added. The first 3 columns of Table 4 will be referred to as set Sa {a packet, a block,
blocks}. Using the formula above we can calculate the number of possible
combinations of these three sizes of modifications as the sum of the number of ways
of choosing 1 column from 3 (3C1 = 3), plus the number of ways of choosing 2
column from 3 (3C2 = 3), plus the number of ways of choosing 3 column from 3 (3C3
= 1), for a total number of combinations of set Sa is (3+3+1)=7.

Next 3 columns of the Table 4 will be referred to as set Sb {insert, replace,
delete} The number of ways of choosing 1 column from 3 is 3C1 = 3

The number of ways of choosing 2 column from 3 is 3C2 = 3

The number of ways of choosing 3 column from 3 is 3C3= 1

Total combination of set Sb is (3+3+1)=7

And next 3 columns of the table set Sc {in front, in the middle, at the end}

The number of ways of choosing 1 column from 3 is 3C1 = 3

The number of ways of choosing 2 column from 3 is 3C2 = 3

The number of ways of choosing 3 column from 3 is 3C3 = 1

 62

Chapter 7: Future Works

Total combination of set Sc is (3+3+1)=7

Next 2 columns of the table set Sd {payload, whole content}

The number of ways of choosing 1 column from 2 is 2C1 = 2

Total combination of set Sd is 2

Next 2 columns of the table set Se {with sequence number, without sequence
number}

The number of ways of choosing 1 column from 2 is 2C1 = 2

Total combination of set Se is 2

Next 2 columns of the table set Sf {with SRTP authentication, without SRTP
authentication}

The number of ways of choosing 1 column from 2 is 2C1 = 2

Total combination of set Sf is 2

Total combination of the table with the above condition is (Sa x Sb x Sc x Sd x Se x
Sf =(7x7x7x2x2x2)=2744.

On the other hand, Table 4 also hows some examples of the ways of possible
forgery that can be made by a bad cop (for more details see appendix A).

Table 3: All Possible Combinations of Forgery/modifications

C
om

bi
na

tio
n

of
 F

or
ge

d
O

pt
io

ns

N
um

be
r

of

C
om

bi
na

tio
n

T
es

te
d

D
et

ec
ta

bl
e

R
em

ar
ks

{a packet, a block,
blocks}

7 All Yes Which packet is forged is not
detectable in the proposed escrow
mechanism.

{insert, replace,
delete}

7 All Yes Without sequence no. of the first
SRTP packet, any insertion in the
front will show all session as forged.

{front, anywhere
in middle, end}

7 All Yes Forgery can be made in these three
location

{payload, whole
packet}

2 All Yes Forgery can be made with either
payload only or full packet

{with seq. no.,
without seq. no.}

2 All Yes Forgery can be made with either seq.
no. or without seq. no.

{with SRTP auth,
without SRTP

auth}

2 All Yes Forgery can be made with either
SRTP authentication or without
SRTP authentication

 63

Chapter 7: Future Works

Table 4: Examples of Forgery

Fo

rg
er

y
T

yp
e

A
 P

ac
ke

t

A
 B

lo
ck

B
lo

ck
s

In
se

rt

R
ep

la
ce

de
le

te

In
 F

ro
nt

In
 T

he
 M

id
dl

e

A
t T

he
 E

nd

Pa
yl

oa
d

O
nl

y

W
ho

le
 C

on
te

nt

W
ith

 S
eq

 N
o.

W
ith

ou
t S

eq
 N

o.

W
ith

 S
R

T
P

A
ut

h

W
ith

ou
t S

R
T

P
A

ut
h

1 X X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X X

5 X X X X X X

6 X X X X X X

7 X X X X X X

- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -

6.2.2 Detection of the forgery
In the current implementation with the escrow information we build upon the UA

that was modified to add signed hashes to the output of a UA and to escrow
information with an escrow agent [43], the proposed validation module can detect any
of the possible modifications to a recorded session. We have experimentally
determined that the verification module can detect all possible forgery of the blocks of
using different combinations of types of forgery. Figure 6-9 shows the output when
there is a forgery in a block before the start of a session. Figure 6-10 shows the output
when there is a forgery in the middle of a session. While Figure 6-11 shows the output
when there is an attempt to add a block after the end of a session.

 64

Chapter 7: Future Works

Figure 6-9: Forged block in the Front of the Session

Figure 6-10: Forged Block in the Middle of the Session

Figure 6-11: Forged Block at the End of the Session

It is notable that the last block may not be a size of full block, so that it has been
dealt specially. When the validation module finds the end of the libpcap or tcpdum
file that holds the SRTP packets, it considers the packets that have been collected to

 65

Chapter 7: Future Works

form a block to be a block, which is a hash computed over these packets and
compared with the last signed hash. Because the User Agent escrows the last signed
hash along with the other escrow information, we can certain that no other blocks or
packets have been inserted after the end of the session. Note that as a result of our
evaluation of the proposed validation module that we found that the first signed hash
also needs to be escrowed to prevent packets from being inserted before the actual
session.

During our evaluation, we have fabricated captured sessions using all
combinations of forgery using the attacker module (see Table 3 and Table 4).
Validation module based on the proposed Key Escrow approach can detect any
forgery occurred anywhere in a recorded session. Following Figure 6-12 shows a
visualization of this forgery detection of the target session. In this figure we can see
that forgery happened in the front, in the middle, as well as at the end of the recorded
session. We believe that this visual display of forgery/modifications makes it very
easy for even an untrained observer to note that not only has a forgery occurred, but to
understand where it has occurred. This type of display could be further improved by
showing the relative time offset from the start of the session when a forgery occurs.

F F F F F F F F F F F

V V

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Start of session

F F F F

Forged SRTP Block Valid SRTP Block

End of session

Figure 6-12: Visualized Form of a Forged Session

6.2.3 Shortcomings of the current Escrow Scenario
In our initial investigation for deciding the escrowed information, we have found

TGK, CSBID, RAND, and Signed hash (for more details see section 4.1.1) have been
required to escrow. Based on this proposal, the proposed LI system with this
escrowed information [43] can detect any forged session. But the forged data should
be one or more full block size. Otherwise, with this proposed escrow information, it is
not possible to detect exactly where the forgery has been happened with the recorded
session. If a packets or a number of packets less than a block (or greater than the
block size) are inserted with correct sequence number in the front of the session, the
proposed solution can only detect forgery/modifications at the granularity of a block.
You will find more details about the block size in [43].It is important to note here that
the sender of packets decides upon the size of the blocks that it will sign. Thus to

 66

Chapter 7: Future Works

make the current validation module more automatic, there should be a pre-processing
step applied to estimate the block size that was used.

6.2.4 Overcoming this Limitation
In later, we have investigated more about the parameters that should be escrowed

with the EA. Additionally, as noted earlier during the work with the validation
module we learned that sequence number of the first SRTP packet can be escrowed
with the Escrow Agent, since the sequence number is an unpredictable random
number, we need to escrow this sequence number or the hash of the first block with
the escrow agent. Otherwise modifications could be made before the actual session
and these would not be properly detected.

6.2.5 Summary
The goals of this thesis project were:

 Finding the optimum number of parameters that must be required to
escrow by the user agent – while allowing the LEA to later generate
session keys from the TGK.

 To generate session keys from the TGK along with other escrowed
information as needed by the LEA to decrypt the target SRTP session.

 Finding all possible ways to forge a captured SRTP session - as might
be used by a bad cop to fabricate or modify the recorded session.

 To prove that the proposed escrow mechanism could detect any
forgery occurring with a captured SRTP session.

In this thesis project we have achieved all four goals. In section 4.1.1, we have
analyzed and shown the minimum number of parameters that need to be escrowed,
along with the reasons for escrowing them. In section 4.2 and section 5.3, we have
shown that the session keys can be successfully generated and used to decrypt the
captured SRTP session. Section 5.4.5 and section 6.2.1, analyzed and showed all
possible forgery combinations illustrating how easy to modify a recorded session.
This established that modifying a recording of a session is straight-forward to do and
there are several readily available tools for the “Bad Cop”. On the other hand, section
5.4 and section 6.2.2 showed that the proposed key escrow based mechanism can
detect any forgery attempt on the recorded session, if the user’s public key and the
required escrow information are available. Additionally, we have found that the
sequence number of the first SRTP packet must be escrowed in order to detect the
exact location of the forgery in a recorded session. Without this sequence number all
blocks after the fabricated block will be shown as forged blocks (see section 5.4.3).
Hence the sequence number of the first SRTP packet must be escrowed with the
Escrow Agent.

 67

Chapter 7: Future Works

Chapter 7: Future Work

Implementing a standard VoIP LI mechanism (that would be acceptable to all
relevant parties) is a vast effort. In this thesis, a secure, reliable, and (we hope)
acceptable VoIP LI mechanism has been presented. A complete implementation of
this mechanism will provide a standard platform that could serve the government
purposes while protecting the integrity of the citizens. This will approach prevent an
undetectable insider attack which is usually the job of a bad cop (i.e., a bad cop's
efforts at forgery or modification would be detected). A pretty basic implementation
of this mechanism has been implemented in this thesis project and evaluated (from a
performance evaluation purpose point of view). To provide a commercial value and
standard would require the following work to be performed in the future:

 In this implementation, a very simple Escrow Agent has been
designed. In this implementation the escrowed information is stored in
a single database. After getting request from the LEA, the EA retrieves
the required information and sends it in a reply to the LEA.

Escrowed information could be disclosed by a dishonest
employee of the TTP, i.e., an insider attack. To prevent an insider
attack, the EA module needs to be re-designed. In this regard, Adi
Shamir's “Secret Sharing” mechanism can be used [62][63].Using this
Secret Sharing mechanism, the secret is split into N shares and
distribute to N shareholders. To reconstruct the secret, at least (t+1)
shareholders need to agree to disclose their share. Here t is the
threshold value. In a similar fashion, we can split the escrowed
information and store these share in a number of EAs. Using this
mechanism makes an insider attack increasingly difficult as t+1
employee of these different EAs have to be dishonest.Abdullah Afzar
is examining this in his thesis project [64].

 Certificate handling along with the checking of a certificate revocation
list (CRL) during the communication between UA and EA should be
added. In addition, this check should occur in the EA and LEA
modules. In this implementation, self-signed certificates were used,
while in a commercial implementation these certificates should be
signed by a recognized CA.

 Automated session key derivation from the escrowed information
without transferring them in a human readable form should be added
wto the LEA module; i.e. when the LEA module requests for the
escrow information to derive the session keys, escrow information will
be transferred and used in the back end without saving in the local
directory. The transfer from the EA to the LEA module should be
protected to reduce the risk of an implementation would keep the LEA
module free from insider attack.

 The EA may release records of escrowed sessions either in a batch or
in a stream, depending upon whether the ending time is before or after
the current time. In case of a stream of records the court order may
specify a bounded delivery time. In this current implementation, batch

 68

Chapter 7: Future Works

 69

delivery of records has been implemented. Providing a stream of
escrowed information to a LEA should be implemented in the future.

 Setting up a convenient time and secure means for the LEA to get a
court order and to send it provide this court order to the EA should be
implemented. And implementation of this time frame in this proposed
VoIP Lawful Intercept mechanism will be done in future.This requires
that a means for the EA to check the validity of the court order should
also be implemented.

 A complete security analysis of the LEA module along with the secure
log of the LEA module's operations should be performed in the
future.This is important both to provide a chain of custody of the
evidence and to prevent insider misuse.

 Chapter 8: Conclusion

Chapter 8: Conclusions

Preventing terrorism and investigation of crime have become global issues today.
Since the interception of IP telephony is significantly more complex than for
traditional telephony; and because it is easy to encrypt digital traffic –the use of VoIP
has become popular among criminals. Moreover, telephone interception or
wiretapping is seen by citizens in many countries as a violation of an individual’s
privacy. Additionally, misuse of electronic surveillance by LEAs has also lead to
disputes about the lawful interception. All of these have contributed to increased
efforts to constrain the use of interception. For this reason, a standard lawful
interception mechanism is badly needed so that LEAs can fulfill their need for
electronic surveillance while preventing misuse of this capability.

One of the solutions that has been proposed to facilitate LI, while protecting
individuals’ privacy is key escrow. However, there have been many concerns about
the security and integrity of key escrow schemes. This leads to the proposal for
combining key escrow with a signed hashing scheme to make the forgery of “captured
traffic” detectable.

In this thesis project we have designed, implemented, and evaluated a LI System
that performs the above functions. To support this model, we developed four modules:
an Escrow Agent (EA) module, a LEA module, a verification module, and an attacker
module. The first three modules are the main components of the proposed LI model.
While the final module enables us to verify that a captured SRTP + SRTCP session
has not been tampered with.

During our evaluation of the proposed LI system we have examined a number of
metrics and found that the the system is able to detect any kind of forgery of the
conversation session made by the bad cop or by others. We have also found that the
time required for deriving session keys and decrypting the recorded session requires is
very reasonable,hence this method is quite feasible for an off-line data analysis.

In this thesis project we have developed a simple LI system that was evaluated
functionally for performance analysis. However, the effort required to standardize this
system for commercial use or for practical implementation out of the scope of this
thesis project. Hence it remains for future work.

 Refences

References
[1] Dorothy E. Denning, Dennis K. Branstad, “A Taxonomy for key Escrow

Encryption Systems”, Communication of the ACM, Vol. 39, No. 3, March
1996.

[2] Philip A. Branch, “Lawful Interception of the Law”, CAIA Technical report
030606A, 06 June 2003. http://caia.swin.edu.au/reports/. Last Accessed on
08-09-2009.

[3] Jack Brooks, “Communications Assistance for Law Enforcement Act
(CALEA)”, Committee on the Judiciary, U.S. Congress,
http://www.askcalea.net/. October 1994. Last Accessed on 21-09-2009.

[4] Cisco System Inc, “Lawful intercept Architecture”, 2007,
http://www.cisco.com/ , Last Accessed on 11-09-2009.

[5] Telecommunication Standardization Policy Division, ITU-Telecommunication
Standardization Sector, “Technical aspects of lawful interception”, ITU-T
technical watch report # 6, May 2008.

[6] Directive 95/46/EC of the European Parliament and of the Council of 24
October 1995 on the protection of individuals with regard to the processing of
personal data and on the free movement of such data, Official Journal of the
European Communities of 23 November 1995 No L. 281 p. 31.
http://www.cdt.org/privacy/eudirective/EU_Directive_.html, last accessed on
12-09-2009.

[7] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman, “MIKEY:
Multimedia Internet KEYing”, IETF, Network Working Group, RFC 3830,
August 2004. http://www.ietf.org/rfc/rfc3830.txt last Accessed on 13-09-2009.

[8] Minisip, http://www.Minisip.org/, last accessed on 28-09-2009.
[9] Electronic Privacy information Center, The Clipper Chip,

“http://epic.org/crypto/clipper/”, last accessed on29-09-2009.
[10] SKIPJACK and KEA Algorithm Specifications, “http://csrc.nist.gov/groups/

ST/toolkit/documents/skipjack/skipjack.pdf”, 29 May 1998, Last Accessed on
29-09-2009.

[11] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman “The
Secure Real-Time Transport Protocol (SRTP)”, IETF, Network Working
Group, RFC3711, March 2004.http://www.ietf.org/rfc/rfc3711.txt

[12] Adaptive Digital Technologies Inc. “Secure Real Time transport Protocol,
Protocol Stack” http://www.adaptivedigital.com/product/protocol_stacks/
srtp.htm Last accessed on 08-10-2009.

[13] T. Friedman, R. Caceres, and A. Clark (Editors), “RTP Control Protocol
Extended Reports (RTCP XR)”, IETF, Network Working Group, RFC 3611,
November 2003, http://www.ietf.org/rfc/rfc3611.txt

[14] H. Schulzrinne, et al., “RTP: A Transport Protocol for Real-Time
Applications”, RFC 3550, Network Working Group,
http://www.armware.dk/RFC/rfc/rfc3550.html. Last Accessed on 29-09-2009.

[15] Office of the Inspector General, “The implementation of the Communications
Assistance For law Enforcement Act”, U.S. Department of Justice, Audit
Division, Audit report, 6-13 March 2006.

[16] Romanidis Evripidis, “Lawful Interception and Countermeasures: In the era of
Internet Telephony”, Master’s Thesis, School of Information and
Communication Technology, Royal Institute of Technology (KTH), Sweden,

http://caia.swin.edu.au/reports/
http://www.askcalea.net/
http://www.cisco.com/
http://www.cdt.org/privacy/eudirective/EU_Directive_.html
http://www.ietf.org/rfc/rfc3830.txt
http://www.minisip.org/
http://www.ietf.org/rfc/rfc3711.txt
http://www.adaptivedigital.com/product/protocol_stacks/%20srtp.htm
http://www.adaptivedigital.com/product/protocol_stacks/%20srtp.htm
http://www.ietf.org/rfc/rfc3611.txt
http://www.armware.dk/RFC/rfc/rfc3550.html

References

COS/CCS 2008-20, September 2008.http://web.it.kth.se/~maguire/DEGREE-
PROJECT-REPORTS/080922-Romanidis_Evripidis-with-cover.pdf

[17] Erik Eliasson, “Secure Internet Telephony: Design, Implementation, and
Performance Measurements”, Licentiate of Technology thesis, TRITA-
ICT/ECS AVH 06:04, May 2006, Telecommunication Systems Laboratory
Electronic, Computer and Software Systems, Royal Institute of Technology
(KTH), Stockholm, Sweden.http://www.minisip.org/publications/Erik
Eliasson _LicentiateThesis.pdf

[18] Foreign Intelligence Surveillance Act (FISA), Electronic Privacy Information
Center, Department of Justice, USA, http://epic.org/. Last accessed on 30-09-
2009.

[19] Wireshark, http://www.wireshark.org/. Last accessed on 26-09-2009.
[20] Mikael Svensson, Countering VoIP Spam: Up-Cross-Down Certificate

Validation, Master thesis, KTH, Stockholm, September 2007.
http://www.minisip.org/publications/Thesis_Svensson_Sep2007.pdf

[21] E. Rescorla, “Diffie-Hellman Key Agreement Method”, RFC 2631, Network
Working Group, http://www.ietf.org/rfc/rfc2631.txt(diffie-helmann). Last
accessed on 23-09-2009.

[22] J. Callas, “Open PGP Message format”, IETF, Network Working Group,
RFC4880, November 2007. http://tools.ietf.org/html/rfc4880. Last Accessed
on 18-09-2009.

[23] T. Dierks, and E. Rescorla, “The Transport Layer Security (TLS) Protocol”,
RFC5246, Network Working Group, August 2008.
http://www.faqs.org/rfcs/rfc5246.html, Last accessed on 22-09-2009.

[24] D. Atkins et al., “PGP Message Exchange Formats", RFC 1991, Network
Working Group, August 1996, http://www.ietf.org/rfc/rfc1991.txt. Last
accessed on 22-09-2009.

[25] M. Euchner ,“HMAC-Authenticated Diffie-Hellman for Multimedia Internet KEYing
(MIKEY)”, RFC4650, September 2006. http://www.ietf.org/rfc/rfc4650.txt. Last
Accessed on 18-09-2009.

[26] Anoop MS, “Public Key Cryptography-Applications Algorithms and
Mathematical Explanations”, http://www.infosecwriters.com. Last accessed on
24-09-2009.

[27] D. Ignjatic, L. Dondeti, F. Audet, and P. Lin, “MIKEY-RSA-R: An Additional
Mode of Key Distribution in Multimedia Internet KEYing (MIKEY)”, IETF
Network Working Group, RFC 4738, November 2006.
http://www.ietf.org/rfc/rfc4738.txt.Last accessed on 26-09.2009.

[28] Theodor W. Schlickmann, “Ensuring trust and security in electronic
communication”, Commission of the European Communities, Directorate-
General XIII - Telecommunications, Information Market and Exploitation of
Research, Security of telecommunications and information systems.
http://www.oss.net/dynamaster/file_archive/040319/e12138381ec03c1c60129
40f8d0a3136 /OSS1998-E1-08.pdf, Last accessed on 28-09-2009.

[29] F. Baker, B. Foster, and C. Sharp, “Cisco Architecture for Lawful Intercept in
IP Networks”, IETF, Network Working Group, RFC 3924, October 2004,
http://www.ietf.org/rfc/rfc3924.txt , Last accessed on 30-09-2009.

[30] Joel Weise, “Public Key Infrastructure Overview”, SunPSSM Global Security
Practice, Sun BluePrints™ OnLine, Sun Microsystems Inc, August 2001.

[31] N. Kapidzic and A. Davidson, “A Certificate Management System: structure,
functions and protocols”, Proceedings of the 1995 Symposium on Network

 72

http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/080922-Romanidis_Evripidis-with-cover.pdf
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/080922-Romanidis_Evripidis-with-cover.pdf
http://www.minisip.org/publications/Erik%20Eliasson%20_LicentiateThesis.pdf
http://www.minisip.org/publications/Erik%20Eliasson%20_LicentiateThesis.pdf
http://epic.org/
http://www.wireshark.org/
http://www.minisip.org/publications/Thesis_Svensson_Sep2007.pdf
http://www.ietf.org/rfc/rfc2631.txt(diffie-helmann)
http://tools.ietf.org/html/rfc4880
http://www.faqs.org/rfcs/rfc5246.html
http://www.ietf.org/rfc/rfc1991.txt
http://www.ietf.org/rfc/rfc4650.txt.%20Last%20Accessed%20on%2018-09-2009
http://www.ietf.org/rfc/rfc4650.txt.%20Last%20Accessed%20on%2018-09-2009
http://www.infosecwriters.com/
http://www.ietf.org/rfc/rfc4738.txt
http://www.oss.net/dynamaster/file_archive/040319/e12138381ec03c1c6012940f8d0a3136%20/OSS1998-E1-08.pdf
http://www.oss.net/dynamaster/file_archive/040319/e12138381ec03c1c6012940f8d0a3136%20/OSS1998-E1-08.pdf
http://www.ietf.org/rfc/rfc3924.txt

References

and Distributed System Security (SNDSS'95),IEEE Computer Society,
Washington, DC, USA, 1995, page: 153.

[32] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X.509 Public Key
Infrastructure Certificate and CRL Profile”, RFC 2459, January 1999.
http://www.ietf.org/rfc/rfc2459.txt , Last accessed on 27-09-2009.

[33] C. Hett, N. Kuntze, A.U.Schmidt, “Non-repudiation of Coice-over-IP”,
Fraunhofer SIT, Darmstadt, Germany. Last Access on 05-10-2009

[34] Erland Jonsson, “KEY ESCROW – a System for Law-Enforced Covert
Surveillance and its Risks”, Department of Computer Engineering, Chalmers
University of Technology, 1 December 2004.

[35] J. Rosenberg et al., “SIP: Session Initiation Protocol”, IETF, Network
Working Group, RFC 3261, June 2002, http://www.ietf.org/rfc/rfc3261.txt,
Last accessed on 07-09-2009.

[36] SIP center “Understanding SIP”, Sip Center, “www.sipcenter.com/sip.nsf/
WEBB5YNVK8/$FILE/Ubiquity_SIP_Overview .pdf”, Last accessed on 06-
09-2009.

[37] National Institute of Standards and Technology (NIST), “Escrowed
Encryption Standard (EES)”, FIPS Publication 185, February 1994.

[38] Frank W. Sudia, “Private Key Escrow System”, overheads of presentation,
Bankers Trust Co., New York, NY, 1995.

[39] Mihir Bellare, and Shafi Goldwasser, “Variable Partial Key Escrow”,
University of California at San Diego, CSE Department, Technical Report
CS95-447.

[40] Mihir Bellare and Shafi Goldwasser, “Variable Cryptographic Time Capsule:
A new Approach to Key Escrow”, Manuscript, April 1996.

[41] Thomas Beth, Hans-Joachim Knobloch, Marcus Otten, Gustavus J. Simmons,
and Peer Wichman, “Clipper Repair kit – Towards Key Escrow Systems”,
Proceedings of 2nd ACM Conference on Communication and Computer
Security, 1994.

[42] David P. Maher, “Crypto Backup and Key Escrow”, Communications of the
ACM, Volume 39, Issue 3, Pages: 48 – 53, 1996.

[43] Md. Sakhawat Hossen, A session Initiation Protocol User Agent with Key
Escrow: providing authenticity for recording session, Masters Thesis, School
of Information and Communication Technology, Royal Institute of
Technology (KTH), Stockholm, Sweden, January 2010.

[44] “Directive 95/46/EC of the European Parliament and of the Council of 24
October 1995 on the protection of individuals with regard to the processing of
personal data and on the free movement of such data”, Official Journal of the
European Communities of 23 November 1995 No L. 281 p. 31,
http://www.cdt.org/privacy/eudirective/EUDirective .html , Last accessed on
07-09-2009.

[45] “White Paper – Lawful Intercept overview”, Newport Networks,
http://networks.com/whitepapers/lawful-intercept1.html, Last Accessed on 04-
09-2009.

[46] D. Ma, M. Abe, and V. D. Gligor, “Practical forward secure sequential
aggregate signatures”, In proceedings of the ACM Symposium on
Information, Computer and Communication Security, ACM, 2008, pp. 341-
352.

[47] Rafael Accorsi, “Log Data as Digital Evidence: What Secure Logging
Protocols Have to Offer?”, 2009 33rd Annual IEEE International Computer

 73

http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.cdt.org/privacy/eudirective/EUDirective%20.html

References

 74

Software and Applications Conference, Seattle, Washington, USA, July 20-
July 24, 2009.

[48] Vassilios Stathopoulos, Panayiotis Kotzanikolaou, and Emmanouil Magkos,”
A Framework for Secure and Verifiable Logging in Public Communication
Networks ”, Critical Information Infrastructures Security, Volume 4347/2006,
Springer Berlin/Heidelberg, 2006.

[49] D. Ignjatic et al., “MIKEY-RSA-R: An Additional Mode of Key Distribution
in Multimedia Internet KEYing (MIKEY)”, RFC 4738, IETF, November
2006.

[50] J. Bilien, “Key Agreement for secure Voice over IP”, Master Thesis, Royal
Institute of Technology (KTH), Stockholm, Sweden, IMIT/LCN 2003-14,
December 2003.http://web.it.kth.se/~maguire/DEGREE-PROJECT-
REPORTS/031215-Johan-Bilien-report-final-with-cover.pdf

[51] Elisabetta Carrara, “Security for IP Multimedia Applications over
Heterogeneous Networks”, Licentiate thesis, School of Information and
Microelectronics Technology, Royal Institute of Technology (KTH), Sweden,
31 August 2004.http://web.it.kth.se/~carrara/lic.pdf

[52] Shana K. Rahavy, “The Federal Wiretap Act: the Permissible Scope of
Eavesdropping in the Family Home”, The Journal of High Technology Law,
vol. II, No 1, 2003, pages 95.-98.

[53] Henry Sinnreich and Alan B. Johnston, Internet Communications Using SIP:
Delivering VoIP and Multimedia Services with Session Initiation Protocol,
2nd Edition, Wiley, August 2006, ISBN: 0-471-77657-2.

[54] S. Kent, “Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-
Based Key Management”, IETF, Network Working Group, RFC 1422,
February 1993, http://www.networksorcery.com/enp/rfc/rfc1422.txt, Last
Accessed on 22-10-2009.

[55] T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter, “Uniform Resource
identifiers (URI)”, IETF, Network Working Group, RFC 2396, August 1998,
http://www.ietf.org/rfc/rfc2396.txt. , Last Accessed on 23-10-2009.

[56] J. Postel, “User Datagram Protocol”, RFC 768, IETF, August 1980.
[57] http://www.cox.com/Policy/leainformation/CoxLawful

InterceptWorksheet.pdf, Last Accessed on 29-12-2009.
[58] http://msdn.microsoft.com/en-us/library/aa380513 (VS.85).aspx.Last

Accessed on 30-12-2009.
[59] http://en.wikipedia.org/wiki/Transmission_delay, Last Accessed on 30-12-

2009.
[60] Libpcap, Beyond Linux From Scratch-Version 6.3, Chapter 14, Networking

Libraries,http://www.linuxfromscratch.org/blfs/view/6.3/basicnet/libpcap.html
, Last Accessed on 11-11-2009.

[61] W. Ross Ashby, “An Introduction to Cybernetics”, Champan & Hall,
http://pespmc1.vub.ac.be/ASHBBOOK.html, Last Access Date 29-11-2010.

[62] Shamirs’s Secret Sharing, “http://en.wikipedia.org/wiki/Shamir's_
Secret_Sharing#Mathematical_definition”, Last Accessed on 11-12-2009.

[63] RSA Laboratories, “http://www.rsa.com/RSALABS/node.asp?id=2259”, Last
Accessed on 11-12-2009.

[64] Abdullah Azfar, “Multiple Escrow Agent in VoIP”, Masters Thesis, School of
Information and Communication Technology, Royal Institute of Technology
(KTH), Stockholm, Sweden, June 2010 (expected).

http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/031215-Johan-Bilien-report-final-with-cover.pdf
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/031215-Johan-Bilien-report-final-with-cover.pdf
http://web.it.kth.se/%7Ecarrara/lic.pdf
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471776572.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471776572.html
http://www.networksorcery.com/enp/rfc/rfc1422.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.cox.com/Policy/leainformation/CoxLawful%20InterceptWorksheet.pdf
http://www.cox.com/Policy/leainformation/CoxLawful%20InterceptWorksheet.pdf
http://msdn.microsoft.com/en-us/library/aa380513
http://en.wikipedia.org/wiki/Transmission_delay
http://pespmc1.vub.ac.be/ASHBBOOK.html

 Apendices

Appendices

A. Different Forgery Combination
Fo

rg
er

y
Ty

pe

A
 P

ac
ke

t

A
 B

lo
ck

B
lo

ck
s

In
se

rt

R
ep

la
ce

de
le

te

In
 F

ro
nt

In
 T

he
 M

id
dl

e

A
t T

he
 E

nd

Pa
yl

oa
d

O
nl

y

W
ho

le
 C

on
te

nt

W
ith

 S
eq

 N
o.

W
ith

ou
t S

eq
 N

o.

W
ith

 S
R

TP
 A

ut
h

W
ith

ou
t S

R
TP

A

ut
h

1 X X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X X

5 X X X X X X

6 X X X X X X

7 X X X X X X

8 X X X X X X

9 X X X X X X

10 X X X X X X

11 X X X X X X

12 X X X X X X

13 X X X X X X

14 X X X X X X

15 X X X X X X

16 X X X X X X

17 X X X X X X

18 X X X X X X

19 X X X X X X

20 X X X X X X

Appendices

21 X X X X X X

22 X X X X X X

23 X X X X X X

24 X X X X X X

25 X X X X X X

26 X X X X X X

27 X X X X X X

28 X X X X X X

29 X X X X X X

30 X X X X X X

31 X X X X X X

32 X X X X X X

33 X X X X X X

34 X X X X X X

35 X X X X X X

36 X X X X X X

37 X X X X X X

38 X X X X X X

39 X X X X X X

40 X X X X X X

41 X X X X X X

42 X X X X X X

43 X X X X X X

44 X X X X X X

45 X X X X X X

46 X X X X X X

47 X X X X X X

 76

Appendices

48 X X X X X X

49 X X X X X X

50 X X X X X X

51 X X X X X X

52 X X X X X X

53 X X X X X X

54 X X X X X X

55 X X X X X X

56 X X X X X X

57 X X X X X X

58 X X X X X X

59 X X X X X X

60 X X X X X X

61 X X X X X X

62 X X X X X X

63 X X X X X X

64 X X X X X X

65 X X X X X X

66 X X X X X X

67 X X X X X X

68 X X X X X X

69 X X X X X X

70 X X X X X X

71 X X X X X X

72 X X X X X X

73 X X X X X X

74 X X X X X X

 77

Appendices

75 X X X X X X

76 X X X X X X

77 X X X X X X

78 X X X X X X

79 X X X X X X

80 X X X X X X

81 X X X X X X

82 X X X X X X

83 X X X X X X

84 X X X X X X

85 X X X X X X

86 X X X X X X

87 X X X X X X

88 X X X X X X

89 X X X X X X

90 X X X X X X

91 X X X X X X

92 X X X X X X

93 X X X X X X

94 X X X X X X

95 X X X X X X

97 X X X X X X

98 X X X X X X

99 X X X X X X

100 X X X X X X

101 X X X X X X

102 X X X X X X

 78

Appendices

103 X X X X X X

104 X X X X X X

105 X X X X X X

106 X X X X X X

107 X X X X X X

108 X X X X X X

109 X X X X X X

110 X X X X X X

111 X X X X X X

112 X X X X X X

113 X X X X X X

114 X X X X X X

115 X X X X X X

116 X X X X X X

117 X X X X X X

118 X X X X X X

119 X X X X X X

120 X X X X X X

121 X X X X X X

122 X X X X X X

123 X X X X X X

124 X X X X X X

125 X X X X X X

126 X X X X X X

127 X X X X X X

128 X X X X X X

129 X X X X X X

 79

Appendices

130 X X X X X X

131 X X X X X X

132 X X X X X X

133 X X X X X X

134 X X X X X X

135 X X X X X X

136 X X X X X X

137 X X X X X X

138 X X X X X X

139 X X X X X X

140 X X X X X X

141 X X X X X X

142 X X X X X X

143 X X X X X X

144 X X X X X X

145 X X X X X X

146 X X X X X X

147 X X X X X X

148 X X X X X X

149 X X X X X X

150 X X X X X X

151 X X X X X X

152 X X X X X X

153 X X X X X X

154 X X X X X X

155 X X X X X X

156 X X X X X X

 80

Appendices

157 X X X X X X

158 X X X X X X

159 X X X X X X

160 X X X X X X

161 X X X X X X

162 X X X X X X

163 X X X X X X

164 X X X X X X

165 X X X X X X

166 X X X X X X

167 X X X X X X

168 X X X X X X

169 X X X X X X

170 X X X X X X

171 X X X X X X

172 X X X X X X

173 X X X X X X

174 X X X X X X

175 X X X X X X

176 X X X X X X

177 X X X X X X

178 X X X X X X

179 X X X X X X

180 X X X X X X

181 X X X X X X

182 X X X X X X

183 X X X X X X

 81

Appendices

184 X X X X X X

185 X X X X X X

186 X X X X X X

187 X X X X X X

188 X X X X X X

189 X X X X X X

190 X X X X X X

191 X X X X X X

192 X X X X X X

193 X X X X X X

194 X X X X X X

195 X X X X X X

196 X X X X X X

197 X X X X X X

198 X X X X X X

199 X X X X X X

200 X X X X X X

201 X X X X X X

202 X X X X X X

203 X X X X X X

204 X X X X X X

205 X X X X X X

207 X X X X X X

208 X X X X X X

209 X X X X X X

210 X X X X X X

211 X X X X X X

 82

Appendices

 83

212 X X X X X X

213 X X X X X X

214 X X X X X X

215 X X X X X X

216 X X X X X X

217 X X X X X X

218 X X X X X X

 ….
.

…. …
.

…. …
..

 …
.

…
..

…. …
.

…. …. ….. …. …..

 ….
.

…. …
..

…
…

…
…

 …
..

…
…

….
.

…
…
.

…
….

…… …
…

…
…

..…

 Apendices

B. Source code of LEA Module
/*
* File: setcryptoinfo.cpp
* Author: morhsed
*
* Created on November 29, 2009, 11:12 PM
*/
#include "setCryptoinfo.h"
#include</root/readwireshark/derivekeys.h>
#include<libminisip/media/MediaStream.h>
#include<libmikey/MikeyPayloadSP.h>
#include<string.h>
#include<stdlib.h>

#ifdef _WIN32_WCE
include"../include/minisip_wce_extra_includes.h"
#endif

#ifdef SCSIM_SUPPORT
#include<libmcrypto/SipSimSmartCardGD.h>
#endif

static byte_t ipsec4values[] = {MIKEY_IPSEC_SATYPE_ESP,
MIKEY_IPSEC_MODE_TRANSPORT,MIKEY_IPSEC_SAFLAG_PSEQ,MIKEY_
IPSEC_EALG_3DESCBC,24,MIKEY_IPSEC_AALG_SHA1HMAC,16};

static byte_t srtpvalues[] ={MIKEY_SRTP_EALG_AESCM,16,
MIKEY_SRTP_AALG_SHA1HMAC,20,14,MIKEY_SRTP_PRF_AESCM,0,1,1,MI
KEY_FEC_ORDER_FEC_SRTP,1,10,0};

using namespace std;

/* serves as define to split inkey in 256 bit chunks */
#define PRF_KEY_CHUNK_LENGTH 32
/* 160 bit of SHA1 take 20 bytes */
#define SHA_DIGEST_SIZE 20

#define SRTP_POLICY_NO 0

setCryptoinfo::setCryptoinfo() {
}

setCryptoinfo::setCryptoinfo(const setCryptoinfo& orig) {
}

setCryptoinfo::~setCryptoinfo() {

Appendices

}

uint8_t setCryptoinfo::getPolicyParamTypeValue(uint8_t policy_No, uint8_t
prot_type,
uint8_t policy_type){
 list<Policy_type *>::iterator i;
 for(i = policy.begin(); i != policy.end() ; i++)
 if((*i)->policy_No == policy_No && (*i)->prot_type == prot_type &&
(*i)->policy_type == policy_type && (*i)->length == 1)
 return (uint8_t)(*i)->value[0];

 switch(prot_type) {
 case MIKEY_PROTO_SRTP:
 if (policy_type < sizeof(srtpvalues)/sizeof(srtpvalues[0]))
 return srtpvalues[policy_type];
 printf("MIKEY_PROTO_SRTP type out of range %d", policy_type);
 break;
 case MIKEY_PROTO_IPSEC4:
 if (policy_type < sizeof(ipsec4values)/sizeof(ipsec4values[0]))
 return ipsec4values[policy_type];
 printf("MIKEY_PROTO_IPSEC4 type out of range %d", policy_type);
 break;
 default:
 break;
 }
 return 0;
}

/* Described in rfc3830.txt Section 4.1.2 */
void p(unsigned char * s, unsigned int sLength,
 unsigned char * label, unsigned int labelLength,
 unsigned int m,
 unsigned char * output)
{
 unsigned int i;
 unsigned int hmac_output_length;
 byte_t * hmac_input = new byte_t[labelLength + SHA_DIGEST_SIZE];

 /* initial step
 * calculate A_1 and store in hmac_input */

 hmac_sha1(s, sLength,
 label, labelLength,
 hmac_input, &hmac_output_length);
 assert(hmac_output_length == SHA_DIGEST_SIZE);
 memcpy(&hmac_input[SHA_DIGEST_SIZE], label, labelLength);

 /* calculate P(s,label,1)
 * and store in output[0 ... SHA_DIGEST_SIZE -1] */

 hmac_sha1(s, sLength,

 85

Appendices

 hmac_input, labelLength + SHA_DIGEST_SIZE,
 output, &hmac_output_length);
 assert(hmac_output_length == SHA_DIGEST_SIZE);

 /* need key-length > SHA_DIGEST_SIZE * 8 bits? */
 for(i = 2; i <= m ; i++)
 {
 /* calculate A_i = HMAC (s, A_(i-1))
 * A_(i-1) is found in hmac_input
 * and A_i is stored in hmac_input,
 * important: label in upper indices [SHA_DIGEST_SIZE ... labelLength +
SHA_DIGEST_SIZE -1]
 * stays untouched and is repetitively reused! */

 hmac_sha1(s, sLength,
 hmac_input, SHA_DIGEST_SIZE,
 hmac_input, &hmac_output_length);
 assert(hmac_output_length == SHA_DIGEST_SIZE);

 /* calculate P(s,label,i), which is stored in
 * output[0 ... (i * SHA_DIGEST_SIZE) -1] */

 hmac_sha1(s, sLength,
 hmac_input, labelLength + SHA_DIGEST_SIZE,
 &output[SHA_DIGEST_SIZE * (i-1)], &hmac_output_length);
 assert(hmac_output_length == SHA_DIGEST_SIZE);
 }

 /* output now contains complete P(s,label,m)
 * in output[0 ... (m * SHA_DIGEST_SIZE) -1] */
 delete [] hmac_input;
}

/* Described in rfc3830.txt Section 4.1.2 */

void prf(unsigned char * inkey, unsigned int inkeyLength,
 unsigned char * label, unsigned int labelLength,
 unsigned char * outkey, unsigned int outkeyLength)
{
 unsigned int n, m, i, j;
 unsigned char * p_output;
 n = (inkeyLength + PRF_KEY_CHUNK_LENGTH -1)/
PRF_KEY_CHUNK_LENGTH;
 m = (outkeyLength + SHA_DIGEST_SIZE -1)/ SHA_DIGEST_SIZE;

 p_output = new unsigned char[m * SHA_DIGEST_SIZE];
 memset(outkey, 0, outkeyLength);
 for(i = 1; i <= n-1; i++)
 {
 p(&inkey[(i-1)*PRF_KEY_CHUNK_LENGTH],
PRF_KEY_CHUNK_LENGTH, label, labelLength, m, p_output);

 86

Appendices

 for(j = 0; j < outkeyLength; j++)
 {
 outkey[j] ^= p_output[j];
 }
 }

 /* Last step */
 p(&inkey[(n-1)*PRF_KEY_CHUNK_LENGTH], inkeyLength %
PRF_KEY_CHUNK_LENGTH, label, labelLength, m, p_output);

 for(j = 0; j < outkeyLength; j++)
 {
 outkey[j] ^= p_output[j];
 } delete [] p_output;
}

void setCryptoinfo::keyDeriv(unsigned char csId, unsigned int csbIdValue,
unsigned char * inkey, unsigned int inkeyLength, uint8_t *randPtr, unsigned
int randLengthValue, unsigned char * key, unsigned int keyLength , int type){

#ifdef SCSIM_SUPPORT
 if (dynamic_cast<SipSimSmartCardGD*>(*sim)){
 SipSimSmartCardGD *gd=dynamic_cast<SipSimSmartCardGD*>(*sim);
 gd->getKey(csId, csbIdValue, (byte_t*)randPtr, randLengthValue, key,
 keyLength, type);
 }else
#endif
 {
 byte_t * label = new byte_t[4+4+1+randLengthValue];
 switch(type){
 case KEY_DERIV_SALT:
 label[0] = 0x39;
 label[1] = 0xA2;
 label[2] = 0xC1;
 label[3] = 0x4B;
 break;
 case KEY_DERIV_TEK:
 label[0] = 0x2A;
 label[1] = 0xD0;
 label[2] = 0x1C;
 label[3] = 0x64;
 break;
 case KEY_DERIV_TRANS_ENCR:
 label[0] = 0x15;
 label[1] = 0x05;
 label[2] = 0x33;
 label[3] = 0xE1;
 break;
 case KEY_DERIV_TRANS_SALT:
 label[0] = 0x29;
 label[1] = 0xB8;

 87

Appendices

 label[2] = 0x89;
 label[3] = 0x16;
 break;
 case KEY_DERIV_TRANS_AUTH:
 label[0] = 0x2D;
 label[1] = 0x22;
 label[2] = 0xAC;
 label[3] = 0x75;
 break;
 case KEY_DERIV_ENCR:
 label[0] = 0x15;
 label[1] = 0x79;
 label[2] = 0x8C;
 label[3] = 0xEF;
 break;
 case KEY_DERIV_AUTH:
 label[0] = 0x1B;
 label[1] = 0x5C;
 label[2] = 0x79;
 label[3] = 0x73;
 break;
 }

 label[4] = csId;

 label[5] = (unsigned char)((csbIdValue>>24) & 0xFF);
 label[6] = (unsigned char)((csbIdValue>>16) & 0xFF);
 label[7] = (unsigned char)((csbIdValue>>8) & 0xFF);
 label[8] = (unsigned char)(csbIdValue & 0xFF);
 memcpy(&label[9], randPtr, randLengthValue);
 prf(inkey, inkeyLength, label, 9 + randLengthValue, key, keyLength);
 delete [] label;
 }
}

void setCryptoinfo::genTek(unsigned char csId,unsigned char * tek, unsigned int
tekLength, uint8_t *tgkPtr, uint8_t *rand, unsigned int csbIdValue){
 keyDeriv(csId, csbIdValue, tgkPtr, 192, rand, 16, tek, tekLength,
KEY_DERIV_TEK);
}

void setCryptoinfo::genSalt(unsigned char csId, unsigned char * salt, unsigned int
saltLength, uint8_t *tgkPtr, uint8_t *rand, unsigned int csbIdValue){
 keyDeriv(csId, csbIdValue, tgkPtr, 192, rand, 16, salt, saltLength,
KEY_DERIV_SALT);
}

void setCryptoinfo::genAuth(unsigned char csId, unsigned char * a_key, unsigned int
a_keylen, uint8_t *tgkPtr, uint8_t *rand, unsigned int csbIdValue){
 keyDeriv(csId, csbIdValue, tgkPtr, 192,rand, 16,a_key, a_keylen,
KEY_DERIV_AUTH);

 88

Appendices

}

MRef<CryptoContext *> setCryptoinfo::initCrypto(uint32_t ssrc,
 uint16_t seq_no, uint32_t f_roc, uint8_t *tgk, uint8_t *rand, unsigned int csbIdValue
){
 MRef<CryptoContext *> cryptoContext;
 cryptoContext = new CryptoContext(ssrc);

 unsigned char * masterKey = new unsigned char[16];
 unsigned char * authKey = new unsigned char[16];
 unsigned char * masterSalt = new unsigned char[14];
 uint8_t csId=1;
 uint32_t roc=f_roc;
 uint8_t policyNo = SRTP_POLICY_NO;
 //Extract Srtp policy !!! Check the return value if type not available
 uint8_t ealg = getPolicyParamTypeValue(policyNo,
MIKEY_PROTO_SRTP, MIKEY_SRTP_EALG);
 uint8_t ekeyl = getPolicyParamTypeValue(policyNo,
MIKEY_PROTO_SRTP, MIKEY_SRTP_EKEYL);
 uint8_t aalg = getPolicyParamTypeValue(policyNo,
MIKEY_PROTO_SRTP, MIKEY_SRTP_AALG);
 uint8_t akeyl = getPolicyParamTypeValue(policyNo,
MIKEY_PROTO_SRTP, MIKEY_SRTP_AKEYL);
 uint8_t skeyl = getPolicyParamTypeValue(policyNo,
MIKEY_PROTO_SRTP, MIKEY_SRTP_SALTKEYL);
 uint8_t keydr = getPolicyParamTypeValue(policyNo,
MIKEY_PROTO_SRTP, MIKEY_SRTP_KEY_DERRATE);
MIKEY_PROTO_SRTP, MIKEY_SRTP_SALTKEYL);
 uint8_t encr = getPolicyParamTypeValue(policyNo,
MIKEY_PROTO_SRTP, MIKEY_SRTP_ENCR_ON_OFF);
 uint8_t auth = getPolicyParamTypeValue(policyNo,
MIKEY_PROTO_SRTP, MIKEY_SRTP_AUTH_ON_OFF);
 uint8_t autht = getPolicyParamTypeValue(policyNo,
MIKEY_PROTO_SRTP, MIKEY_SRTP_AUTH_TAGL);

#ifdef ENABLE_TS
 ts.save("TEK_START");
#endif
 genTek(csId, masterKey, 16, tgk, rand, csbIdValue);
#ifdef ENABLE_TS
 ts.save("TEK_STOP");
#endif
 genSalt(csId, masterSalt, 14, tgk, rand, csbIdValue);

#ifdef DEBUG_OUTPUT
#if 0
 fprintf(stderr, "csId: %i\n", csId);
 cerr << "SSRC: "<< ssrc <<" - TEK: " << binToHex(masterKey, 16) <<
endl;
 cerr << "SSRC: "<< ssrc <<" - SALT: " << binToHex(masterSalt, 14)<<
endl;

 89

Appendices

#endif
#endif

master_salt_length, ekeyl, akeyl, skeyl, encr, auth, autht);
 cryptoContext = new CryptoContext(ssrc, roc, seq_no, keydr,
 ealg, aalg, masterKey, 16, masterSalt, 14, ekeyl, akeyl, skeyl, encr,
auth, autht);

 cryptoContext->derive_srtp_keys(0);
 return cryptoContext;
}
void setCryptoinfo::handleRtpPacket(MRef<SRtpPacket *> packet,
uint8_t *tgk, uint8_t *rand, unsigned int csbIdValue){
 uint32_t packetSsrc; //this value needs to be generated from the packet
 uint16_t seq_no;//this value needs to be generated from the packet

 static int flag;
 static int roc;
 static int flag1=1;
 if(!packet) {
 return;
 }
 packetSsrc = packet->getHeader().getSSRC();
 seq_no = packet->getHeader().getSeqNo();
 if(seq_no!=65535 && flag<flag1){
 roc=roc;
 }
 else if((seq_no==65535)){
 roc=roc+1;
 flag=flag1;
 flag1++;
 }
 if(packet->unprotect(initCrypto(packetSsrc, seq_no, roc, tgk,rand, csbIdValue
))){
 return;
 }
/*
* File: readescrowinfo.cpp
* Author: morshed
*
* Created on November 24, 2009, 10:44 PM
*/

#include </root/readwireshark/readEscrowinfo.h>
#include<fstream>
#include<iostream>
#include<stdio.h>
#include<stdlib.h>

using namespace std;

 90

Appendices

/*This class reads escrow info from the text File*/

readEscrowinfo::readEscrowinfo() {}
void readEscrowinfo::readEscrowinfo_fromFile() {

 FILE *fp;
 static int i, j, k, l; char c;
 int flag=1;
 fp=fopen("/home/morshed/Desktop/Lea/wiresharkfile.txt", "r");
 if(fp==NULL) {
 printf("file not foundyyy!\n");
 exit(0);
 }else {

 while(1){
 c=fgetc(fp);
 if(c!=EOF) {
 if (flag=1){
 if (c!='%'){
 tgk[i]=c;
 i++;
 }
 else if(c=='%'){
 flag=2;
 i++;
 }
 }
 else if(flag==2){
 if(c!='%'){
 rand[j]=c;
 j++;
 }
 else if(c=='%'){flag=3;
 j++;}
 }
 else if(flag==3){
 if(c!='%'){
 csbidf[k]=c;
 k++;
 }
 else if(c=='%'){flag=4;
 }
 }
 else if(flag==4){

 if(c!='%'){
 signedhash[l]=c;
 l++;
 }
 else if(c=='%'){flag=5;
 }

 91

Appendices

 }
 else if (flag==5) break;
 }else break;
 }
 fclose(fp);
 }
/*
* File: mainclass.cpp
* Author: morshed
* Created on November 29, 2009, 10:40 PM
*/

#include <pcap.h>
#include<string.h>
#include "mainclass.h"
#include<libmutil/MemObject.h>
#include</usr/local/include/libminisip/media/rtp/RtpPacket.h>
#include<libminisip/media/rtp/SRtpPacket.h>
#include<libmcrypto/hmac.h>
#include<libminisip/media/rtp/CryptoContext.h>

#include</usr/include/boost/date_time.hpp>

using namespace std;
using namespace boost::posix_time;

mainclass::mainclass() {
}

mainclass::mainclass(const mainclass& orig) {
}

mainclass::~mainclass() {
}

void read_packet (u_char *useless, const struct pcap_pkthdr *phdr, const u_char
*pkt){

 //tgk, rand, csbid, csid will be read here and will be pass through process packet
 //processpacket function further will send these value to handle packet for
//processing
 ptime time_start(microsec_clock::local_time());
 u_char *buf;
 int i=0,j;
 int p_len=phdr->len;

 /* in buf only encrypted payloads entered*/

 buf=new u_char[p_len-43];
 for (i=44, j=0;i<p_len;i++,j++)

 92

Appendices

 93

 buf[j]=pkt[i];
 MRef <SRtpPacket *> packet;
 packet=SRtpPacket::readPacketF1(buf,j);
readEscrowInfo escrow;
// following line can be used if a static TGK value is used
 /*unsigned char tgk_based64[]="LibgYDfqyX8810mbqUjMYPXVJMu4dnT/sa8q
NDk8YqjSwC5t0MMMgVFMGDuQIbBpxd7z01ka2bkPJw49G4kX34VlGhwiJ
gIOU4rS1H1W9MPWIlKLT+2p3vHAnK9uEXZPiqO/Cz5pvXnTRY/ySG5o1+
Yx4m6CDePqd7IgWy5id+/f92NZNoF3kd+v/9IX4gIVebM4f6OpI6wr9XpVs5K
G196e1g/eIQCGuancnO36y59i/TQww5W3FnTUUyRZCDTd";*/
unsigned char *tgk_based64=new unsigned char[256];
escrow.tgk_based64;
 int *tgklen=new int[192];
 unsigned char *tgk= new unsigned char[192];
 tgk= base64_decode(tgk_based64, 256, tgklen);
 // unsigned char rand_based64[]="S0iA5gDCwhfcseEdvO5rXg==";
unsigned char *rand_based64=new unsigned char[24];
escrow. rand_based64;
 int randlen=16;
 unsigned char *rand= new unsigned char[randlen];
 rand= base64_decode(rand_based64, 24, &randlen);
 unsigned int csbid=5862418;
 unsigned char * hmacAuthKey;
 setCryptoinfo sc;
 sc.handleRtpPacket(packet, tgk, rand, csbid);
 ptime time_end(microsec_clock::local_time());
 time_duration duration(time_end-time_start);
 cout<<duration<<"\n";
 printf("\n");
}
void mainclass::run()
{
 pcap_t *pcap;
 char pcapErr[PCAP_ERRBUF_SIZE];
 char fname[]="/home/morshed/Desktop/Lea/wireshark/srtp1.libpcap";
 pcap= pcap_open_offline(fname, pcapErr);
 if (pcap == NULL)
 {
 fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
 exit(EXIT_FAILURE);
 }
 ptime time_start(microsec_clock::local_time());
 pcap_loop(pcap, 0, read_packet, NULL);
 ptime time_end(microsec_clock::local_time());
 time_duration duration(time_end-time_start);
 cout<<"time:: "<<duration;
 pcap_close(pcap);
 }

Appendices

C. Source code of Verification Module
/*
* File: setsig.cpp
* Author: morshed
*
* Created on December 22, 2009, 1:28 AM
*/

#include "setsig.h"

using namespace std;

setsig::setsig() {
}
/*This function inserts signature from the RTCP packet to a vector*/

setsig::setsig(unsigned char *sigvalue, unsigned int siglength) {
 this->sigv = new unsigned char[siglength];
 memcpy(this->sigv, sigvalue, siglength);
 }
setsig::setsig(const setsig& orig) {
}

setsig::~setsig() {
}
/*
* File: sethash.cpp
* Author:morshed
*
* Created on December 21, 2009, 12:58 PM
*/

#include "sethash.h"

using namespace std;

/*This function insert hash of SRTP block into a vector*/

sethash::sethash() {
}
sethash::sethash(unsigned char *hashvalue, unsigned int hashlength) {
 this->hashv = new unsigned char[hashlength];
 memcpy(this->hashv, hashvalue, hashlength);
 }

sethash::sethash(const sethash& orig) {

Appendices

}

sethash::~sethash() {
}
/*
* File: VerificationRun.cpp
* Author: morshed
*
* Created on December 13, 2009, 10:16 PM
*/

#include "VerificationRun.h"
#include "sethash.h"
#include<iostream>
#include<stdlib.h>
#include<string.h>
#include <pcap.h>
#include<libmutil/MemObject.h>
#include</usr/local/include/libminisip/media/rtp/RtpPacket.h>
#include<libminisip/media/rtp/SRtpPacket.h>
#include<libmcrypto/hmac.h>
#include<libminisip/media/rtp/CryptoContext.h>

uint16_t sequence_no=29115, f_seq;
static int count,q, blockSize, c=1,j,block_number, f_no;
unsigned char * rawhashdata, *hashValue;
unsigned int hashLength;

std::list< MRef<sethash *>> hash;
std::list< MRef<setsig *>> sigdata;
int er,err, forged_block[100],fogery_info[200];

using namespace std;

VerificationRun::VerificationRun() {

}

VerificationRun::VerificationRun(const VerificationRun& orig) {
}

VerificationRun::~VerificationRun() {
}

unsigned char * VerificationRun::CreateHash(){
 hashValue = new unsigned char [20];
 readEscrow escrow;
 //following line can be used for static value of TGK

 95

Appendices

/* unsigned char
tgk_based64[]="22XcP0y/iJ9LpDzj0NVT+JDXZrxDwRurmuX6sWqPihp
K5jMaGXtHUhu3hFKVj3EfCIGBSExIy9ZY0Unn8ZjezhFVtJHkdohGXNE+q8e/JR
zdexc6mFKCO0F9V7y3RfnPiTQHcSpqbX6v9aaQEGbYTe/BVn328QUgWruYp80v
4YPCARRngAOJFQ4wHHlS62dXPB79XVckBbCMntLYeOdr9q21HSBDW0ljJyG
L49FBM+bukuPlaKKGViaEhpJtZprR";*/
 tgk_based64[]=escrow.tgkf;
 int *tgklen=new int[192];
 unsigned char *tgk= new unsigned char[192];
 tgk= base64_decode(tgk_based64, 256, tgklen);
 //following line can be used for static value of rand value
 /* unsigned char rand_based64[]="LVLDXNAEr2xiDcpzIKk0Yw==";*/
 unsigned char rand_based64[]=escrow.randf;
 int randlen=16;
 unsigned char *rand= new unsigned char[randlen];
 rand= base64_decode(rand_based64, 24, &randlen);
 //following line can be used for static value of csbid
 /* unsigned int csbid=-1038922046; */
 unsigned int csbid=escrow.csbidf;
 unsigned char * hmacAuthKey;
 unsigned char csId=1;
 setCryptoinfo sc;
 hmacAuthKey = new unsigned char[AUTH_KEY_SIZE];
 sc.genAuth(csId, hmacAuthKey, AUTH_KEY_SIZE,tgk,rand,csbid);
 for(int i=0;i<AUTH_KEY_SIZE;i++)
 hmac_sha1(hmacAuthKey, AUTH_KEY_SIZE,
 (unsigned char *)rawhashdata, /*data*/
 blockSize, /*authenticated part length*/
 hashValue, /*tag*/
 &hashLength);
}

void VerificationRun::ProcessBlock(MRef<SRtpPacket *> pkt){

 MRef<sethash*> hs;
 if (count == 0)
 rawhashdata = new unsigned char [BLOCK_SIZE*pkt->size()];
 memcpy(&rawhashdata[blockSize], pkt->getBytes(), pkt->size());

 blockSize += pkt->size();
 count++;j++;

 if (count >= BLOCK_SIZE) {
 CreateHash();
 hs=new sethash(hashValue, hashLength);
 hash.push_back(hs);
 count=0;

 96

Appendices

 blockSize=0;

 delete [] rawhashdata;
 delete [] hashValue;
 }

}

void VerificationRun::setvec(unsigned char *sigd, unsigned int len){

 MRef<setsig *> rp;

 rp=new setsig(sigd, len);
 massert(rp);

 if(!rp.isNull())
 sigdata.push_back(rp);
 else
 cout<<"cannot create signature vector"<<endl;
}

void VerificationRun::showsigdata (){

 list<MRef<setsig *>> ::iterator i;
 unsigned char *sig_vector=new unsigned char[128];
 if(!sigdata.empty()) {
 for(i = sigdata.begin(); i!= sigdata.end(); i++){

 sig_vector=(*i)->getsig();
 for(int j=0;j<128;j++)
 printf(" %x",sig_vector[j]);
 }
 }
 else cout<<"signature hash empty"<<endl;

}

void VerificationRun::verifyHash(){

 list<MRef<sethash *>> ::iterator i;
 unsigned char *hash_vector=new unsigned char[23296];
 for(i = hash.begin(); i!= hash.end(); i++){

 hash_vector=(*i)->gethash();
 for(int j=0;j<23296;j++)

 97

Appendices

 printf(" %x",hash_vector[j]);
 }
}

void store_block (u_char *useless, const struct pcap_pkthdr *phdr, const u_char
*pkt){

 int i=0,j;
 int p_len=phdr->len;

 /* in buf only encrypted payloads entered*/
 u_char *buf=new u_char[p_len-43];
 for (i=44, j=0;i<p_len;i++,j++)

 buf[j]=pkt[i];

 MRef <SRtpPacket *> packet;
 packet=SRtpPacket::readPacketF1(buf,j);
 VerificationRun v;
 v.ProcessBlock(packet);
 delete [] buf;
}

//if first sequence number is escrowed then the following function will work

//void firstsequence_callback (u_char *useless, const struct pcap_pkthdr *phdr, const
u_char *pkt){
//
// int i=0,j;
// int p_len=phdr->len;
//
// /* in buf only encrypted payloads entered*/
// u_char *buf=new u_char[p_len-43];
// for (i=44, j=0;i<p_len;i++,j++)
//
// buf[j]=pkt[i];
//
// MRef <SRtpPacket *> packet;
// // cout<<"ok"<<endl;
// packet=SRtpPacket::readPacketF1(buf,j);
// VerificationRun v;
// if(packet->getHeader().getSeqNo()==sequence_no){
// v.ProcessBlock(packet);
// sequence_no++;
// f_seq=sequence_no;
// }
// else if(packet->getHeader().getSeqNo()==sequence_no+1){
// cout<<"invalid sequence no.,packet missing"<<endl;

 98

Appendices

// sequence_no++;
// count++;
// // blockSize += packet->size();
// }
// else if(packet->getHeader().getSeqNo()!=sequence_no){
// cout <<"invalid sequence no, forged packet may be inserted in the captured file
at block no:: "<<block_number<<endl;
//// v.ProcessBlock(packet);
// count++;
// sequence_no=sequence_no+1;
// }
// delete [] buf;
//}

void rtcpvector(u_char *useless, const struct pcap_pkthdr *phdr, const u_char *pkt){
 MRef<setsig*> rs;
 int i=0,j,p;
 int p_len=phdr->len;
 unsigned char *bufRtcp;

 /* in buf only encrypted payloads entered*/

 bufRtcp=new u_char[p_len-44];
 for (i=44, j=0;i<p_len-4;i++,j++)
 bufRtcp[j]=(unsigned char)pkt[i];

 rs=new setsig(bufRtcp, j);
 sigdata.push_back(rs);
 delete [] bufRtcp;

}

//void pRtcp_callback (u_char *useless, const struct pcap_pkthdr *phdr, const u_char
*pkt){
void verify_hash(){
 int i=0,j,p;

 list<MRef<sethash *>> ::iterator k;
 list<MRef<setsig *>> ::iterator m;

 unsigned char *hash_vector=new unsigned char[20];

 for(k = hash.begin(),p=0; k!= hash.end(); k++,p++){
 hash_vector=(*k)->gethash();
 for(m = sigdata.begin(),j=0; m!= sigdata.end(); m++,j++){

 MRef<Certificate*> cert;

 99

Appendices

cert=OsslCertificate::load("/home/morshed/trunk/minisip/test_cert/alice_cert.pem");
 //cert= new
OsslCertificate("/home/morshed/trunk/minisip/test_cert/alice_cert.pem");

 massert(cert);

 // er=cert->verifSign(hash_vector, 20, bufRtcp, 128);
 er=cert->verifSign(hash_vector, 20, (*m)->getsig(), 128);

 if(er==1 && m!= sigdata.end()){
// cout<<endl<<"No forgery made in block no. :: "<<p<<endl;
 block_number++;
 err=1;
// forgery_info[f_no]=3;
// f_no++;
 printf("3\n");
 delete []hash_vector;
 break;
 }

 }
 if(er==0){
// forgery_info[f_no]=3;
// f_no++;
 printf("5\n");
// cout<<endl<<"Forgery made in block no. :: "<<p<<endl;
 }

 }
}

void VerificationRun::run(){

 pcap_t *pcap;
 char pcapErr[PCAP_ERRBUF_SIZE];
 //char fname[]="/home/morshed/Desktop/Lea/readsrtp.libpcap";
 //char fname[]="/home/morshed/Desktop/Lea/wireshark/srtp1.libpcap";
 //char fname[]="/home/morshed/Desktop/Lea/srtp1.libpcap";
 //char fname[]="/home/morshed/Desktop/Lea/wireshark/srtp8.libpcap";
 char fname[]="/home/morshed/Desktop/Lea/wireshark/srtp_forged1.libpcap";

 pcap= pcap_open_offline(fname, pcapErr);

 if (pcap == NULL)
 {
 fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
 exit(EXIT_FAILURE);
 }

 100

Appendices

 pcap_loop(pcap, 0, store_block, NULL);
 pcap_close(pcap);
 // following three lines deals with the last block if the last block<blocksize
 CreateHash();
// new sethash(hashValue, hashLength);
 hash.push_back(new sethash(hashValue, hashLength));

 delete [] rawhashdata;
 delete [] hashValue;

}

void VerificationRun::runRtcp(){

 pcap_t *pcap_rtcp;
 char pcapErr[PCAP_ERRBUF_SIZE];

 char frtcp[]="/home/morshed/Desktop/Lea/wireshark/rtcpf1.libpcap";
 //char frtcp[]="/home/morshed/Desktop/Lea/readrtcp.libpcap";

 pcap_rtcp= pcap_open_offline(frtcp, pcapErr);

 VerificationRun r;
 r.run();
 if (pcap_rtcp == NULL)
 {
 fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
 exit(EXIT_FAILURE);
 }
 //pcap_loop(pcap_rtcp, 0, pRtcp_callback, NULL);
 pcap_loop(pcap_rtcp, 0, rtcpvector, NULL);
 verify_hash();

 pcap_close(pcap_rtcp);
}

 101

Appendices

D. Source code of Attacker Module
/* File: setVecotr.cpp*/

#include "setVecotr.h"
#include<libmutil/MemObject.h>
#include<string.h>

using namespace std;
setVecotr::setVecotr() {
}

/*This function inserts hash of a block into the vector*/

setVecotr::setVecotr(unsigned char *blockvalue, unsigned int blocklength) {
 this->blockv = new unsigned char[blocklength];
 memcpy(this->blockv, blockvalue, blocklength);
 }

setVecotr::setVecotr(const setVecotr& orig) {
}

setVecotr::~setVecotr() {
}

/* File: mainattacker.cpp*/

#include "mainattacker.h"
#include</root/libattacker/setVecotr.h>

using namespace std;

static int place, count=0;
char frtcp[]="/home/morshed/Desktop/Lea/wireshark/srtp_forged5.libpcap";
pcap_dumper_t *pd, *pd1;
 std::list< MRef<setVecotr *>> block;

mainattacker::mainattacker() {
}

mainattacker::mainattacker(const mainattacker& orig) {
}

mainattacker::~mainattacker() {
}

/*This function dumps packet or block without SRTP authentication and called by

 102

Appendices

insert_block_packet() function*/
void pdump (u_char *pd, const struct pcap_pkthdr *phdr, const u_char *pkt){
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
}

/*
* This function insert a packet or block at the front, middle and last. It is needs
* to make a libpcap file (by which actual captured file will be forged) consisting of
* one packet to insert on packet or to make a libpcap file consisting of one block to
* insert a full block in the captured file (this is without SRTP authentication).
*/

void insert_block_packet (u_char *pd, const struct pcap_pkthdr *phdr, const u_char
*pkt){

 if (count==place & count<=128){
 pcap_t *pcap_filefromwright1;
 char pcapErr[PCAP_ERRBUF_SIZE];
 char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1b.libpcap"; /* for
block, srtp1b contains block*/
/* char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1p.libpcap"; */*for
packet, srtp1p contains a single packet */

 pcap_filefromwright1= pcap_open_offline(frtcp2, pcapErr);

 if (pcap_filefromwright1 == NULL)
 {
 fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
 exit(EXIT_FAILURE);
 }
 if(count==0){
 pcap_loop(pcap_filefromwright1, 0, pdump, (u_char *)pd);//(1*) this line add
ablock or packet not replace
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
 else{
 //pcap_dump((u_char*)pd, phdr, pkt);
 pcap_loop(pcap_filefromwright1, 0, pdump, (u_char *)pd);
 count++;
 }
 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }

 103

Appendices

}

/*This function dumps packet or block with SRTP authentication and called by
insert_block_packet_srtp() function*/
void pdump_srtp (u_char *pd, const struct pcap_pkthdr *phdr, const u_char *pkt){

 u_char *buf=(u_char*)pkt;
 MRef<SRtpPacket *> packet;
 packet=SRtpPacket::readPacketF1(buf,phdr->len);
 buf=packet->getContent();
 pcap_dump((u_char*)pd, phdr, pkt);
 //place++;
 //count++;
}

/*
* This function insert a packet or block at the front, middle and last. It is needs
* to make a libpcap file (by which actual captured file will be forged) consisting of
* one packet to insert on packet or to make a libpcap file consisting of one block to
* insert a full block in the captured file (this is with SRTP authentication).
*/

void insert_block_packet_Srtp (u_char *pd, const struct pcap_pkthdr *phdr, const
u_char *pkt){

 if (count==place){
 pcap_t *pcap_filefromwright1;
 char pcapErr[PCAP_ERRBUF_SIZE];

// for block, srtp1b contains block
// char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1b.libpcap";

//for packet, srtp1p contains a single packet
 char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1p.libpcap";
 pcap_filefromwright1= pcap_open_offline(frtcp2, pcapErr);

 if (pcap_filefromwright1 == NULL)
 {
 fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
 exit(EXIT_FAILURE);
 }
 if(count==0){
 // this line add ablock or packet not replace
 pcap_loop(pcap_filefromwright1, 0, pdump_srtp, (u_char *)pd);
pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }

 104

Appendices

 else{
 pcap_dump((u_char*)pd, phdr, pkt);
 pcap_loop(pcap_filefromwright1, 0, pdump_srtp, (u_char *)pd);
 //pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}

/* following function replace the content of a packet along with sequence no. and
* without SRTP authentication.
*/
void pd_callback (u_char *pd, const struct pcap_pkthdr *phdr, const u_char *pkt){

 int i=0,j,p;
 int p_len=phdr->len;

 /* in buf only encrypted payloads entered*/
 u_char *buf=(u_char*)pkt;

 for (i=44;i<p_len-4;i++)
 buf[i]='d';

 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
}

void po_callback (u_char *pd, const struct pcap_pkthdr *phdr, const u_char *pkt){

// pcap_t *pcap_filefromwright1;
// char pcapErr[PCAP_ERRBUF_SIZE];

 pcap_dump((u_char*)pd, phdr, pkt);
 count++;

 //char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1b.libpcap";
// char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1p.libpcap";
// pcap_filefromwright1= pcap_open_offline(frtcp2, pcapErr);
//
// if (pcap_filefromwright1 == NULL)
// {
// fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
// exit(EXIT_FAILURE);

 105

Appendices

// }
// pcap_loop(pcap_filefromwright1, 0, pcap_dump, (u_char *)pd);
// printf("packet inserted successfully\n");
//// pcap_breakloop(pcap_filefromwright);
//// exit(0);
// count++;
//
// pcap_dump((u_char*)pd, phdr, pkt);
// count++;
//
////
}

//this following module for replacing a block
/*
void pblock_callback (u_char *pd, const struct pcap_pkthdr *phdr, const u_char
*pkt){

 if (count==place){
 pcap_t *pcap_filefromwright1;
 char pcapErr[PCAP_ERRBUF_SIZE];

 pcap_dump((u_char*)pd, phdr, pkt);

 //char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1b.libpcap";
 char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1b.libpcap";
 pcap_filefromwright1= pcap_open_offline(frtcp2, pcapErr);

 if (pcap_filefromwright1 == NULL)
 {
 fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
 exit(EXIT_FAILURE);
 }
 pcap_loop(pcap_filefromwright1, 0, po_callback, (u_char *)pd);
 printf("packet inserted successfully\n");
 }
 else{
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}
*/
///this following pv_callback function replace a packet
//void pv_callback (u_char *pd, const struct pcap_pkthdr *phdr, const u_char *pkt){
//
// if (count==place){
// pcap_t *pcap_filefromwright1;
// char pcapErr[PCAP_ERRBUF_SIZE];

 106

Appendices

//
// //pcap_dump((u_char*)pd, phdr, pkt);//(1*)this line used for inserting a packet
or block, not for replacing a packet or block
//
// //char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1b.libpcap";
// char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1p.libpcap";
// pcap_filefromwright1= pcap_open_offline(frtcp2, pcapErr);
//
// if (pcap_filefromwright1 == NULL)
// {
// fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
// exit(EXIT_FAILURE);
// }
// //pcap_loop(pcap_filefromwright1, 0, pcap_dump, (u_char *)pd);//(1*) this line
add ablock or packet not replace
// // pcap_loop(pcap_filefromwright1, 0, pcap_dump, (u_char *)pd);//this line
replace a packet
// pcap_loop(pcap_filefromwright1, 0, pdump, (u_char *)pd);
// printf("packet inserted successfully\n");
//// pcap_breakloop(pcap_filefromwright);
//// exit(0);
// count++;
// }
// else{
// pcap_dump((u_char*)pd, phdr, pkt);
// count++;
// }
//// printf("successful");
//}

void pv_callback (u_char *pd, const struct pcap_pkthdr *phdr, const u_char *pkt){

 if (count==place){
 pcap_t *pcap_filefromwright1;
 char pcapErr[PCAP_ERRBUF_SIZE];

 //pcap_dump((u_char*)pd, phdr, pkt);//(1*)this line used for inserting a packet
or block, not for replacing a packet or block

 char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1b.libpcap";
 // char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1p.libpcap";
 pcap_filefromwright1= pcap_open_offline(frtcp2, pcapErr);

 if (pcap_filefromwright1 == NULL)
 {
 fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
 exit(EXIT_FAILURE);

 107

Appendices

 }
 //pcap_loop(pcap_filefromwright1, 0, pcap_dump, (u_char *)pd);//(1*) this line
add ablock or packet not replace
 // pcap_loop(pcap_filefromwright1, 0, pcap_dump, (u_char *)pd);//this line
replace a packet
 // pd1=pd[place];

//this block is for replacing a block
 pcap_loop(pcap_filefromwright1, 0, po_callback, (u_char *)pd);
//this block is for replacing the content of a packet
 //pcap_loop(pcap_filefromwright1, 0, pc_callback, (u_char *)pd);
 printf("packet inserted successfully\n");
 }
 else if(count>=place+128){
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }else count++;
}

//this function for replacing content of a packet
void pc_callback (u_char *pd, const struct pcap_pkthdr *phdr, const u_char *pkt){
 if (count==place){
 pcap_t *pcap_filefromwright1;
 char pcapErr[PCAP_ERRBUF_SIZE];

 char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1p.libpcap";
 pcap_filefromwright1= pcap_open_offline(frtcp2, pcapErr);

 if (pcap_filefromwright1 == NULL)
 {
 fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
 exit(EXIT_FAILURE);
 }
 //pcap_loop(pcap_filefromwright1, 0, pcap_dump, (u_char *)pd);//(1*) this line
add ablock or packet not replace
 // pcap_loop(pcap_filefromwright1, 0, pcap_dump, (u_char *)pd);//this line
replace a packet
 // pd1=pd[place];
 pcap_loop(pcap_filefromwright1, 0, pd_callback, (u_char *)pd); //this block is
for replacing a block
 //pcap_loop(pcap_filefromwright1, 0, pc_callback, (u_char *)pd); //this block is
for replacing the content of a packet
 printf("packet inserted successfully\n");
 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }

 108

Appendices

}

//This function replace the contend of the funnction without replacing seqence no.'
// and call the ps_callback function and also without SRTP authentication data

void pcps_callback (u_char *pd, const struct pcap_pkthdr *phdr, const u_char *pkt){

 if (count==place){

 int p_len=phdr->len;

 /* in buf only encrypted payloads entered*/
 u_char *buf=(u_char*)pkt;

 // for (int i=48;i<p_len-4;i++)//only sequence no. is not modified
 for (int i=56;i<p_len-4;i++) //only data is modified
 buf[i]='d';

 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}

//This function replace the contend of the funnction without replacing seqence no.'
// and call the ps_callback function and also with SRTP authentication data

void pcas_callback (u_char *pd, const struct pcap_pkthdr *phdr, const u_char *pkt){

 if (count==place){

 int p_len=phdr->len;

 /* in buf only encrypted payloads entered*/
 u_char *buf=(u_char*)pkt;

 // for (int i=48;i<p_len-4;i++)//only sequence no. is not modified
 for (int i=56;i<p_len-4;i++) //only data is modified
 buf[i]='d';
 MRef <SRtpPacket *> packet;

 packet=SRtpPacket::readPacketF1(buf,182);
 buf=packet->getContent();
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;

 109

Appendices

 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}

//This function replace the contend of the funnction replacing seqence no.'
// and call the ps_callback function and also with SRTP authentication data

void psrtp_auth_callback (u_char *pd, const struct pcap_pkthdr *phdr, const u_char
*pkt){

 if (count==place){

 int p_len=phdr->len;

 /* in buf only encrypted payloads entered*/
 u_char *buf=(u_char*)pkt;

 // for (int i=48;i<p_len-4;i++)//only sequence no. is not modified
 for (int i=46;i<p_len-4;i++) //only data is modified
 buf[i]='d';
 MRef <SRtpPacket *> packet;

 packet=SRtpPacket::readPacketF1(buf,182);
 buf=packet->getContent();
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}

//replacing block function2. This creates the vector of the packet
void rblock_callback (u_char *p, const struct pcap_pkthdr *p_hdr, const u_char
*pktb){

 u_char *buf=(u_char *)pktb;
 for(int i=0,j=0;i<101;i++,j++)
 buf[j]=pktb[i];
 MRef<setVecotr*> replaced_p;
 replaced_p=new setVecotr(buf, p_hdr->len);
 block.push_back(replaced_p);
}

 110

Appendices

//replacing a block function1
void rblock (){

 pcap_t *pcap_filefromwright1;
 char pcapErr[PCAP_ERRBUF_SIZE];

 char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp4.libpcap";
 pcap_filefromwright1= pcap_open_offline(frtcp2, pcapErr);

 if (pcap_filefromwright1 == NULL)
 {
 fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
 exit(EXIT_FAILURE);
 }
 pcap_loop(pcap_filefromwright1, 0, rblock_callback, NULL);
 pcap_close(pcap_filefromwright1);

}

/*This function calculates the UDP checksum*/

unsigned short computeUDPChecksum(unsigned short udp_len, unsigned short
src_add[],unsigned short dest_add[],
 unsigned short no_of_dataoctet, unsigned short data[])
{
 unsigned short udp_port_no=17;
 unsigned short padd=0;
 unsigned short addjacent_two_octet;
 unsigned long sum,checksum;
 bool padding;

 //determine padding
 if (((no_of_dataoctet-1) % 2)!=0)
 padding=1;
 else padding=0;

 // Find out if the length of data is even or odd number. If odd,
 // add a padding byte = 0 at the end of packet
 if (padding&1==1){
 padd=1;
 data[udp_len]=0;
 }

 //initialize sum to zero
 sum=0;

 111

Appendices

 // make 16 bit words out of every two adjacent 8 bit words and
 // calculate the sum of all 16 vit words
 for (int i=0;i<udp_len+padd;i=i+2){
 addjacent_two_octet =((data[i]<<8)&0xFF00)+(data[i+1]&0xFF);

 sum = sum + (unsigned long)addjacent_two_octet;
 }
 //_ add the UDP pseudo header which contains the IP source and destinationn
addresses
 for (int i=0;i<4;i=i+2){
 addjacent_two_octet =((src_add[i]<<8)&0xFF00)+(src_add[i+1]&0xFF);
 sum=sum+addjacent_two_octet;
 }
 for (int i=0;i<4;i=i+2){
 addjacent_two_octet =((dest_add[i]<<8)&0xFF00)+(dest_add[i+1]&0xFF);
 sum=sum+addjacent_two_octet;
 }
 // the protocol number and the length of the UDP packet
 sum = sum + udp_port_no+ udp_len;

 // keep only the last 16 bits of the 32 bit calculated sum and add the carries
 while (sum>>16)
 sum = (sum & 0xFFFF)+(sum >> 16);

 // Take the one's complement of sum
 checksum = ~sum;

 return ((unsigned short) checksum);
}

//This function replace the contend of a paccket without replacing seqence no.'
// and call the ps_callback function and also without SRTP authentication data

void replace_data (u_char *pd, const struct pcap_pkthdr *phdr, const u_char *pkt){

 unsigned short *src_add=new unsigned short[8];
 unsigned short *dst_add=new unsigned short[8];
 unsigned short *data=new unsigned short[226];
 unsigned short checksum;
 if (count==place){

 int t, p_len=phdr->len;

 /* in buf only encrypted payloads entered*/
 u_char *buf=(u_char*)pkt;
 buf[42]=0;
 buf[43]=0;

 112

Appendices

 // for (int i=48;i<p_len-4;i++)//only sequence no. is not modified
 for (int i=56;i<p_len;i++){ //only data is modified
 buf[i]='a';
 }
 for(int i=36,j=0;i<p_len;i++,j++){
 data[j]=pkt[i];
 t++;
 }
 for(int i=28,j=0;i<32;i++,j++){
 src_add[j]=pkt[i]; //convert umsigned char * to unsigned short
 }
 for(int i=32,j=0;i<36;i++,j++){
 dst_add[j]=pkt[i];
 }
 //unsigned short *p = static_cast<unsigned
short*>(static_cast<void*>(&packetBuffer[1]));
 //checksum=udp_sum_calc(190, src_add, dst_add, 1, data);
 checksum=computeUDPChecksum(190, src_add, dst_add, t, data);
 printf("%d\n",checksum);
 u_char *chksum=new u_char[4];

 //converts checksum fro unsigned short to unsigned char*

 chksum[0] = (unsigned char)((checksum>>8) & 0xFF);
 chksum[1] = (unsigned char)(checksum & 0xFF);

 buf[42]=chksum[0];
 buf[43]=chksum[1];
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}

/*This function replace the content of a packet without sequence no as well as SRTP
authentication
* this function can also be used to replace the content of a block of packets changing
the input file.
*/

void replace_content_packet (u_char *pd, const struct pcap_pkthdr *phdr, const
u_char *pkt){

 if (count==place){

 113

Appendices

 pcap_t *pcap_filefromwright1;
 char pcapErr[PCAP_ERRBUF_SIZE];

 char frtcp2[]="/home/morshed/Desktop/Lea/wireshark/srtp1p.libpcap";
 pcap_filefromwright1= pcap_open_offline(frtcp2, pcapErr);

 if (pcap_filefromwright1 == NULL)
 {
 fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
 exit(EXIT_FAILURE);
 }

 pcap_loop(pcap_filefromwright1, 0, pd_callback, (u_char *)pd);

 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}

/*ok function
void replace_block_withoutsrtpauth (u_char *pd, const struct pcap_pkthdr *phdr,
const u_char *pkt){
 int p,t=0,i,j; u16 *data=new u16[101];
 MRef <SRtpPacket *> packet;

 u16 *src_add=new u16[8];
 u16 *dst_add=new u16[8];
 u16 checksum;
 if (count==place & place<=10){
 list<MRef<setVecotr *>> ::iterator k;
 // u_char *buf=new u_char[phdr->len];
 u_char * dt=(u_char *)pkt;

 dt[40]=0;
 dt[41]=0;
 for(i=34,j=0;i<phdr->len;i++,j++){
 data[j]=((dt[i]));
 t++;
 }
 for(int i=26,j=0;i<30;i=i++,j++){
 src_add[j]=((dt[i])); //convert umsigned char * to unsigned short
 printf("%x ",src_add[j]);
 }

 for(int i=30,j=0;i<34;i=i++,j++){

 114

Appendices

 dst_add[j]=((dt[i]));
 }
 //unsigned short *p = static_cast<unsigned
short*>(static_cast<void*>(&packetBuffer[1]));

 checksum=udp_sum_calc(67, src_add, dst_add, 0, data);

 // u_char *chksum=static_cast<u16>(static_cast<void>(&checksum));
 u_char *chksum=new u_char[4];

 //converts checksum fro unsigned short to unsigned char*

 chksum[0] = (unsigned char)((checksum>>8));
 chksum[1] = (unsigned char)checksum;

 dt[40]=chksum[0];
 dt[41]=chksum[1];
 //for new checksum

 pcap_dump((u_char*)pd, phdr, pkt);
 place++;
 count++;
 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}
*/

//replacing block function3 with srtp authentication with checksum
void replace_block_withsrtpauth (u_char *pd, const struct pcap_pkthdr *phdr, const
u_char *pkt){
 int p, t=0; u16 *data=new u16[226];
 MRef <SRtpPacket *> packet;

 u16 *src_add=new u16[8];
 u16 *dst_add=new u16[8];
 u16 checksum;
 if (count==place & place<=128){
 list<MRef<setVecotr *>> ::iterator k;
 u_char * buf=(u_char *)pkt;

 unsigned char *bl_vector=new unsigned char[phdr->len];

 for(k = block.begin(),p=1; k!= block.end(); k++,p++){
 if (place==p){

 115

Appendices

 bl_vector=(*k)->getblock();
 // for(int i=0;i<phdr->len;i++) //if full packet is replaced
 for(int i=44;i<phdr->len;i++)
 buf[i]=bl_vector[i];
 }
 }
 buf[42]=0;
 buf[43]=0;
 packet=SRtpPacket::readPacketF1(buf,phdr->len);
 char *dt=new char[packet->size()];
 dt=packet->getBytes();
 for(int i=36,j=0;i<packet->size();i++,j++){
 data[j]=dt[i];
 t++;
 }

 for(int i=28,j=0;i<32;i++,j++){
 src_add[j]=dt[i]; //convert umsigned char * to unsigned short
 }
 for(int i=32,j=0;i<36;i++,j++){
 dst_add[j]=dt[i];
 }
 //unsigned short *p = static_cast<unsigned
short*>(static_cast<void*>(&packetBuffer[1]));

 checksum=computeUDPChecksum(190, src_add, dst_add, t, data);

 // u_char *chksum=static_cast<u16>(static_cast<void>(&checksum));
 u_char *chksum=new u_char[4];

 //converts checksum fro unsigned short to unsigned char*

 chksum[0] = (unsigned char)((checksum>>8) & 0xFF);
 chksum[1] = (unsigned char)(checksum & 0xFF);

 buf[42]=chksum[0];
 buf[43]=chksum[1];
 //for new checksum

 pcap_dump((u_char*)pd, phdr, pkt);
 place++;
 count++;
 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}

 116

Appendices

//insert at the end
//replacing block function3 with srtp authentication with checksum
void replace_block_withsrtpauth_end (u_char *pd, const struct pcap_pkthdr *phdr,
const u_char *pkt){
 int p, t=0; u16 *data=new u16[226];
 MRef <SRtpPacket *> packet;

 u16 *src_add=new u16[8];
 u16 *dst_add=new u16[8];
 u16 checksum;
 if (count==place & place<=128){
 list<MRef<setVecotr *>> ::iterator k;
 u_char * buf=(u_char *)pkt;

 unsigned char *bl_vector=new unsigned char[phdr->len];

 for(k = block.begin(),p=1; k!= block.end(); k++,p++){
 if (place==p){
 bl_vector=(*k)->getblock();
 // for(int i=0;i<phdr->len;i++) //if full packet is replaced
 for(int i=44;i<phdr->len;i++)
 buf[i]=bl_vector[i];
 }
 }
 buf[42]=0;
 buf[43]=0;
 packet=SRtpPacket::readPacketF1(buf,phdr->len);
 char *dt=new char[packet->size()];
 dt=packet->getBytes();
 for(int i=36,j=0;i<packet->size();i++,j++){
 data[j]=dt[i];
 t++;
 }
 printf("\n\n");
 for(int i=28,j=0;i<32;i++,j++){
 src_add[j]=dt[i]; //convert umsigned char * to unsigned short
 }
 for(int i=32,j=0;i<36;i++,j++){
 dst_add[j]=dt[i];
 }
 //unsigned short *p = static_cast<unsigned
short*>(static_cast<void*>(&packetBuffer[1]));

 checksum=computeUDPChecksum(190, src_add, dst_add, t, data);
 // u_char *chksum=static_cast<u16>(static_cast<void>(&checksum));
 u_char *chksum=new u_char[4];

 117

Appendices

 //converts checksum fro unsigned short to unsigned char*

 chksum[0] = (unsigned char)((checksum>>8) & 0xFF);
 chksum[1] = (unsigned char)(checksum & 0xFF);

 buf[42]=chksum[0];
 buf[43]=chksum[1];
 //for new checksum

 pcap_dump((u_char*)pd, phdr, pkt); place++;
 count++;

 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}

//This function replace the contend of the packet without replacing seqence no.'
// (okokokok)

void replace_content_srtp (u_char *pd, const struct pcap_pkthdr *phdr, const u_char
*pkt){

 unsigned short *src_add=new unsigned short[8];
 unsigned short *dst_add=new unsigned short[8];
 unsigned short *data=new unsigned short[226];
 unsigned short checksum;
 int t=0;
 if (count==place){

 int p_len=phdr->len;

 /* in buf only encrypted payloads entered*/
 u_char *buf=(u_char*)pkt;
 for (int i=48;i<p_len;i++)//only sequence no. is not modified
 //for (int i=56;i<p_len-4;i++) //only data is modified
 buf[i]='d';
 buf[42]=0;
 buf[43]=0;

 MRef <SRtpPacket *> packet;

 packet=SRtpPacket::readPacketF1(buf,phdr->len);
 buf=packet->getContent();

 118

Appendices

 for(int i=36,j=0;i<p_len;i++,j++){
 data[j]=buf[i];
 t++;
 }
 for(int i=28,j=0;i<32;i++,j++){
 src_add[j]=pkt[i]; //convert umsigned char * to unsigned short
 }
 for(int i=32,j=0;i<36;i++,j++){
 dst_add[j]=pkt[i];
 }
 //unsigned short *p = static_cast<unsigned
short*>(static_cast<void*>(&packetBuffer[1]));
 //checksum=udp_sum_calc(190, src_add, dst_add, 1, data);
 checksum=computeUDPChecksum(190, src_add, dst_add, t, data);
 //printf("%d\n",checksum);
 u_char *chksum=new u_char[4];

 //converts checksum fro unsigned short to unsigned char*

 chksum[0] = (unsigned char)((checksum>>8) & 0xFF);
 chksum[1] = (unsigned char)(checksum & 0xFF);

 buf[42]=chksum[0];
 buf[43]=chksum[1];

 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}

//replacing block function3 with srtp authentication
void replace_block_withoutsrtpauth (u_char *pd, const struct pcap_pkthdr *phdr,
const u_char *pkt){
 int p;

 if (count==place & place<=128){
 list<MRef<setVecotr *>> ::iterator k;
 u_char *buf=new u_char[phdr->len];
 buf=(u_char *)pkt;

 unsigned char *bl_vector=new unsigned char[phdr->len];

 119

Appendices

 for(k = block.begin(),p=1; k!= block.end(); k++,p++){
 if (place==p){
 bl_vector=(*k)->getblock();
 MRef <SRtpPacket *> packet;

 for (int i=27, j=0;i<phdr->len;i++,j++)
 // for (int i=36;i<phdr->len;i++)
 buf[i]=bl_vector[i];
 packet=SRtpPacket::readPacketF1(buf,phdr->len);
 buf=packet->getContent();
 for(int i=0;i<phdr->len;i++)
 printf("%x ",buf[i]);
 printf("\n\n");
 }
 }

 pcap_dump((u_char*)pd, phdr, pkt);
 place++;
 count++;
 }
 else if(place>128){
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
 else {
 pcap_dump((u_char*)pd, phdr, pkt);
 count++;
 }
}

void mainattacker::RunAttacker(){

 pcap_t *pcap_filefromwright;
 char pcapErr[PCAP_ERRBUF_SIZE];
 int choice;

 char frtcp1[]="/home/morshed/Desktop/Lea/wireshark/srtp_forged4.libpcap";
// char frtcp1[]="/home/morshed/Desktop/Lea/wireshark/UDP-echo-request-
example.pcap";

 rblock();
 pcap_filefromwright= pcap_open_offline(frtcp1, pcapErr);

 if (pcap_filefromwright == NULL)
 {
 fprintf(stderr, "pcap_open_offline failed: %s\n", pcapErr);
 exit(EXIT_FAILURE);
 }

 120

Appendices

//replace_block_callback ();
 pd=pcap_dump_open(pcap_filefromwright, frtcp);
 cout<<"Enter Your Choice:: ";
 cin>>choice;
 switch(choice){
 case 1:
 /* Replace all packet of a session with the packet of other session*/
 pcap_loop(pcap_filefromwright, 0, pcap_dump, (u_char *)pd);
 cout<<"Full Session has been replaced by the conversation of other
session."<<endl;
 break;

 case 2:
 /* Insert a packet or block of packet of a session with the packet or block of
packets
 * of other session in the front, middle, or end of the captured session. (without
SRTP authentication) */
 cout<<"Enter the position after the packet the forged packet or block will be
inserted (type digit):: "<<endl;
 cin>>place;
 pcap_loop(pcap_filefromwright, 0, insert_block_packet, (u_char *)pd);
 cout<<" Modified data has been inserted after packet no. %d."<<place<<endl;
 break;

 case 3:
 /* Insert a packet or block of packet of a session with the packet or block of
packets
 * of other session in the front, middle, or end of the captured session. (with
SRTP authentication) */
 cout<<"Enter the position after the packet the forged packet or block will be
inserted (type digit):: "<<endl;
 cin>>place;
 pcap_loop(pcap_filefromwright, 0, insert_block_packet_Srtp, (u_char *)pd);
 cout<<" Modified data has been inserted after packet no. %d."<<place<<endl;
 break;

 case 4:
 /* Replace the content of a packet of a session with the packet or block of
packets
 * of other session in the front, middle, or end of the captured session. (without
SRTP authentication) */
 cout<<"Enter the position after the packet the forged packet or block will be
inserted (type digit):: "<<endl;
 cin>>place;
 pcap_loop(pcap_filefromwright, 0, replace_content_packet, (u_char *)pd);
 cout<<" Modified data has been inserted after packet no. %d."<<place<<endl;
 break;

 121

Appendices

 case 5:
 /* Replace the content of a packet of a session with the packet or block of
packets
 * of other session in the front, middle, or end of the captured session. (
 * with SRTP authentication and sequence no.) */
 cout<<"Enter the position after the packet the forged packet or block will be
inserted (type digit):: "<<endl;
 cin>>place;
 pcap_loop(pcap_filefromwright, 0, replace_content_srtp, (u_char *)pd);
 cout<<" Modified data has been inserted after packet no. %d."<<place<<endl;
 break;

 case 6:
 /* Replace the content of a packet of a session with the packet or block of
packets
 * of other session in the front, middle, or end of the captured session. (
 * without SRTP authentication and sequence no.) */
 cout<<"Enter the position after the packet the forged packet or block will be
inserted (type digit):: "<<endl;
 cin>>place;
 pcap_loop(pcap_filefromwright, 0, replace_data, (u_char *)pd);
 cout<<" Modified data has been inserted after packet no. %d."<<place<<endl;
 break;

 case 7:
 /* Replace the content of a packet of a session with the packet or block of
packets
 * of other session in the front, middle, or end of the captured session. (
 * without SRTP authentication and sequence no.) */
 cout<<"Enter the position after the packet the forged packet or block will be
inserted (type digit):: "<<endl;
 cin>>place;
 //pcap_loop(pcap_filefromwright, 0, replace_block_withsrtpauth, (u_char
*)pd);
 pcap_loop(pcap_filefromwright, 0, replace_block_withsrtpauth_end, (u_char
*)pd);
 cout<<" Modified data has been inserted after packet no. %d."<<place<<endl;
 break;

 default:
 cout<<"Invalid Input"<<endl;
 }
 //pcap_loop(pcap_filefromwright, 15, pcap_dump, (u_char *)pd);//replace_data
 //pcap_loop(pcap_filefromwright, 0, pv_callback, (u_char *)pd);// this line is for
rplacing the a block a packet
 //pcap_loop(pcap_filefromwright, 0, pblock_callback, (u_char *)pd);//
 //pcap_loop(pcap_filefromwright, 0, pc_callback, (u_char *)pd);// this line for
replacing the content of the packet

 122

Appendices

 //pcap_loop(pcap_filefromwright, 0, pcps_callback, (u_char *)pd);// this line for
replacing the content of the packet without replacing sequence no. witout srtp
authentication
 //pcap_loop(pcap_filefromwright, 0, pcas_callback, (u_char *)pd);// this line for
replacing the content of the packet without replacing sequence no. with srtp
authentication
 // pcap_loop(pcap_filefromwright, 0, psrtp_auth_callback, (u_char *)pd);// this line
for replacing the content of the packet replacing sequence no. with srtp authentication
 //pcap_loop(pcap_filefromwright, 0, bsrtp_auth_callback, (u_char *)pd);//
(block)this line for replacing the content of the packet replacing sequence no. with
srtp authentication
// pcap_loop(pcap_filefromwright, 0, replace_block_withoutsrtpauth, (u_char
*)pd);// (block)this line for replacing the content of the packet replacing sequence no.
without srtp authentication
 // pcap_loop(pcap_filefromwright, 0, replace_block_withsrtpauth, (u_char *)pd);//
(block)this line for replacing the content of the packet replacing sequence no. with
srtp authentication
 pcap_close(pcap_filefromwright);

}

/*Create RTP packet*/
RtpPacket *RtpPacket::readPacketF1(unsigned char *buf, int pkt_length){
//#define UDP_SIZE 65536
 int j;
 uint8_t cc;
 int i=pkt_length;

 if(i < 0){
/**#ifdef DEBUG_OUTPUT
 merror("recvfrom:");
#endif*/
 return NULL;
 }

 if(i < 12){
 /* too small to contain an RTP header */
 return NULL;
 }

 cc = buf[0] & 0x0F;
 if(i < 12 + cc * 4){
 /* too small to contain an RTP header with cc CSRC */
 return NULL;
 }

 RtpHeader hdr;
 hdr.setVersion((buf[0] >> 6) & 0x03);

 123

Appendices

 hdr.setExtension((buf[0] >> 4) & 0x01);
 hdr.setCSRCCount(cc);
 hdr.setMarker((buf[1] >> 7) & 0x01);
 hdr.setPayloadType(buf[1] & 0x7F);
 hdr.setSeqNo((((uint16_t)buf[2]) << 8) | buf[3]);
 cerr << "GOT SEQN" << hdr.getSeqNo() << endl;

 int tmp = *((int *)(buf + 4));
 tmp = ntoh32(tmp);
 hdr.setTimestamp(tmp);

 tmp = *((int *)(buf + 8));
 tmp = ntoh32(tmp);
 hdr.setSSRC(tmp);

 for(j = 0 ; j < cc ; j++) {
 tmp = *((int *)(buf + 12 + j*4));
 tmp = ntoh32(tmp);
 hdr.setSSRC(tmp);
 }
 int datalen = i - 12 - cc*4;

 RtpPacket * rtp = new RtpPacket(hdr, (unsigned char *)&buf[12+4*cc], datalen);
 return rtp;
}

/*Create SRTP packet*/
SRtpPacket *SRtpPacket::readPacketF1(unsigned char *pkt, int pkt_length){

#define UDP_SIZE 65536
 int i, j;
 for (j=0;j<pkt_length;j++)
 buf[j]=pkt[j];
 if(pkt_length < 0){
/*#ifdef DEBUG_OUTPUT
 merror("recvfrom:");
#endif*/
 return NULL;
 }

 return readPacketF2(buf, pkt_length);
}

SRtpPacket *SRtpPacket::readPacketF2(byte_t *buf, unsigned buflen) {
#define UDP_SIZE 65536
 uint8_t j;
 uint8_t cc;

 124

Appendices

 if(buflen < 12){
 /* too small to contain an RTP header */
 return NULL;
 }

 cc = buf[0] & 0x0F;
 if(buflen < 12 + cc * 4){
 /* too small to contain an RTP header with cc CCSRC */
 return NULL;
 }

 RtpHeader hdr;
 hdr.setVersion((buf[0] >> 6) & 0x03);
 hdr.setExtension((buf[0] >> 4) & 0x01);
 hdr.setCSRCCount(cc);
 hdr.setMarker((buf[1] >> 7) & 0x01);
 hdr.setPayloadType(buf[1] & 0x7F);

 hdr.setSeqNo((((uint16_t)buf[2]) << 8) | buf[3]);
 hdr.setTimestamp(U32_AT(buf + 4));
 hdr.setSSRC(U32_AT(buf + 8));

 for(j = 0 ; j < cc ; j++)
 hdr.addCSRC(U32_AT(buf + 12 + j*4));

 int datalen = buflen - 12 - cc*4;
 unsigned char *data = (unsigned char *)&buf[12 + 4*cc];
 SRtpPacket *srtp = new SRtpPacket(hdr, data, datalen, NULL, 0, NULL, 0);

 return srtp;
}

 125

Appendices

E. Required Time to derive Session Keys
(SRTP packet/micro second)

1st Test 2nd Test 3rd Test 4th Test

00:00:00.000136
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000138
00:00:00.000131
00:00:00.000138
00:00:00.000132
00:00:00.000136
00:00:00.000132
00:00:00.000131
00:00:00.000132
00:00:00.000133
00:00:00.000143
00:00:00.000145
00:00:00.000134
00:00:00.000133
00:00:00.000143
00:00:00.000132
00:00:00.000131
00:00:00.000132
00:00:00.000135
00:00:00.000135
00:00:00.000140
00:00:00.000132
00:00:00.000146
00:00:00.000133
00:00:00.000138
00:00:00.000132
00:00:00.000137
00:00:00.000133
00:00:00.000139
00:00:00.000133
00:00:00.000138
00:00:00.000140
00:00:00.000148
00:00:00.000146
00:00:00.000140
00:00:00.000145
00:00:00.000144
00:00:00.000135

00:00:00.000147
00:00:00.000148
00:00:00.000139
00:00:00.000143
00:00:00.000142
00:00:00.000132
00:00:00.000136
00:00:00.000142
00:00:00.000147
00:00:00.000133
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000135
00:00:00.000134
00:00:00.000146
00:00:00.000144
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000142
00:00:00.000133
00:00:00.000137
00:00:00.000133
00:00:00.000137
00:00:00.000131
00:00:00.000148
00:00:00.000142
00:00:00.000138
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000136
00:00:00.000132
00:00:00.000147
00:00:00.000133
00:00:00.000137
00:00:00.000131
00:00:00.000132
00:00:00.000130

00:00:00.000124
00:00:00.000119
00:00:00.000123
00:00:00.000119
00:00:00.000123
00:00:00.000118
00:00:00.000122
00:00:00.000119
00:00:00.000136
00:00:00.000119
00:00:00.000118
00:00:00.000118
00:00:00.000118
00:00:00.000118
00:00:00.000120
00:00:00.000119
00:00:00.000118
00:00:00.000118
00:00:00.000119
00:00:00.000119
00:00:00.000118
00:00:00.000123
00:00:00.000119
00:00:00.000124
00:00:00.000120
00:00:00.000124
00:00:00.000119
00:00:00.000123
00:00:00.000118
00:00:00.000124
00:00:00.000168
00:00:00.000142
00:00:00.000134
00:00:00.000157
00:00:00.000134
00:00:00.000312
00:00:00.000137
00:00:00.000144
00:00:00.000134
00:00:00.000133
00:00:00.000133

00:00:00.000140
00:00:00.000133
00:00:00.000149
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000141
00:00:00.000144
00:00:00.000144
00:00:00.000132
00:00:00.000132
00:00:00.000134
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000376
00:00:00.000133
00:00:00.000142
00:00:00.000137
00:00:00.000140
00:00:00.000150
00:00:00.000134
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000134
00:00:00.000138
00:00:00.000133
00:00:00.000137
00:00:00.000158
00:00:00.000139
00:00:00.000187
00:00:00.000153
00:00:00.000134
00:00:00.000139
00:00:00.000134
00:00:00.000145
00:00:00.000133

 126

Appendices

00:00:00.000133
00:00:00.000134
00:00:00.000133
00:00:00.000132
00:00:00.000147
00:00:00.000132
00:00:00.000131
00:00:00.000137
00:00:00.000131
00:00:00.000130
00:00:00.000134
00:00:00.000137
00:00:00.000131
00:00:00.000134
00:00:00.000130
00:00:00.000136
00:00:00.000133
00:00:00.000146
00:00:00.000147
00:00:00.000148
00:00:00.000131
00:00:00.000136
00:00:00.000136
00:00:00.000138
00:00:00.000133
00:00:00.000131
00:00:00.000132
00:00:00.000131
00:00:00.000131
00:00:00.000132
00:00:00.000141
00:00:00.000144
00:00:00.000147
00:00:00.000138
00:00:00.000148
00:00:00.000132
00:00:00.000146
00:00:00.000146
00:00:00.000138
00:00:00.000132
00:00:00.000137
00:00:00.000133
00:00:00.000138
00:00:00.000132
00:00:00.000147
00:00:00.000132
00:00:00.000136
00:00:00.000143

00:00:00.000132
00:00:00.000132
00:00:00.000143
00:00:00.000143
00:00:00.000133
00:00:00.000132
00:00:00.000131
00:00:00.000137
00:00:00.000131
00:00:00.000136
00:00:00.000141
00:00:00.000135
00:00:00.000134
00:00:00.000140
00:00:00.000136
00:00:00.000142
00:00:00.000135
00:00:00.000140
00:00:00.000134
00:00:00.000157
00:00:00.000134
00:00:00.000137
00:00:00.000140
00:00:00.000139
00:00:00.000133
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000139
00:00:00.000131
00:00:00.000131
00:00:00.000131
00:00:00.000143
00:00:00.000133
00:00:00.000125
00:00:00.000118
00:00:00.000135
00:00:00.000119
00:00:00.000125
00:00:00.000119
00:00:00.000124
00:00:00.000119
00:00:00.000124
00:00:00.000119
00:00:00.000124
00:00:00.000118
00:00:00.000124
00:00:00.000119

00:00:00.000133
00:00:00.000133
00:00:00.000146
00:00:00.000144
00:00:00.000146
00:00:00.000134
00:00:00.000132
00:00:00.000148
00:00:00.000133
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000144
00:00:00.000148
00:00:00.000132
00:00:00.000137
00:00:00.000133
00:00:00.000138
00:00:00.000133
00:00:00.000139
00:00:00.000146
00:00:00.000149
00:00:00.000133
00:00:00.000136
00:00:00.000133
00:00:00.000133
00:00:00.000130
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000134
00:00:00.000133
00:00:00.000135
00:00:00.000134
00:00:00.000152
00:00:00.000147
00:00:00.000167
00:00:00.000146
00:00:00.000150
00:00:00.000145
00:00:00.000139
00:00:00.000135
00:00:00.000161
00:00:00.000134
00:00:00.000154
00:00:00.000146
00:00:00.000150
00:00:00.000148

00:00:00.000133
00:00:00.000138
00:00:00.000147
00:00:00.000176
00:00:00.000144
00:00:00.000134
00:00:00.000166
00:00:00.000144
00:00:00.000134
00:00:00.000152
00:00:00.000192
00:00:00.000149
00:00:00.000133
00:00:00.000143
00:00:00.000134
00:00:00.000136
00:00:00.000132
00:00:00.000149
00:00:00.000134
00:00:00.000148
00:00:00.000131
00:00:00.000136
00:00:00.000144
00:00:00.000140
00:00:00.000134
00:00:00.000130
00:00:00.000132
00:00:00.000133
00:00:00.000131
00:00:00.000131
00:00:00.000144
00:00:00.000142
00:00:00.000132
00:00:00.000132
00:00:00.000136
00:00:00.000133
00:00:00.000150
00:00:00.000132
00:00:00.000138
00:00:00.000133
00:00:00.000148
00:00:00.000145
00:00:00.000137
00:00:00.000133
00:00:00.000138
00:00:00.000184
00:00:00.000136
00:00:00.000132

 127

Appendices

00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000133
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000135
00:00:00.000132
00:00:00.000132
00:00:00.000133
00:00:00.000133
00:00:00.000133
00:00:00.000143
00:00:00.000146
00:00:00.000149
00:00:00.000132
00:00:00.000138
00:00:00.000133
00:00:00.000138
00:00:00.000132
00:00:00.000136
00:00:00.000133
00:00:00.000138
00:00:00.000142
00:00:00.000148
00:00:00.000144
00:00:00.000142
00:00:00.000133
00:00:00.000137
00:00:00.000132
00:00:00.000132
00:00:00.000131
00:00:00.000131
00:00:00.000142
00:00:00.000145
00:00:00.000141
00:00:00.000142
00:00:00.000144
00:00:00.000141
00:00:00.000146
00:00:00.000130
00:00:00.000134
00:00:00.000130
00:00:00.000137
00:00:00.000140
00:00:00.000134
00:00:00.000131

00:00:00.000125
00:00:00.000133
00:00:00.000133
00:00:00.000145
00:00:00.000137
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000139
00:00:00.000133
00:00:00.000133
00:00:00.000132
00:00:00.000142
00:00:00.000132
00:00:00.000132
00:00:00.000136
00:00:00.000131
00:00:00.000136
00:00:00.000132
00:00:00.000132
00:00:00.000131
00:00:00.000135
00:00:00.000130
00:00:00.000136
00:00:00.000141
00:00:00.000148
00:00:00.000131
00:00:00.000137
00:00:00.000131
00:00:00.000136
00:00:00.000131
00:00:00.000132
00:00:00.000144
00:00:00.000144
00:00:00.000133
00:00:00.000133
00:00:00.000133
00:00:00.000134
00:00:00.000132
00:00:00.000131
00:00:00.000136
00:00:00.000143
00:00:00.000146
00:00:00.000131
00:00:00.000137
00:00:00.000131
00:00:00.000137
00:00:00.000132

00:00:00.000140
00:00:00.000136
00:00:00.000139
00:00:00.000135
00:00:00.000135
00:00:00.000134
00:00:00.000134
00:00:00.000141
00:00:00.000145
00:00:00.000145
00:00:00.000146
00:00:00.000134
00:00:00.000141
00:00:00.000133
00:00:00.000133
00:00:00.000139
00:00:00.000133
00:00:00.000139
00:00:00.000143
00:00:00.000147
00:00:00.000134
00:00:00.000136
00:00:00.000132
00:00:00.000137
00:00:00.000133
00:00:00.000151
00:00:00.000144
00:00:00.000148
00:00:00.000134
00:00:00.000136
00:00:00.000133
00:00:00.000131
00:00:00.000133
00:00:00.000133
00:00:00.000131
00:00:00.000145
00:00:00.000144
00:00:00.000133
00:00:00.000135
00:00:00.000133
00:00:00.000137
00:00:00.000132
00:00:00.000139
00:00:00.000135
00:00:00.000152
00:00:00.000145
00:00:00.000149
00:00:00.000133

00:00:00.000137
00:00:00.000132
00:00:00.000136
00:00:00.000131
00:00:00.000144
00:00:00.000145
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000133
00:00:00.00013 3
00:00:00.000131
00:00:00.000131
00:00:00.000143
00:00:00.000143
00:00:00.000139
00:00:00.000132
00:00:00.000148
00:00:00.000144
00:00:00.000136
00:00:00.000133
00:00:00.000138
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000149
00:00:00.000142
00:00:00.000137
00:00:00.000132
00:00:00.000149
00:00:00.000134
00:00:00.000131
00:00:00.000131
00:00:00.000131
00:00:00.000144
00:00:00.000157
00:00:00.000144
00:00:00.000142
00:00:00.000131
00:00:00.000132
00:00:00.000135
00:00:00.000131
00:00:00.000138
00:00:00.000132
00:00:00.000148
00:00:00.000131
00:00:00.000136
00:00:00.000167

 128

Appendices

00:00:00.000148
00:00:00.000141
00:00:00.000155
00:00:00.000144
00:00:00.000148
00:00:00.000131
00:00:00.000136
00:00:00.000131
00:00:00.000149
00:00:00.000136
00:00:00.000132
00:00:00.000133
00:00:00.000131
00:00:00.000132
00:00:00.000131
00:00:00.000144
00:00:00.000130
00:00:00.000131
00:00:00.000144
00:00:00.000144
00:00:00.000132
00:00:00.000135
00:00:00.000139
00:00:00.000136
00:00:00.000132
00:00:00.000136
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000142
00:00:00.000147
00:00:00.000132
00:00:00.000136
00:00:00.000131
00:00:00.000135
00:00:00.000131
00:00:00.000131
00:00:00.000131
00:00:00.000142
00:00:00.000142
00:00:00.000147
00:00:00.000141
00:00:00.000143
00:00:00.000130
00:00:00.000131
00:00:00.000139
00:00:00.000130

00:00:00.000139
00:00:00.000144
00:00:00.000135
00:00:00.000130
00:00:00.000135
00:00:00.000133
00:00:00.000138
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000132
00:00:00.000136
00:00:00.000138
00:00:00.000135
00:00:00.000144
00:00:00.000144
00:00:00.000147
00:00:00.000132
00:00:00.000132
00:00:00.000133
00:00:00.000133
00:00:00.000139
00:00:00.000138
00:00:00.000139
00:00:00.000133
00:00:00.000139
00:00:00.000133
00:00:00.000147
00:00:00.000132
00:00:00.000141
00:00:00.000132
00:00:00.000148
00:00:00.000146
00:00:00.000140
00:00:00.000134
00:00:00.000139
00:00:00.000135
00:00:00.000134
00:00:00.000132
00:00:00.000131
00:00:00.000132
00:00:00.000142
00:00:00.000132
00:00:00.000131
00:00:00.000138
00:00:00.000132
00:00:00.000135
00:00:00.000132

00:00:00.000138
00:00:00.000134
00:00:00.000146
00:00:00.000150
00:00:00.000138
00:00:00.000134
00:00:00.000138
00:00:00.000134
00:00:00.000138
00:00:00.000134
00:00:00.000134
00:00:00.000146
00:00:00.000143
00:00:00.000146
00:00:00.000134
00:00:00.000133
00:00:00.000134
00:00:00.000134
00:00:00.000134
00:00:00.000133
00:00:00.000132
00:00:00.000140
00:00:00.000140
00:00:00.000138
00:00:00.000156
00:00:00.000139
00:00:00.000132
00:00:00.000137
00:00:00.000133
00:00:00.000152
00:00:00.000143
00:00:00.000150
00:00:00.000135
00:00:00.000184
00:00:00.000135
00:00:00.000137
00:00:00.000146
00:00:00.000146
00:00:00.000144
00:00:00.000132
00:00:00.000132
00:00:00.000162
00:00:00.000133
00:00:00.000134
00:00:00.000134
00:00:00.000133
00:00:00.000139
00:00:00.000133

00:00:00.000157
00:00:00.000146
00:00:00.000153
00:00:00.000144
00:00:00.000138
00:00:00.000133
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000144
00:00:00.000150
00:00:00.000132
00:00:00.000 146
00:00:00.000142
00:00:00.000144
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000131
00:00:00.000132
00:00:00.000138
00:00:00.000143
00:00:00.000149
00:00:00.000132
00:00:00.000137
00:00:00.000133
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000142
00:00:00.000160
00:00:00.000131
00:00:00.000147
00:00:00.000143
00:00:00.000136
00:00:00.000133
00:00:00.000133
00:00:00.000134
00:00:00.000133
00:00:00.000133
00:00:00.000133
00:00:00.000143
00:00:00.000133
00:00:00.000132
00:00:00.000133
00:00:00.000137
00:00:00.000133

 129

Appendices

00:00:00.000135
00:00:00.000129
00:00:00.000134
00:00:00.000138
00:00:00.000146
00:00:00.000130
00:00:00.000132
00:00:00.000139
00:00:00.000133
00:00:00.000140
00:00:00.000141
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000133
00:00:00.000133
00:00:00.000131
00:00:00.000147
00:00:00.000136
00:00:00.000146
00:00:00.000145
00:00:00.000133
00:00:00.000133
00:00:00.000132
00:00:00.000131
00:00:00.000137
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000139
00:00:00.000132
00:00:00.000138
00:00:00.000134
00:00:00.000139
00:00:00.000143
00:00:00.000138
00:00:00.000132
00:00:00.000145
00:00:00.000133
00:00:00.000148
00:00:00.000134
00:00:00.000140
00:00:00.000132
00:00:00.000132
00:00:00.000134
00:00:00.000133
00:00:00.000152
00:00:00.000135

00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000143
00:00:00.000148
00:00:00.000132
00:00:00.000137
00:00:00.000131
00:00:00.000148
00:00:00.000134
00:00:00.000139
00:00:00.000133
00:00:00.000132
00:00:00.000135
00:00:00.000133
00:00:00.000144
00:00:00.000134
00:00:00.000133
00:00:00.000133
00:00:00.000133
00:00:00.000132
00:00:00.000133
00:00:00.000134
00:00:00.000139
00:00:00.000135
00:00:00.000139
00:00:00.000133
00:00:00.000138
00:00:00.000141
00:00:00.000139
00:00:00.000134
00:00:00.000138
00:00:00.000131
00:00:00.000138
00:00:00.000134
00:00:00.000137
00:00:00.000145
00:00:00.000149
00:00:00.000143
00:00:00.000149
00:00:00.000147
00:00:00.000143
00:00:00.000137
00:00:00.000133
00:00:00.000134
00:00:00.000132

00:00:00.000140
00:00:00.000132
00:00:00.000151
00:00:00.000144
00:00:00.000138
00:00:00.000132
00:00:00.000138
00:00:00.000133
00:00:00.000171
00:00:00.000146
00:00:00.000138
00:00:00.000133
00:00:00.000150
00:00:00.000134
00:00:00.000133
00:00:00.000143
00:00:00.000132
00:00:00.000142
00:00:00.000134
00:00:00.000134
00:00:00.000133
00:00:00.000134
00:00:00.000134
00:00:00.000134
00:00:00.000133
00:00:00.000150
00:00:00.000134
00:00:00.000143
00:00:00.000136
00:00:00.000148
00:00:00.000134
00:00:00.000141
00:00:00.000137
00:00:00.000142
00:00:00.000134
00:00:00.000149
00:00:00.000132
00:00:00.000138
00:00:00.000133
00:00:00.000138
00:00:00.000134
00:00:00.000138
00:00:00.000134
00:00:00.000133
00:00:00.000134
00:00:00.000133
00:00:00.000133
00:00:00.000133

00:00:00.000137
00:00:00.000132
00:00:00.000156
00:00:00.000143
00:00:00.000137
00:00:00.000133
00:00:00.000136
00:00:00.000133
00:00:00.000136
00:00:00.000133
00:00:00.000161
00:00:00.000143
00:00:00.000148
00:00:00.000133
00:00:00.000132
00:00:00.000135
00:00:00.0 00132
00:00:00.000132
00:00:00.000145
00:00:00.000133
00:00:00.000145
00:00:00.000144
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000137
00:00:00.000131
00:00:00.000148
00:00:00.000143
00:00:00.000148
00:00:00.000132
00:00:00.000136
00:00:00.000170
00:00:00.000150
00:00:00.000132
00:00:00.000137
00:00:00.000133
00:00:00.000138
00:00:00.000133
00:00:00.000139
00:00:00.000158
00:00:00.000151
00:00:00.000537
00:00:00.000136
00:00:00.000133
00:00:00.000132
00:00:00.000131
00:00:00.000132

 130

Appendices

00:00:00.000134
00:00:00.000136
00:00:00.000147
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000138
00:00:00.000131
00:00:00.000138
00:00:00.000133
00:00:00.000138
00:00:00.000145
00:00:00.000138
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000138
00:00:00.000131
00:00:00.000137
00:00:00.000131
00:00:00.000139
00:00:00.000134
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000131
00:00:00.000132
00:00:00.000134
00:00:00.000132
00:00:00.000142
00:00:00.000149
00:00:00.000139
00:00:00.000143
00:00:00.000140
00:00:00.000134
00:00:00.000142
00:00:00.000133
00:00:00.000140
00:00:00.000133
00:00:00.000138
00:00:00.000132
00:00:00.000139
00:00:00.000132
00:00:00.000139
00:00:00.000133
00:00:00.000139
00:00:00.000132
00:00:00.000139

00:00:00.000132
00:00:00.000133
00:00:00.000274
00:00:00.000131
00:00:00.000136
00:00:00.000145
00:00:00.000146
00:00:00.000131
00:00:00.000137
00:00:00.000132
00:00:00.000148
00:00:00.000131
00:00:00.000136
00:00:00.000132
00:00:00.000139
00:00:00.000133
00:00:00.000139
00:00:00.000131
00:00:00.000134
00:00:00.000133
00:00:00.000137
00:00:00.000133
00:00:00.000133
00:00:00.000143
00:00:00.000131
00:00:00.000132
00:00:00.000141
00:00:00.000145
00:00:00.000149
00:00:00.000146
00:00:00.000131
00:00:00.000137
00:00:00.000142
00:00:00.000143
00:00:00.000134
00:00:00.000139
00:00:00.000133
00:00:00.000148
00:00:00.000134
00:00:00.000138
00:00:00.000133
00:00:00.000138
00:00:00.000139
00:00:00.000142
00:00:00.000131
00:00:00.000137
00:00:00.000132
00:00:00.000137

00:00:00.000142
00:00:00.000135
00:00:00.000168
00:00:00.000133
00:00:00.000149
00:00:00.000133
00:00:00.000137
00:00:00.000133
00:00:00.000137
00:00:00.000132
00:00:00.000140
00:00:00.000132
00:00:00.000144
00:00:00.000132
00:00:00.000137
00:00:00.000133
00:00:00.000158
00:00:00.000132
00:00:00.000150
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000134
00:00:00.000134
00:00:00.000145
00:00:00.000133
00:00:00.000133
00:00:00.000133
00:00:00.000133
00:00:00.000134
00:00:00.000131
00:00:00.000153
00:00:00.000145
00:00:00.000157
00:00:00.000147
00:00:00.000144
00:00:00.000135
00:00:00.000150
00:00:00.000134
00:00:00.000140
00:00:00.000134
00:00:00.000140
00:00:00.000134
00:00:00.000138
00:00:00.000136
00:00:00.000140
00:00:00.000134
00:00:00.000138

00:00:00.000145
00:00:00.000145
00:00:00.000143
00:00:00.000132
00:00:00.000137
00:00:00.000134
00:00:00.000137
00:00:00.000134
00:00:00.000139
00:00:00.000155
00:00:00.000138
00:00:00.000130
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000134
00:00:00.000135
00:00:00.000137
00:00:00.000152
00:00:00 .000142
00:00:00.000136
00:00:00.000132
00:00:00.000133
00:00:00.000134
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000142
00:00:00.000149
00:00:00.000142
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000149
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000147
00:00:00.000142
00:00:00.000137
00:00:00.000132
00:00:00.000135
00:00:00.000131
00:00:00.000136
00:00:00.000143
00:00:00.000137
00:00:00.000131
00:00:00.000135

 131

Appendices

00:00:00.000133
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000133
00:00:00.000133
00:00:00.000144
00:00:00.000133
00:00:00.000132
00:00:00.000133
00:00:00.000143
00:00:00.000143
00:00:00.000141
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000136
00:00:00.000140
00:00:00.000137
00:00:00.000147
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000131
00:00:00.000136
00:00:00.000131
00:00:00.000137
00:00:00.000148
00:00:00.000143
00:00:00.000144
00:00:00.000130
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000134
00:00:00.000132
00:00:00.000131
00:00:00.000137
00:00:00.000132
00:00:00.000140
00:00:00.000132
00:00:00.000136
00:00:00.000132
00:00:00.000137
00:00:00.000133
00:00:00.000138
00:00:00.000142
00:00:00.000152

00:00:00.000131
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000133
00:00:00.000131
00:00:00.000132
00:00:00.000132
00:00:00.000141
00:00:00.000144
00:00:00.000134
00:00:00.000133
00:00:00.000141
00:00:00.000132
00:00:00.000137
00:00:00.000133
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000147
00:00:00.000133
00:00: 0.000148
00:00:00.000131
00:00:00.000139
00:00:00.000132
00:00:00.000140
00:00:00.000133
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000131
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000130
00:00:00.000140
00:00:00.000144
00:00:00.000143
00:00:00.000143
00:00:00.000141
00:00:00.000132
00:00:00.000141
00:00:00.000132
00:00:00.000140
00:00:00.000132
00:00:00.000146

00:00:00.000133
00:00:00.000144
00:00:00.000134
00:00:00.000132
00:00:00.000135
00:00:00.000134
00:00:00.000146
00:00:00.000134
00:00:00.000134
00:00:00.000134
00:00:00.000134
00:00:00.000134
00:00:00.000141
00:00:00.000134
00:00:00.000142
00:00:00.000145
00:00:00.000138
00:00:00.000134
00:00:00.000166
00:00:00.000145
00:00:00.000139
00:00:00.000135
00:00: 0.000139
00:00:00.000135
00:00:00.000139
00:00:00.000134
00:00:00.000151
00:00:00.000134
00:00:00.000132
00:00:00.000145
00:00:00.000133
00:00:00.000134
00:00:00.000136
00:00:00.000144
00:00:00.000132
00:00:00.000134
00:00:00.000134
00:00:00.000138
00:00:00.000134
00:00:00.000143
00:00:00.000133
00:00:00.000140
00:00:00.000134
00:00:00.000148
00:00:00.000132
00:00:00.000138
00:00:00.000134
00:00:00.000148

00:00:00.000133
00:00:00.000132
00:00:00.000131
00:00:00.000143
00:00:00.000136
00:00:00.000132
00:00:00.000132
00:00:00.000131
00:00:00.000131
00:00:00.000132
00:00:00.000142
00:00:00.000142
00:00:00.000138
00:00:00.000132
00:00:00.000136
00:00:00.000131
00:00:00.000134
00:00:00.000145
00:00:00.000149
00:00:00.000146
00:00:00.000131
00:00:00.000137
00:00:00.000142
00:00:00.000143
00:00:00.000134
00:00:00.000139
00:00:00.000133
00:00:00.000148
00:00:00.000134
00:00:00.000138
00:00:00.000133
00:00:00.000138
00:00:00.000139
00:00:00.000142
00:00:00.000131
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000131
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000133
00:00:00.000131
00:00:00.000132
00:00:00.000132
00:00:00.000141
00:00:00.000144

 132

Appendices

00:00:00.000132
00:00:00.000139
00:00:00.000133
00:00:00.000138
00:00:00.000132
00:00:00.000132
00:00:00.000134
00:00:00.000134
00:00:00.000133
00:00:00.000141
00:00:00.000135
00:00:00.000132
00:00:00.000133
00:00:00.000131
00:00:00.000144
00:00:00.000143
00:00:00.000132
00:00:00.000133
00:00:00.000139
00:00:00.000133
00:00:00.000145
00:00:00.000131
00:00:00.000159
00:00:00.000143
00:00:00.000147
00:00:00.000133
00:00:00.000137
00:00:00.000131
00:00:00.000136
00:00:00.000133
00:00:00.000138
00:00:00.000142
00:00:00.000136
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000131
00:00:00.000131
00:00:00.000141
00:00:00.000131
00:00:00.000132
00:00:00.000131
00:00:00.000131
00:00:00.000135
00:00:00.000130
00:00:00.000139
00:00:00.000144
00:00:00.000146

00:00:00.000136
00:00:00.000143
00:00:00.000133
00:00:00.000140
00:00:00.000139
00:00:00.000132
00:00:00.000134
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000131
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000143
00:00:00.000134
00:00:00.000150
00:00:00.000143
00:00:00.000139
00:00:00.000131
00:00:00.000145
00:00:00.000132
00:00:00.000147
00:00:00.000131
00:00:00.000137
00:00:00.000128
00:00:00.000138
00:00:00.000142
00:00:00.000136
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000144
00:00:00.000132
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000139
00:00:00.000319
00:00:00.000139

00:00:00.000134
00:00:00.000151
00:00:00.000134
00:00:00.000138
00:00:00.000135
00:00:00.000134
00:00:00.000135
00:00:00.000135
00:00:00.000154
00:00:00.000134
00:00:00.000134
00:00:00.000133
00:00:00.000145
00:00:00.000135
00:00:00.000134
00:00:00.000135
00:00:00.000136
00:00:00.000135
00:00:00.000153
00:00:00.000134
00:00:00.000142
00:00:00.000134
00:00:00.000140
00:00:00.000134
00:00:00.000162
00:00:00.000133
00:00:00.000139
00:00:00.000135
00:00:00.000141
00:00:00.000135
00:00:00.000140
00:00:00.000136
00:00:00.000153
00:00:00.000134
00:00:00.000133
00:00:00.000133
00:00:00.000134
00:00:00.000132
00:00:00.000133
00:00:00.000133
00:00:00.000152
00:00:00.000135
00:00:00.000134
00:00:00.000138
00:00:00.000133
00:00:00.000140
00:00:00.000133
00:00:00.000137

00:00:00.000134
00:00:00.000133
00:00:00.000142
00:00:00.000134
00:00:00.000138
00:00:00.000133
00:00:00.000139
00:00:00.000135
00:00:00.000150
00:00:00.000145
00:00:00.000133
00:00:00.000134
00:00:00.000133
00:00:00.000134
00:00:00.000134
00:00:00.000132
00:00:00.000133
00:00:00.000145
00:00:00.000142
00:00:00.000137
00:00:00.000132
00:00:00.000158
00:00:00.000139
00:00:00.000137
00:00:00.000131
00:00:00.000137
00:00:00.000153
00:00:00.000143
00:00:00.000133
00:00:00.000137
00:00:00.000134
00:00:00.000138
00:00:00.000145
00:00:00.000148
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000132
00:00:00.000134
00:00:00.000131
00:00:00.000198
00:00:00.000148
00:00:00.000132
00:00:00.000131
00:00:00.000138
00:00:00.000132
00:00:00.000132
00:00:00.000134

 133

Appendices

00:00:00.000131
00:00:00.000136
00:00:00.000131
00:00:00.000135
00:00:00.000130
00:00:00.000147
00:00:00.000131
00:00:00.000136
00:00:00.000132
00:00:00.000137
00:00:00.000130
00:00:00.000130
00:00:00.000143
00:00:00.000147
00:00:00.000143
00:00:00.000143
00:00:00.000133
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000185
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000139
00:00:00.000138
00:00:00.000148
00:00:00.000143
00:00:00.000136
00:00:00.000131
00:00:00.000137
00:00:00.000132
00:00:00.000143
00:00:00.000131
00:00:00.000136
00:00:00.000144
00:00:00.000146
00:00:00.000133
00:00:00.000137
00:00:00.000133
00:00:00.000131
00:00:00.000131
00:00:00.000131
00:00:00.000143
00:00:00.000143
00:00:00.000132
00:00:00.000132
00:00:00.000132

00:00:00.000131
00:00:00.000137
00:00:00.000131
00:00:00.000137
00:00:00.000133
00:00:00.000136
00:00:00.000131
00:00:00.000136
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000288
00:00:00.000134
00:00:00.000134
00:00:00.000134
00:00:00.000127
00:00:00.000123
00:00:00.000123
00:00:00.000124
00:00:00.000122
00:00:00.000128
00:00:00.000126
00:00:00.000127
00:00:00.000121
00:00:00.000128
00:00:00.000125
00 00:00.000128
00:00:00.000122
00:00:00.000131
00:00:00.000122
00:00:00.000126
00:00:00.000118
00:00:00.000123
00:00:00.000119
00:00:00.000125
00:00:00.000132
00:00:00.000143
00:00:00.000143
00:00:00.000119
00:00:00.000119
00:00:00.000118
00:00:00.000121
00:00:00.000123
00:00:00.000122
00:00:00.000125
00:00:00.000122

00:00:00.000132
00:00:00.000138
00:00:00.000133
00:00:00.000137
00:00:00.000132
00:00:00.000137
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000138
00:00:00.000133
00:00:00.000144
00:00:00.000133
00:00:00.000133
00:00:00.000133
00:00:00.000135
00:00:00.000146
00:00:00.000133
00:00:00.000134
00:00:00.000135
00:00:00.000135
00:00:00.000135
00:00:00.000148
00:00:00.000133
00:00:00.000140
00:00:00.000139
00:00:00.000149
00:00:00.000133
00:00:00.000138
00:00:00.000133
00:00:00.000138
00:00:00.000142
00:00:00.000142
00:00:00.000134
00:00:00.000138
00:00:00.000133
00:00:00.000139
00:00:00.000135
00:00:00.000150
00:00:00.000145
00:00:00.000133
00:00:00.000134
00:00:00.000133
00:00:00.000134
00:00:00.000134
00:00:00.000132
00:00:00.000133
00:00:00.000145

00:00:00.000134
00:00:00.000133
00:00:00.000141
00:00:00.000135
00:00:00.000132
00:00:00.000133
00:00:00.000131
00:00:00.000144
00:00:00.000143
00:00:00.000132
00:00:00.000133
00:00:00.000139
00:00:00.000133
00:00:00.000145
00:00:00.000131
00:00:00.000159
00:00:00.000143
00:00:00.000147
00:00:00.000133
00:00:00.000137
00:00:00.000131
00:00:00.000136
00:00:00.000133
00:00:00.000138
00:00:00.000142
00:00:00.000136
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000131
00:00:00.000131
00:00:00.000141
00:00:00.000131
00:00:00.000132
00:00:00.000131
00:00:00.000131
00:00:00.000135
00:00:00.000130
00:00:00.000139
00:00:00.000144
00:00:00.000146
00:00:00.000131
00:00:00.000136
00:00:00.000131
00:00:00.000135
00:00:00.000130
00:00:00.000147
00:00:00.000131

 134

Appendices

00:00:00.000130
00:00:00.000136
00:00:00.000141
00:00:00.000145
00:00:00.000147
00:00:00.000146
00:00:00.000131
00:00:00.000136
00:00:00.000132
00:00:00.000135
00:00:00.000131
00:00:00.000146
00:00:00.000143
00:00:00.000136
00:00:00.000131
00:00:00.000135
00:00:00.000130
00:00:00.000136
00:00:00.000142
00:00:00.000131
00:00:00.000130
00:00:00.000131
00:00:00.000131
00:00:00.000130
00:00:00.000147
00:00:00.000130
00:00:00.000141
00:00:00.000142
00:00:00.000135
00:00:00.000132
00:00:00.000149
00:00:00.000131
00:00:00.000137
00:00:00.000131
00:00:00.000147
00:00:00.000143
00:00:00.000136
00:00:00.000132
00:00:00.000137
00:00:00.000131
00:00:00.000136
00:00:00.000144
00:00:00.000147
00:00:00.000132
00:00:00.000164
00:00:00.000143
00:00:00.000134
00:00:00.000132

00:00:00.000122
00:00:00.000128
00:00:00.000119
00:00:00.000128
00:00:00.000122
00:00:00.000128
00:00:00.000121
00:00:00.000130
00:00:00.000122
00:00:00.000129
00:00:00.000123
00:00:00.000128
00:00:00.000123
00:00:00.000129
00:00:00.000122
00:00:00.000128
00:00:00.000120
00:00:00.000128
00:00:00.000123
00:00:00.000123
00:00:00.000122
00:00:00.000122
00:00:00.000123
00:00:00.000123
00:00:00.000123
00:00:00.000124
00:00:00.000146
00:00:00.000123
00:00:00.000133
00:00:00.000123
00:00:00.000142
00:00:00.000123
00:00:00.000128
00:00:00.000122
00:00:00.000142
00:00:00.000122
00:00:00.000127
00:00:00.000122
00:00:00.000142
00:00:00.000124
00:00:00.000147
00:00:00.000121
00:00:00.000127
00:00:00.000121
00:00:00.000128
00:00:00.000140
00:00:00.000123
00:00:00.000122

00:00:00.000142
00:00:00.000137
00:00:00.000132
00:00:00.000158
00:00:00.000139
00:00:00.000137
00:00:00.000131
00:00:00.000137
00:00:00.000153
00:00:00.000143
00:00:00.000133
00:00:00.000137
00:00:00.000134
00:00:00.000138
00:00:00.000145
00:00:00.000148
00:00:00.000132
00:00:00.000138
00:00:00.000132
00:00:00.000132
00:00:00.000134
00:00:00.000131
00:00:00.000198
00:00:00.000148
00:00:00.000132
00:00:00.000131
00:00:00.000132
00:00:00.000131
00:00:00.000137
00:00:00.000133
00:00:00.000164
00:00:00.000134
00:00:00.000149
00:00:00.000144
00:00:00.000138
00:00:00.000133
00:00:00.000163
00:00:00.000137
00:00:00.000142
00:00:00.000134
00:00:00.000140
00:00:00.000145
00:00:00.000148
00:00:00.000133
00:00:00.000138
00:00:00.000133
00:00:00.000134
00:00:00.000133

00:00:00.000136
00:00:00.000137
00:00:00.000132
00:00:00.000146
00:00:00.000136
00:00:00.000143
00:00:00.000133
00:00:00.000140
00:00:00.000139
00:00:00.000132
00:00:00.000134
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000131
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000132
00:00:00.000143
00:00:00.000134
00:00:00.000150
00:00:00.000143
00:00:00.000139
00:00:00.000131
00:00:00.000145
00:00:00.000132
00:00:00.000147
00:00:00.000131
00:00:00.000137
00:00:00.000128
00:00:00.000138
00:00:00.000142
00:00:00.000136
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000133
00:00:00.000132
00:00:00.000132
00:00:00.000144
00:00:00.000132
00:00:00.000132
00:00:00.000137

 135

Appendices

 136

00:00:00.000131
00:00:00.000132
00:00:00.000131
00:00:00.000144
00:00:00.000142
00:00:00.000131
00:00:00.000132
00:00:00.000132
00:00:00.000131
00:00:00.000138
00:00:00.000143
00:00:00.000130
00:00:00.000136
00:00:00.000132
00:00:00.000137
00:00:00.000135
00:00:00.000135
00:00:00.000123
00:00:00.000126
00:00:00.000123
00:00:00.000124
00:00:00.000123
00:00:00.000124
00:00:00.000133
00:00:00.000133
00:00:00.000180
00:00:00.000133
00:00:00.000139
00:00:00.000133

00:00:00.000122
00:00:00.000122
00:00:00.000123
00:00:00.000126
00:00:00.000123
00:00:00.000124
00:00:00.000123
00:00:00.000124
00:00:00.000137
00:00:00.000131
00:00:00.000123
00:00:00.000132
00:00:00.000123
00:00:00.000127
00:00:00.000138
00:00:00.000140
00:00:00.000133
00:00:00.000133
00:00:00.000132
00:00:00.000133
00:00:00.000134
00:00:00.000144
00:00:00.000145
00:00:00.000134
00:00:00.000133
00:00:00.000133
00:00:00.000133
00:00:00.000180
00:00:00.000133

00:00:00.000132
00:00:00.000133
00:00:00.000134
00:00:00.000144
00:00:00.000145
00:00:00.000134
00:00:00.000133
00:00:00.000133
00:00:00.000133
00:00:00.000180
00:00:00.000133
00:00:00.000139
00:00:00.000133
00:00:00.000137
00:00:00.000134
00:00:00.000155
00:00:00.000133
00:00:00.000149
00:00:00.000142
00:00:00.000149
00:00:00.000134
00:00:00.000137
00:00:00.000133
00:00:00.000136
00:00:00.000132
00:00:00.000133
00:00:00.000143
00:00:00.000133
00:00:00.000147

00:00:00.000143
00:00:00.000132
00:00:00.000135
00:00:00.000133
00:00:00.000140
00:00:00.000136
00:00:00.000139
00:00:00.000122
00:00:00.000142
00:00:00.000122
00:00:00.000127
00:00:00.000122
00:00:00.000142
00:00:00.000124
00:00:00.000147
00:00:00.000121
00:00:00.000127
00:00:00.000121
00:00:00.000128
00:00:00.000140
00:00:00.000123
00:00:00.000155
00:00:00.000133
00:00:00.000149
00:00:00.000142
00:00:00.000149
00:00:00.000136
00:00:00.000132
00:00:00.000137

Appendices

F. Cumulative Percentage of the delays
beyond the minimum required time to
generate session keys

Bin Frequency Cumulative %
128 0 0.00%
129 1 0.20%
130 0 0.20%
131 69 13.75%
132 95 32.42%
133 49 42.04%
134 16 45.19%
135 18 48.72%
136 35 55.60%
137 27 60.90%
138 32 67.19%
139 16 70.33%
140 0 70.33%
141 45 79.17%
142 19 82.91%
143 31 89.00%
144 30 94.89%
145 7 96.27%
146 13 98.82%
147 3 99.41%
148 2 99.80%
149 1 100.00%
150 0 100.00%

Appendices

G. Required Time to decrypt SRTP packet
(SRTP packet/micro second)

1st Test 2nd Test 3rd Test 4th Test
0:00:00.000024
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000025
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000019

00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000029
00:00:00.000020
00:00:00.000030
00:00:00.000031
00:00:00.000019
00:00:00.000020
00:00:00.000030
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000021
00:00:00.000021
00:00:00.000034
00:00:00.000020
00:00:00.000021
00:00:00.000031
00:00:00.000033
00:00:00.000019
00:00:00.000040
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000024
00:00:00.000020

00:00:00.000025
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000029
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000021
00:00:00.000020
00:00:00.000019
00:00:00.000021
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000027
00:00:00.000020
00:00:00.000021
00:00:00.000020
00:00:00.000025
00:00:00.000029
00:00:00.000019
00:00:00.000027
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019

00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000033
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000021
00:00:00.000021
00:00:00.000034
00:00:00.000020
00:00:00.000021
00:00:00.000031
00:00:00.000033
00:00:00.000019
00:00:00.000040
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019

Appendices

 139

00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000023
00:00:00.000018
00:00:00.000022
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000037
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000022
00:00:00.000019

00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000022
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000038
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020

00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000026
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000124
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000035
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019

00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000024
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000022
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000038
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000019

Appendices

 140

00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000024
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000021
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019

00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.00001 9
00:00:00.000028
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000025
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020

00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019

00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019

Appendices

 141

00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000025
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000024
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019

00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000 024
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000018
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000033
00:00:00.000019

00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000020
00:00:00.000024
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000018
00:00:00.000026
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019

00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000033
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000047
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000021
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000027
00:00:00.000076
00:00:00.000032
00:00:00.000031
00:00:00.000031
00:00:00.000032
00:00:00.000035
00:00:00.000031
00:00:00.000032
00:00:00.000036
00:00:00.000037
00:00:00.000032
00:00:00.000031
00:00:00.000035
00:00:00.005478
00:00:00.000032
00:00:00.000022
00:00:00.000021
00:00:00.000025
00:00:00.000020

Appendices

 142

00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000035
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000021
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000030
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000024
00:00:00.000019
00:00:00.000024
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000070
00:00:00.000019

00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000047
00:00:00.0 00020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000021
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000024
00:00:00.000019
00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000032
00:00:00.000048
00:00:00.000031
00:00:00.000604
00:00:00.000047
00:00:00.000032
00:00:00.000030
00:00:00.000030
00:00:00.000029
00:00:00.000030
00:00:00.000030
00:00:00.000030
00:00:00.000031
00:00:00.000030
00:00:00.000030

00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000034
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000029
00:00:00.000020
00:00:00.000028
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019

00:00:00.000020
00:00:00.000026
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000024
00:00:00.000019
00:00:00.000021
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000021
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000023
00:00:00.000023
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019

Appendices

 143

00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000023
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019

00:00:00.000036
00:00:00.000030
00:00:00.000037
00:00:00.000042
00:00:00.000032
00:00:00.000031
00:00:00.000030
00:00:00 .000029
00:00:00.000029
00:00:00.000029
00:00:00.000029
00:00:00.000030
00:00:00.000029
00:00:00.000030
00:00:00.000031
00:00:00.000157
00:00:00.000035
00:00:00.000037
00:00:00.000036
00:00:00.000035
00:00:00.000040
00:00:00.000031
00:00:00.000030
00:00:00.000032
00:00:00.000030
00:00:00.000031
00:00:00.000031
00:00:00.000031
00:00:00.000076
00:00:00.000032
00:00:00.000031
00:00:00.000031
00:00:00.000032
00:00:00.000035
00:00:00.000031
00:00:00.000032
00:00:00.000036
00:00:00.000037
00:00:00.000032
00:00:00.000031
00:00:00.000035
00:00:00.005478
00:00:00.000032
00:00:00.000022
00:00:00.000021
00:00:00.000025
00:00:00.000020
00:00:00.000020
00:00:00.000026
00:00:00.000020
00:00:00.000020

00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000027
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000021
00:00:00.000021
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000025
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000025
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019

00:00:00.000019
00:00:00.000019
00:00:00.000022
00:00:00.000023
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000019
00:00:00.000026
00:00:00.000023
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000023
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000024
00:00:00.000019
00:00:00.000024
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000070
00:00:00.000019
00:00:00.000018
00:00:00.000018

Appendices

 144

00:00:00.000018
00:00:00.000018
00:00:00.000024
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020

00:00:00.000019
00:00:00.000019
00:00:00.000024
00:00:00.000019
00:00:00.000021
00:00:00.000020
00:00:00.000019
00:00: 00.000020
00:00:00.000023
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000021
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000022
00:00:00.000024
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000021
00:00:00.000024
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000025
00:00:00.000023
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000023
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019

00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000025
00:00:00.000024
00:00:00.000021
00:00:00.000020
00:00:00.000020
00:00:00.000021
00:00:00.000019
00:00:00.000020
00:00:00.000021
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020

00:00:00.000018
00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000023
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018

Appendices

 145

00:00:00.000019
00:00:00.000034
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000031
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000023
00:00:00.000018
00:00:00.000024
00:00:00.000018
00:00:00.000019
00:00:00.000029
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000022
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019

00:00:00.000023
00:00:00.000025
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:0 0:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000023
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000022
00:00:00.000023
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000019
00:00:00.000026
00:00:00.000023
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000023
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000024
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000024
00:00:00.000022

00:00:00.000019
00:00:00.000026
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000021
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000026
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000025
00:00:00.000019
00:00:00.000025
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020

00:00:00.000024
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000029
00:00:00.000020
00:00:00.000030
00:00:00.000031
00:00:00.000019
00:00:00.000020
00:00:00.000030
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020

Appendices

 146

00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000025
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000022
00:00:00.000018
00:00:00.000018

00:00:00.000024
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000021
00:00:00.000020
00:00:00.000019
00 :00:00.000019
00:00:00.000020
00:00:00.000023
00:00:00.000021
00:00:00.000029
00:00:00.000025
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000024
00:00:00.000024
00:00:00.000023
00:00:00.000022
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000025
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000030
00:00:00.000019
00:00:00.000019

00:00:00.000024
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000022
00:00:00.000020
00:00:00.000019
00:00:00.000021
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000021
00:00:00.000022
00:00:00.000020
00:00:00.000020
00:00:00.000026
00:00:00.000019
00:00:00.000021
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000026
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000028
00:00:00.000019
00:00:00.000020

00:00:00.000021
00:00:00.000021
00:00:00.000034
00:00:00.000020
00:00:00.000021
00:00:00.000031
00:00:00.000033
00:00:00.000019
00:00:00.000040
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000024
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000024
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000022
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019

Appendices

 147

00:00:00.000018
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000017
00:00:00.000020
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000027
00:00:00.000018
00:00:00.000018
00:00:00.000019

00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000033
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000024
00:00:00.000020
00:00:00.000042
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000022
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000021
00:00:00.000022
00:00:00.000020
00:00:00.000021
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000023
00:00:00.000023
00:00:00.000018
00:00:00.000018
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000022
00:00:00.000022
00:00:00.000019
00:00:00.000019
00:00:00.000023
00:00:00.000019
00:00:00.000022
00:00:00.000026
00:00:00.000020
00:00:00.000023
00:00:00.000025

00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000021
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000021
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000019
00:00:00.000018
00:00:00.000018
00:00:00.000021
00:00:00.000019
00:00:00.000019
00:00:00.000018
00:00:00.000035
00:00:00.000019
00:00:00.000018
00:00:00.000019

00:00:00.000020
00:00:00.000018
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000038
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000028
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000019
00:00:00.000020
00:00:00.000023
00:00:00.000018

Appendices

H. Cumulative Percentage of the delays
beyond the minimum required time to
decrypt an SRTP packet

Bin Frequency Cumulative %
16 0 0.00%
17 1 0.20%
18 138 27.36%
19 280 82.48%
20 18 86.02%
21 18 89.57%
22 22 93.90%
23 29 99.61%
24 1 99.80%
25 0 99.80%
26 0 99.80%
27 0 99.80%
28 0 99.80%
29 1 100.00%
30 0 100.00%

 More 0 100.00%

Appendices

I. CPU used for performance Evaluation
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Core(TM)2 CPU T5500 @
1.66GHz
stepping : 2
cpu MHz : 1000.000
cache size : 2048 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 10
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic
sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr
sse sse2 ss ht tm pbe nx lm constant_tsc arch_perfmon
pebs bts pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16
xtpr pdcm lahf_lm tpr_shadow
bogomips : 3324.79
clflush size : 64
power management:

processor : 1
vendor_id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Core(TM)2 CPU T5500 @
1.66GHz
stepping : 2
cpu MHz : 1000.000
cache size : 2048 KB
physical id : 0
siblings : 2
core id : 1
cpu cores : 2

www.kth.se

TRITA-ICT-EX-2010:28

	Chapter 1: Introduction
	1.1 Motivation
	1.2 Synopsis of the Thesis
	1.3 Research Problem
	1.4 Research Methodology
	1.5 Outline of the Thesis

	Chapter 2: Background
	2.1 Voice over Internet Protocol (VoIP)
	2.2 Session Initiation protocol (SIP)
	2.3 Lawful Intercept
	2.3.1 General Concept of Lawful Intercept
	2.3.2 Reason for Lawful Intercept
	2.3.3 Basic Requirements for Lawful intercept
	2.3.4 Ways of conducting lawful intercept
	2.3.5 Lawful interception solutions
	2.3.6 Existing rules and regulations for lawful intercept
	2.3.7 Problems with lawful intercept
	2.3.7.1 Privacy concerns
	2.3.7.2 Vulnerabilities of (and due to) lawful interceptions

	2.3.8 Lawful Interception Architecture

	2.4 Trusted Third Party (TTP)
	2.4.1 Definition of a Trusted Third Party
	2.4.2 Requirements to be a Trusted Third Party
	2.4.3 Public Key Infrastructure
	2.4.4 Components of a PKI
	2.4.5 Operation of a PKI

	2.5 Digital Signature
	2.6 Key Escrow
	2.6.1 Key escrow encryption system
	2.6.2 User Security Component
	2.6.3 Key escrow component
	2.6.4 Data recovery components

	2.7 Secure Real Time Transport Protocol (SRTP)
	2.7.1 SRTP Architecture
	2.7.2 SRTP Cryptographic Context (parameters and functions)
	2.7.3 SRTP Algorithms
	2.7.4 SRTP Procedure
	2.7.5 Protection provided by SRTP

	2.8 Secure Real Time Transport Control Protocol (SRTCP)
	2.9 Multimedia Internet KEYing (MIKEY)
	2.9.1 General Concept of MIKEY
	2.9.2 MIKEY Key Management Procedure

	2.10 Key Agreement Schemes
	2.10.1 Pre-Shared Key
	2.10.2 Public Key Cryptography
	2.10.3 Diffie-Hellman
	2.10.4 DH-HMAC (HMAC authenticated Diffie- Hellman)
	2.10.5 RSA-R (Reverse RSA)

	2.11 Minisip
	2.12 Wireshark

	Chapter 3: Related Work
	3.1 C. Hett, et al.
	3.2 Rafael Accorsi
	3.3 V. Stathopoulos, et al.
	3.4 Clipper Chip

	Chapter 4: Design Analysis of the Proposed Model
	4.1 Escrow Agent Module
	4.1.1 Required Fields for Escrow Agent Module
	4.1.2 Escrow Agent Database
	4.1.3 User Agent Identification
	4.1.4 Different URIs for User identification with the EA
	4.1.5 Required parameters to escrow in future
	4.1.6 Implementation Principles

	4.2 LEA Module
	4.2.1 Required parameters for the LEA module in order to provided the information required by the EA
	4.2.2 Possible Trade-offs of the LEA Module
	4.2.2.1 The time required to decode the recorded SRTP packets
	4.2.2.2 Security of the LEA module
	4.2.2.3 Network overhead
	4.2.2.4 Transparency of the LEA module

	4.2.3 Implementation principles of the LEA module

	4.3 Attacker Module
	4.4 Validation Module
	4.5 Communication between UA and EA
	4.6 Should the EA generate session keys for the LEA

	Chapter 5: Implementation of the proposed LI model
	5.1 User Agent
	5.2 Escrow Agent (EA) module
	5.3 LEA module
	5.3.1 Algorithms of LEA module
	5.3.2 Algorithm for calculating the ROC
	5.3.3 Project Description
	5.3.4 Capturing a Session
	5.3.5 Operation procedure of the LEA module

	5.4 Validation module
	5.4.1 Algorithm for Validation module
	5.4.2 Implementation of the Validation Module
	5.4.3 Testing Forgery with the Attacker module
	5.4.4 Algorithm for UDP Checksum Calculation
	5.4.5 Working operation of the Attacker Module
	5.4.6 Implementation of the attacker module

	Chapter 6: Evaluation of the proposed LI System
	6.1 Good cop Scenario
	6.1.1 Time required for intercepting a session by the LEA
	6.1.2 A Real-Life Example

	6.2 Bad Cop Scenario
	6.2.1 Possible ways of modifying a recorded call
	6.2.2 Detection of the forgery
	6.2.3 Shortcomings of the current Escrow Scenario
	6.2.4 Overcoming this Limitation
	6.2.5 Summary

	Chapter 7: Future Work
	Chapter 8: Conclusions

