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Abstract: Time-domain limitations due to right-half plane zeros and poles in linear
multivariable control systems are studied. Lower bounds on the interaction are
derived. They show not only how the location of zeros and poles are critical in
multivariable systems, but also how the zero and pole directions in
uence the
performance. The results are illustrated on the Quadruple-Tank Process, which is
a new multivariable laboratory process.
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1. INTRODUCTION

When designing technical systems, it is useful to
know what characteristics that limit the perfor-
mance. In many situations this is a non-trivial
task. Recently there has been increased interest in
fundamental limits for the achievable performance
in feedback systems [16,1,6]. One reason for this is
new possibilities for integrated process and control
design in many applications. Without having to
specify a certain control implementation or carry
out the actual control design, it is possible early
in the development to answer structural questions,
for instance, about number and location of sensors
and actuators.

Many of the existing results on feedback perfor-
mance limitations are frequency-domain results
for linear systems, see [2,8,17,3,4,15,14] and ref-
erences therein. However, in many cases time-
domain bounds are more natural, for example,
to answer questions about minimum rise time
and settling time for a system. Such results were
derived in [13] for SISO systems. For example,
Middleton's results gave a bound on the under-
shoot of the set-point response in nonminimum-

phase systems and a bound on the overshoot in
unstable systems.

The main contribution of this paper is to gen-
eralize the time-domain results in [13] to multi-
variable systems. This gives new insight into the
limitationsmultivariable zeros have on closed-loop
responses. In contrast to scalar systems with right
half-plane (RHP) zeros, a multivariable system
must in general not have an inverse response.
Instead there is a trade-o� between the response
time and the interaction. The trade-o� depends
both on the location of the zero and the zero direc-
tion. This paper presents time-domain results that
support these facts. Counterparts in the frequency
domain are presented in [5,14].

The outline of the paper is as follows. Some no-
tation is introduced in Section 2. In Section 3 the
main result of the paper on trade-o� between set-
tling time and interaction in nonminimum-phase
systems is given. Section 4 presents a similar result
for unstable systems. The results are illustrated on
a new laboratory process in Section 5. The process
is called the Quadruple-Tank Process and has a
zero that can be placed in either the right or the
left half-plane by simply adjusting a valve. The
paper is concluded in Section 6.
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u
1 ,

and interaction by21 in a 2 � 2 system with
reference step br in r1.

2. PRELIMINARIES

Much of the notations and de�nitions in this paper
are borrowed from the textbook [14]. Let

Y (s) = G(s)U (s);

U (s) = C(s)
�
R(s) � Y (s)

� (1)

represent a stable closed-loop system with zero
initial conditions. The process G and the con-
troller C are m � m transfer function matri-
ces. The variables Y , U , and R are Laplace
transforms of the output y, the control signal
u, and reference signal r, respectively, that is,
Y (s) =

R1
0
e�sty(t) dt etc. Throughout the paper

we make the assumptions that G is strictly proper
and has full normal rank.

De�nition 1. (Zeros and poles). z 2 C is a zero
of G with zero direction  2 Rm, j j = 1, if
 �G(z) = 0, where the asterisk denotes conjugate
transpose.

p 2 C is a pole of G with pole direction � 2 Rm,
j�j = 1, if G�1(p)� = 0. 2

We assume that G(s) looses only rank one at
s = z and that G�1(s) looses only rank one at
s = p. Furthermore, it is assumed that the set of
poles and the set of zeros of GC are disjoint and
that the closed-loop system imposes no unstable
cancellations.

We make the following de�nitions for a step re-
sponse, see Figure 1.

De�nition 2. (Set-point response). For the closed-
loop system (1), consider a step in reference signal

i 2 f1; : : : ;mg, so that ri(t) = br and rj(t) = 0 for
all j 6= i and t > 0. The settling time tsi 2 (0;1)
is de�ned as

tsi = max
k2f1;:::;mg

inf
�>0

f� : jyk(t)� rk(t)j � �; t > �g;

where � � 0 is a prede�ned settling level. The rise
time is

tri = sup
�>0

f� : yi(t) � brt=�; t 2 (0; �)g:

The overshoot in output i is denoted yoi � 0 and
is de�ned as

yoi = sup
t>0

fyi(t) � ri(t); 0g

and the undershoot yui � 0 is de�ned as

yui = sup
t>0

f�yi(t); 0g:

The interaction from ri to output k 6= i is denotedbyki � 0 and is de�ned as

byki = sup
t>0

fjyk(t)jg:

2

By introducing coprime factorizations of G, it
is straightforward to show that the sensitivity
function S = (I +GC)�1 and the complementary
sensitivity function T = GC(I + GC)�1 satisfy
S(p)� = 0 and  �T (z) = 0, respectively, where p
is a pole of G and z is a zero, see [14].

3. RIGHT HALF-PLANE ZEROS

In this section a lower bound is derived on the
undershoot and the interaction for a set-point
step in one of the reference signals. A crucial
observation is that if z > 0 is a real RHP zero
of G, then

 TT (z) =  TG(z)C(z)
�
I + G(z)C(z)

��1
= 0

and therefore

 T

Z 1

0

e�zty(t) dt =  TY (z)

=  TT (z)R(z) = 0:

(2)

There is thus a trade-o� between the output
responses y1; : : : ; ym that is determined by the
zero direction. The trade-o� becomes more severe
if the zero is located close to the origin. This is
formalized in the following result.

Theorem 1. Consider the stable closed-loop sys-
tem (1) with zero initial conditions at t = 0 and
let r(t) = (br; 0; : : : ; 0)T for t > 0. Assume that
G has a real RHP zero z > 0 with zero direction



 2 Rm and  1 > 0. Then, the set-point response
satis�es

 1y
u
1 +

mX
k=2

j kjbyk1
�

1

ezts � 1

�
 1(br � �)� �

mX
k=2

j kj

�
;

where yu1 is the undershoot, byk1 the interaction, �
the settling level, and ts1 the settling time, all as
given in De�nition 2.

Proof: Equation (2) gives

mX
k=1

 k

Z 1

0

e�ztyk(t) dt = 0;

which is equivalent to

�

Z ts1

0

e�zt
mX
k=1

 kyk(t) dt

=

Z 1

ts1

e�zt
mX
k=1

 kyk(t) dt:

The left-hand and the right-hand sides satis�es

�

Z ts1

0

e�zt
mX
k=1

 kyk(t) dt

�

Z ts1

0

e�zt dt

�
 1y

u
1 + j 2jby21 + � � �+ j mjbym1

�
andZ 1

ts1

e�zt
mX
k=1

 kyk(t) dt

�

Z 1

ts1

e�zt dt

�
 1(br � �)� j 2j�� � � � � j mj�

�
;

respectively. FromZ ts1

0

e�zt dt =
1� e�zts1

z
;

Z 1

ts1

e�zt dt =
e�zts1

z
;

it now follows that

e�zts1
�
 1(br � �)� j 2j�� � � � � j mj�

�

� (1� e�zts1)

�
 1y

u
1 + j 2jby21 + � � �+ j mjbym1

�
;

which gives the result. 2

Remark 1. For a small settling level �, it follows
from Theorem 1 that approximately

 1y
u
1 +

mX
k=2

j kjbyk1 �  1br
ezts1 � 1

:

So under the assumption that the right-hand side
is larger than the sum in the left-hand side, we
have a lower bound on the undershoot in y1. The
bound suggests that the undershoot will be large
if the zero is close to the origin. Furthermore,
it also suggests that if the interaction is small
(byk1 > 0 is small), the undershoot has to be large.
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Fig. 2. By approximating the responses with
straight lines, it is in many cases possible
to derive better estimates for the relation
between settling time, undershoot, and inter-
action.

There is hence an immediate trade-o� between the
undershoot in the considered set-point response
loop and the interaction to the other loops.

Remark 2. Theorem 1 illustrates the importance
of zero directions. A RHP zero in a SISO system
is known to impose inverse set-point response. For
MIMO systems, however, we see from Theorem 1
that it is only if all but one element of the zero
direction  are zero that a RHP zero must give
an inverse set-point response. Such zero is related
to only one input{output pair and implies in that
sense similar restrictions to the response for that
loop as RHP zeros in scalar systems. This was
illustrated in the frequency-domain in [5].

Remark 3. The bound given in Theorem 1 is
in many cases conservative. This is, of course,
due to the rough estimates used in deriving the
formula. One possibility to get better estimates is
to introduce some sort of approximate shape of
the responses. Figure 2 shows an example of such
shapes.

Remark 4. In the SISO case Theorem 1 reduces
to Lemma 4 in [13] or Corollary 1.3.6 in [14].
Note that all these results are derived for control
systems of one-degree of freedom. It is well-known
that a two-degree of freedom controller can im-
prove the set-point responses considerably. The-
orem 1 gives suggestions when such an increased
controller complexity is desirable for multivariable
systems.



4. RIGHT HALF-PLANE POLES

In this section systems with RHP poles are consid-
ered. It is shown that such poles imply constraints
on interaction similar to RHP zeros. If p > 0 is a
real RHP pole of G, then

S(p)� =
�
I +G(p)C(p)

��1
� = 0:

Consider m responses to set-point steps br in
reference signals r1 to rm, respectively. They give
the control error matrix E = R� Y = SR, where

R(s) =

2
6664
br=s 0 : : : 0
0 br=s 0
...

. . .
...

0 0 : : : br=s

3
7775 :

The control error satis�es

E(p) =

Z 1

0

e�pte(t) dt � �;

so that

E(p)� = S(p)R(p)� = S(p)�=p = 0: (3)

There is thus a trade-o� between the errors for a
certain output for input steps in various reference
signals. The trade-o� is determined by the pole
direction.

Theorem 2. Consider the stable closed-loop sys-
tem (1) with zero initial conditions at t = 0.
Assume that G has a real RHP pole p > 0 with
pole direction � 2 Rm and �1 > 0. Consider m
independent set-point responses with ri(t) = br for
t > 0. Then, these responses satisfy

�1(br + yo1) +
mX
k=2

j�kjby1k
�
brptr1
2

�1 �
�
eptr1 � 1

� mX
k=2

j�kjby1k;
where yo1 and tr1 are the overshoot and the rise
time for set-point response in r1, respectively, andby1k is the interaction to y1 with set-point response
in rk, all as given in De�nition 2.

Proof: Let e1k be the response in the �rst error
signal for a set-point step in rk(t) = br > 0.
Equation (3) gives

mX
k=1

�k

Z 1

0

e�pte1k(t) dt = 0;

which is equivalent to

�

Z 1

tr1

e�pt
mX
k=1

�ke1k(t) dt

=

Z tr1

0

e�pt
mX
k=1

�ke1k(t) dt:

The left-hand and the right-hand sides satis�es

�

Z 1

tr1

e�pt
mX
k=1

�ke1k(t) dt

�

Z 1

tr1

e�pt dt

�
�1y

o
1 + j�2jby12 + � � �+ j�mjby1m

�
andZ tr1

0

e�pt
mX
k=1

�ke1k(t) dt

�

Z tr1

0

e�pt
�
�1br

�
1�

t

tr1

�

� j�2jby12 � � � � � j�mjby1m
�
dt

=
ptr1 � 1 + e�ptr1

p2tr1
�1br

�
1� e�ptr1

p

�
j�2jby12 + � � �+ j�mjby1m�;

respectively. From this together with

(ptr1 � 1)eptr1 + 1

ptr1
�
ptr1
2

the result now follows. 2

Remark 5. Note that in Theorem 2 we consider
the set-point response in y1 for r1 together
with the responses in y1 for set-point steps in
r2; : : : ; rm.

Remark 6. Theorem 2 suggests that if the pole
direction is such that �1 � j�kj for k = 2; : : : ;m,
then a real RHP far from the origin must necessar-
ily give a large overshoot if the rise time is long. In
general, however, the pole direction gives freedom
in the design to improve the performance. In the
SISO case Theorem 2 reduces to Lemma 3 in [13]
or Corollary 1.3.5 in [14].

5. EXAMPLE

Consider the Quadruple-Tank Process [9,11]. This
laboratory process, which is shown in Figure 3,
has two inputs and two outputs. The inputs are
voltages to the pumps and the outputs are the
levels in the lower two tanks. The Quadruple-Tank
Process has two valves that are set prior to an
experiment. They are used to make the process
more or less di�cult to control. The parameters

1; 
2 2 [0; 1] de�ne how the valves are set,
such that the 
ows to the lower two tanks are
proportional to them. For example, if 
1 = 1 all

ow from Pump 1 goes to Tank 1 and if 
1 = 0
all 
ow goes to Tank 4.

It is possible to show that the linearized dynam-
ics of the quadruple-tank process have no RHP
zeros if 
1 + 
2 2 (1; 2) and one RHP zero if

1 + 
2 2 (0; 1), see [11]. In the following we
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Fig. 3. The quadruple-tank laboratory process.
The water levels in Tank 1 and Tank 2 are
controlled by two pumps. When changing
the position of the valves, the location of a
multivariable zero for the linearized model is
moved.

study two particular settings of the valves: the
minimum-phase setting (
1; 
2) = (0:70; 0:60) and
the nonminimum-phase setting (0:43; 0:34). Sys-
tem identi�cation experiments give the following
two models:

G�(s) =

�
3:11

1+95:57s
2:04

(1+32:05s)(1+95:57s)
1:71

(1+38:90s)(1+98:67s)
3:24

1+98:67s

�
and

G+(s) =

�
1:69

1+76:75s
3:33

(1+52:30s)(1+76:75s)
3:11

(1+56:36s)(1+111:55s)
1:97

1+111:55s

�
:

The transfer function matrix G� has zeros in
�0:012 and �0:045, while G+ has zeros in 0:014
and �0:051. Hence, G� has no RHP zeros, but
G+ has one in z = 0:014.

Because G� is stable and minimum phase, the-
oretically it can be arbitrarily tight controlled.
This is not the case for G+. Theorem 1 gives a
trade-o� between settling time, undershoot, and
interaction for a set-point response. The zero z =
0:014 of G+ has zero direction  = ( 1;  2)

T =
(0:64;�0:77)T . With settling level � = 0, Theo-
rem 1 gives that

 1y
u
1 + j 2jby21 �  1

ezts1 � 1

for a unit step in r1. So the trade-o� can be
written as

yu1 + 1:20by21 � 1

e0:014ts1 � 1
:

For a settling time of ts1 = 100, we get

yu1 � �1:20by21 + 0:32:

Therefore, a su�ciently small interaction imposes
an undershoot of at least 0:32.
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Fig. 4. Responses for decentralized PI control
of the quadruple-tank process in minimum-
phase setting. The input is a unit reference
step in r1.
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Fig. 5. Responses for decentralized PI control of
the quadruple-tank process in nonminimum-
phase setting. The input is a unit reference
step in r1. Note that the settling time is about
ten times longer than for the minimum-phase
setting shown in Figure 4.

Two decentralized PI controllers were manually
tuned for the two process settings. Figure 4 shows
the responses for the minimum-phase setting of
the true process for a unit reference step in r1.
The settling time with settling level � � 0 is
approximately 60 seconds.

The responses for the nonminimum-phase setting
are shown in Figure 5. The settling time is about
600 seconds, which is about ten times longer
than for the minimum-phase case. The interaction
in Figure 5 is much worse than predicted from
the linear model G+ and Theorem 1. This may
indicate that a much better performance can be
achieved with a centralized controller or it may
also indicate that the bound in the theorem is
rough.



6. CONCLUSIONS

Performance limitations in linear multivariable
systems with controllers of one degree of free-
dom were discussed. It was shown that there is
trade-o� for nonminimum-phase systems between
the closed-loop output responses and the zero
direction of the open-loop system. The trade-o�
becomes more severe if the RHP zero is close to
the origin. Similar results for unstable open-loop
systems were also derived.

The results were illustrated on the Quadruple-
Tank Process. The process has an adjustable zero,
which can be located in either the left or the
right half-plane. It was shown that the control per-
formance of the nonminimum-phase setting with
a decentralized controller was much worse than
predicted by Theorem 1. Ongoing work include
improved control of the quadruple-tank process
with a centralized multivariable controller [7,10].
These results show, however, that a centralized
controller only gives slightly faster responses. It
seems to be possible to derive much better esti-
mates of the settling time and other variables by
using approximate shapes of the responses as de-
scribed in Remark 3. This work will be presented
in future reports.

Choosing control structure is a di�cult problem,
but of great interest to process industry [15].
There exist, however, few results even for the
simpli�ed problem on when for linear systems
a decentralized controller is outperformed by a
centralized one. Results on when decentralized
control is su�cient is given in [18,12]. The bounds
derived in this paper can be used to judge how
much can be gained by applying centralized con-
trol.
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