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Abstract— We investigate the stability conditions for remote
state estimation of multiple linear time-invariant (LTI) systems
over multiple wireless time-varying communication channels. We
answer the following open problem: what is the fundamental
requirement on the multi-sensor-multi-channel system to guarantee
the existence of a sensor scheduling policy that can stabilize the
remote estimation system? We propose a novel policy construction
and analytical framework and derive the necessary-and-sufficient
stability condition in terms of the LTI system parameters and the
channel statistics.

Index Terms—Estimation, Kalman filtering, linear systems, sta-
bility, mean-square error, Markov fading channel

I. INTRODUCTION
A. Motivation

Industry 4.0, also known as the Fourth Industrial Revolution,
is the automation of traditional manufacturing and industrial
processes through customized and flexible mass production [1].
Replacing communication cables with wireless devices in con-
ventional factories will be a game-changer: In particular, for
automatic control, Industry 4.0 will make use of large-scale,
interconnected deployment of massive spatially distributed indus-
trial devices such as sensors, actuators, and controllers. Given
their low-cost and scalable deployment, wireless remote state
estimation from ubiquitous sensors will play a key role in many
industrial control applications, such as smart manufacturing, in-
dustrial automation, e-commerce warehouses, and smart grids [2].

However, unlike wired communications, wireless communica-
tions are often unreliable and have a limited spectrum for trans-
mission [3]. Consequently, when wireless sensors are deployed
in a remote estimation system, scheduling policies need to be
designed to allow sensors to update the measurement data over
a limited number of frequency channels. The design of such
transmission schedules is especially challenging since, due to
variability of the environment, wireless channels are time-varying.
The transition process of associated channel fading states are
commonly modeled as a Markov processes [4], wherein different
channel states lead to different packet drop probabilities. In
particular, industrial environments are frequently cluttered with
moving machines, robots, and vehicles, and the Markov fading
channel model is suitable to characterize the time-correlations of
the channel states. Experiments in different industrial environ-
ments, including Holmen’s paper mill in Sweden, have verified
the accuracy of the Markov channel modeling [5]. Due to trans-
mission scheduling and packet dropouts, a multi-sensor remote
estimator cannot correctly receive all the sensor measurements.
This degrades the estimation performance and can even lead to
instability, i.e., the expected estimation error covariances may
become unbounded.
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In this note, we tackle the fundamental problem: what are
necessary and sufficient conditions on system parameters that
ensure stochastic stability of a multi-sensor remote estimator
under multiple Markov fading channels?

B. Related Works

Existing work related to multi-system remote estimation and
control can be divided into two categories: perfect (wired) and
imperfect (wireless) communication channels.

Perfect communication channels. Early research in stability
analysis of multi-control-loop transmission scheduling over single
and multiple independent communication channels involved peri-
odic and aperiodic scheduling policies [6]–[10], assuming perfect
communication channels. These works have only determined the
sufficient conditions to guarantee the existence of a scheduling
policy that can stabilize the networked systems.

Imperfect communication channels. In practice, wireless
channels are not error-free, leading to transmission errors and
packet dropouts. In industrial control environments comprising
moving machines and mobile robots, the channel quality is time-
varying [11]. Unlike single systems for which remote estimation
and control that have been well investigated (e.g., [12], [13] for
independent and identically distributed packet dropout scenarios
and [14] for Markovian packet dropout), multi-system remote
estimation and control over wireless channels have not drawn
as much research attention, until recent efforts motivated by
standardization and growing deployment of wireless technology.

Considering a wireless control architecture with multiple con-
trol loops over shared wireless fading channels, optimal dynamic
transmission scheduling policies were investigated in [15], [16]
with different objective functions. The scheduling decision in
each step depends on both the wireless channel and control loop
states. In [17] and [18], sensor transmission scheduling over
single and multiple packet drop channels of remote estimators
were investigated, respectively, and some sufficient mean-square
stability conditions in terms of the system parameters and optimal
transmission scheduling policies were analyzed. If the stability
conditions hold, classic Markov decision process (MDP) methods
were adopted for finding the optimal scheduling policies (see e.g.,
[19]–[21]). The follow-up work [22] considered a time-correlated
Markov fading channel scenario, and derived a sufficient condi-
tion to guarantee the existence of a deterministic and stationary
scheduling policy that can stabilize the remote estimator. A deep
reinforcement learning method was proposed as well to find the
optimal scheduling policy. The approach was further applied for
solving a transmission scheduling problem of a fully distributed
networked control system in [23].

We also note that the conventional Markov jump linear systems
theory [24] can be used to elucidate stability conditions of
networked systems using a given transmission policy. However,
MJLS theory does not provide much insights about the existence
of a dynamic scheduling policy that can stabilize the networked
system over shared communication channels.
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C. Contributions

In this note, we consider a multi-sensor remote estimator with
multiple frequency channels, where individual sensors measure
different physical processes. We allow the channels to be time-
varying and correlated in both frequency and time, as is common
in practical applications [3]. We derive a necessary and sufficient
mean-square stability condition in terms of the physical process
parameters and the fading channel statistics. Our result establishes
that there exists at least one sensor scheduling policy over the
frequency channels that can stabilize the remote estimator if and
only if the condition holds. The stability condition will provide
practical design guidelines for stabilizing multi-sensor remote
estimation systems over shared wireless medium in Industry 4.0.

It is worth emphasizing that the stability condition depends
on the essential parameters of the physical processes of interest
and the communication channels, rather than on the specific
scheduling policy employed. In fact, to find merely sufficient
conditions for stability, one can construct a specific policy and
analyze its properties (e.g., [22], [25]). Such a sufficient condition,
however, is commonly not tight and thus cannot be proved to be
necessary. The analysis of necessary conditions is challenging as
there exists a combinational number of scheduling policies.

To the best of our knowledge, necessary and sufficient stability
conditions have not been established before for remote estimation
or control over multiple systems and wireless communication
channels. In the present work, we consider a general correlated
channel, wherein the channel state in each frequency channel is
a random variable and correlated with the other channel states.
To tackle the challenge, we develop a novel policy construction
method and a stochastic estimation-cycle based analytical ap-
proach. We develop an asymptotic theory for the spectral radius
of a product of non-negative matrices to prove our key result.

Notations: Sets are denoted by calligraphic capital letters, e.g.,
A. A\B denotes set subtraction. Matrices and vectors are denoted
by capital and lowercase upright bold letters, e.g., A and a,
respectively. |A| denotes the cardinality of the set A. E [A] is the
expectation of the random variable A. (·)> is the matrix transpose
operator. ‖v‖1 is the sum of the vector v’s elements. |v| ,

√
v>v

is the Euclidean norm of a vector v. Tr(·) is the trace operator.
diag{v} denotes the diagonal matrix with the diagonal elements
taken from v. N and N0 denote the sets of positive and non-
negative integers, respectively. Rm denotes the m-dimensional
Euclidean space. [u]B×B denotes the B×B matrix with identical
elements u. [A]j,k denotes the element at the jth row and kth
column of a matrix A. {v}N0

denotes the semi-infinite sequence
{v0, v1, . . . }. ρ(A) is the spectral radius of A, i.e., the largest
absolute value of its eigenvalues. ϑ(A) is the sum of all the
elements of A.

II. SYSTEM MODEL

We consider a remote estimator with N sensors measuring
N independent physical process, as illustrated in Fig. 1. The
index set of the sensors is denoted as N , {1, 2, . . . , N}.
The sensors are connected with a local gateway, which collects
the measurements and forwards them to a remote estimator.
Connections between sensors and the gateway are reliable and
not scheduled, while the gateway to remote estimator communi-
cations are wireless and scheduled due to bandwidth limitations.
We note that the typical connection density in the Industrial IoT
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Fig. 1. The multi-sensor-multi-channel remote estimator with a single gateway.
Processes, sensors, gateway and remote estimator are denoted as P1, P2, ..., PN ,
S1, S2, ..., SN , G and RE, respectively.

scenario is 106/km2. Bandwidth sharing among a large number
of wireless devices is an issue in practice [26].

The discrete-time linear time-invariant (LTI) model of the
measurement of each process n is given as [13], [27]

xn(t+ 1) = Anxn(t) + wn(t),

yn(t) = Cnxn(t) + zn(t),
(1)

where xn(t) ∈ Rln is the process state vector, An ∈ Rln×ln the
state transition matrix, yn(t) ∈ Rrn the measurement vector of
the sensor attached to the process, Cn ∈ Rrn×ln the measurement
matrix, wn(t) ∈ Rln and zn(t) ∈ Rrn are the process and
measurement noise vectors, respectively. We assume wn(t) and
zn(t) are independent and identically distributed (i.i.d.) zero-
mean Gaussian processes with corresponding covariance matrices
Wn and Zn, respectively. The discrete time slot has the duration
of τ0, which is also the sampling period of the original continuous
processes. We note that a shorter sampling period provides more
accurate tracking of the original process, but requires larger
throughput for data transmission. Without loss of generality, we
assume that ρ2(A1) ≥ ρ2(A2) ≥ · · · ≥ ρ2(AN ).

A. Local Estimation

Each sensor adopts a local Kalman filter (KF) to estimate its
process before sending to the gateway [14], [27]. We have

xsn(t|t− 1) = Anxsn(t− 1)

Ps
n(t|t− 1) = AnPs

n(t− 1)A>n + Wn

Kn(t) = Ps
n(t|t− 1)C>n (CnPs

n(t|t− 1)C>n + Zn)−1

xsn(t) = xsn(t|t− 1) + Kn(t)(yn(t)−Cnxsn(t|t− 1))

Ps
n(t) = (In −Kn(t)Cn)Ps

n(t|t− 1)

where In is the ln × ln identity matrix, xsn(t|t− 1) is the prior
state estimate, xsn(t) is the posterior state estimate at time t,
Kn(t) is the Kalman gain. The matrices Ps

n(t|t− 1) and Ps
n(t)

represent the prior and posterior error covariance at the sensor
at time t, respectively. The first two equations above present the
prediction steps while the last three equations correspond to the
updating steps. In particular, xsn(t) is the sensor n’s estimate of
xn(t) at time t, i.e., the pre-filtered measurement of yt, with the
estimation error covariance Ps

n(t) defined as:

Ps
n(t) , E

[
(xsn(t)− xn(t))(xsn(t)− xn(t))>

]
.

We focus on the remote estimation stability and assume that the
local KFs are stable and operate in steady state [14], [27], i.e.,
Ps
n(t) = P̄n,∀t ∈ N, n ∈ N .
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B. Markov Channel

We assume that there exist only M < N frequency channels
that can be used for transmission of sensor data. The channels are
correlated in both time and frequency domains as detailed below.

The M -channel (vector) state h(t) is modeled as an ape-
riodic Markov chain with M̄ irreducible channel states, S ,
{h1,h2, . . . ,hM̄}, where hi , [hi,1, hi,2, . . . , hi,M ]> ∈
{0, 1}M . Here, hi,j = 0 or 1 means successful (on) or failed
(off) transmission in the jth frequency channel at the ith channel
state. Let M ∈ RM̄ ×RM̄ denote the state transition probability
matrix, where

[M]i,j , Prob [h(t) = hj |h(t− 1) = hi] = pi,j .

Let S̃i ∈ S denote the set of channel state with an ‘on’ state
in the ith frequency channel, i.e.,

S̃i , {hj : hj,i = 1, j ∈ M̄}, i ∈M,

where M , {1, 2, . . . ,M} and M̄ , {1, 2, . . . , M̄}.
We make the following assumption on the availability of the

channel state.

Assumption 1 (Known Previous Channel State [22]). At time
t ∈ N, the current channel state is unknown but the previous
channel state h(t− 1) is available.

C. Transmission Scheduling and Remote Estimation

In each time slot, the gateway collects N packets carrying the
sensor estimates {x̂s1(t), . . . , x̂sN (t)}. It schedules at most M of
the packets and sends them through M frequency channels to the
remote estimator, as illustrated in Fig. 1. In practice, one could
adopt a multiplexing scheme such as the orthogonal frequency-
division multiplexing (OFDM) for transmitting multi-stream data
in parallel. Each frequency channel can transmit at most one
packet. The unscheduled packets are discarded. The communi-
cation protocol for gateway-to-remote-estimator transmission is
user datagram protocol (UDP) [12], which is widely adopted for
real-time communications. We make the following assumption on
transmission redundancy.

Assumption 2 (Disabled Redundant Transmissions). In each time
slot, each packet can take at most one frequency channel for
transmission.

Due to the transmission scheduling and the fading channels,
packets carrying the estimated N process states may or may not
arrive at the remote estimator. Let γn(t) = 1 denote successful
detection of sensor n’s packet at time t, n ∈ N . If γn(t) = 0, the
packet is not scheduled or is scheduled but with failed detection.
It is also assumed that each packet transmission has a unit delay
that is equal to the sampling period of the system. The optimal
remote estimator in the sense of minimum mean-square error
(MMSE) is obtained as [13]

x̂n(t) =

{
Anx̂n(t− 1), γn(t− 1) = 0,

Anx̂sn(t− 1), γn(t− 1) = 1,

and can be simplified as [14]

x̂n(t) = Aφn(t)
n x̂sn(t− (φn(t))), (3)

where φn(t) ∈ N is the time duration between the previous
successful transmission and the current time t, and can be
regarded as the age-of-information (AoI).

From the above it follows that the estimation error covariance
of process n is given as

Pn(t) , E
[
(x̂n(t)− xn(t))(x̂n(t)− xn(t))>

]
(4)

= ζφn(t)(P̄n) (5)

where (5) is obtained by substituting (3) and (1) into (4) and

ζn(X) , AnXA>n + Wn

ζ1
n(·) , ζn(·), ζm+1

n (·) , ζn(ζmn (·)), m ≥ 1.

Thus, the quality of the remote estimation error of process n
in time slot t can be quantified via Tr (Pn(t)). For ease of
exposition, we introduce the following function

cn(i) , Tr
(
ζin(P̄n)

)
,∀i ∈ N

and note that, using (5), we can write

Tr (Pn(t)) , cn(φn(t)).

Therefore, the estimation quality of process n at time t is a
function of its AoI state φn(t).

Propositions 1 and 2 of [14] allow us to state the following
property of cn(·):

Lemma 1. For any ε > 0, there exists N ′ > 0, κ > 0 and η > 0
such that

cn(i) < κ
(
ρ2(An) + ε

)i
,∀i > N ′,

and
cn(i) ≥ η(ρ(An))2i,∀i > N ′.

In this work, we solely focus on deterministic stationary
scheduling policies. Let νn(t) ∈ {0, 1, . . . ,M}, n ∈ N , denote
the selected frequency channel for process n at time t. The sensor
is not scheduled for transmission if νn(t) = 0. Since available
system states include the current AoI states and the previous
channel states, scheduling polices π(·) can be written as

ν(t) = π(φ(t),h(t− 1)), (6)

where φ(t) , [φ1(t), . . . , φN (t)] ∈ NN and ν(t) =
[ν1(t), . . . , νN (t)].

Note that Pn(t) is a countable stochastic process taking values
from a countably infinite set

{ζ1
n(P̄n), ζ2

n(P̄n), . . . }.

If ρ(An) ≥ 1, then this process will grow during periods of
consecutive packet dropouts. Since, due to fading, periods of
consecutive packet dropouts have unbounded support, at best one
can hope for some type of stochastic stability. Our focus is on
mean-square stability.

Definition 1 (Average Mean-Square Stability). The N -sensor
remote estimator over M frequency channels described above is
average mean-square stabilizable, if there exists a deterministic
stationary policy (6) such that the sum average estimation mean-
square error (MSE) J is bounded, where

J ,
N∑
n=1

Jn (7)

and

Jn = lim sup
T→∞

1

T

T∑
t=1

E [Tr (Pn(t))] , n ∈ N .
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III. KEY RESULTS

In this section, we present and prove the necessary and
sufficient condition for stabilizing the multi-sensor-multi-channel
remote estimator in terms of the multi-process parameters and
the multi-channel statistics. As will become apparent establishing
such a necessary and sufficient stability condition is highly non-
trivial as we consider transmission scheduling for multiple sensor
packets over multiple fading channels that are correlated in both
time and frequency domains.

A. Stability Condition

The physical process and channel parameters jointly determine
the stability of the overall remote estimator. Our result is stated
in terms of the M̄ × M̄ probability matrix E(v) obtained from
the channel state transition probability matrix M:

[E(v)]i,j , Prob
[
h(t) = hj ,hj /∈ S̃vi |h(t− 1) = hi

]
= pi,j1(hj /∈ S̃vi),

where v is a M̄ -length vector and vi ∈ M is the ith element
of v denoting the index of selected frequency channel with the
observation of the vector channel state hi. So [E(v)]i,j denotes
the probability that the current channel state is hj and the packet
transmission fails given the previously observed channel state hi
and the selected frequency channel for transmission vi.

Theorem 1. Consider ρmax , ρ(A1), and

λ∞ , lim inf
L→∞

λL = min
L∈N

λL, (8)

λL , min
vl∈MM̄

ρ (E(v1)E(v2) · · ·E(vL))
1
L (9)

where vl , [vl,1, vl,2, . . . , vl,M̄ ]> ∈MM̄ is a vector of frequency
channel selection at the M̄ different channel conditions.

The remote estimator described in Section II under Assump-
tions 1 and 2 is stable if and only if

ρ2
maxλ∞ < 1. (10)

Theorem 1 shows that the stability depends on the spectral
radius of the most unstable process and a complex function
of the channel state transition probability matrix. Provided the
condition is satisfied, one can always find a scheduling policy
that stabilizes the remote estimator; if (10) does not hold, then no
stabilizing scheduling policy exists. Theorem 1 does not provide
direct insights on the structure of a suitable scheduling policy.
However, we will construct a policy with stability guarantees in
the proof of the sufficiency part.

We note that λ∞ can be treated as an inverse quality indicator
of the parallel correlated channels: smaller values of λ∞ indicate
a better channel quality. The infinity in λ∞ takes in to account
the infinitely many different orders of matrix products in (9). The
last equality in (8) can be easily obtained by using the property
that ρ(DL)

1
L = ρ(D) holds for any square matrix D and positive

integer L.

Remark 1 (Computations). Although λ∞ in (8) may not be
achieved with a finite L, one can approximate λ∞ by find-
ing the minimum value in {λ1, . . . , λL} in (9). Since λ∞ ≤
min{λ1, . . . , λL},∀L ∈ N, we have the sufficient stability condi-
tion

ρ2
max min{λ1, . . . , λL} < 1,

which approximates the necessary and sufficient condition (10)
when L is large. Numerical results of the sequence {λ1, . . . , λL}
are included in [28].

To the best of our knowledge, Theorem 1 is the first necessary
and sufficient stability condition for remote estimation over
a multi-sensor-multi-channel network in the literature. Before
proving our result, we will first establish a relationship to ex-
isting results by focusing on a special case. Under the idealized
assumption that the Markov channels at different frequencies are
independent, a sufficient condition for stability was proved in
[22]. It corresponds to Corollary 1 below.

Corollary 1. Consider the special case that Markov channels at
different frequencies are independent, and assume that the {0, 1}
channel state transition probability matrix of frequency channel
m is

M(m) ,

[
α

(m)
00 α

(m)
01

α
(m)
10 α

(m)
11

]
,m ∈M. (11)

The remote estimator described in Section II under Assumptions 1
and 2 is stable if [22]

ρ2
maxα

(m?)
00 < 1, (12)

where α(m?)
00 , minm α

(m)
00 .

The sufficient stability condition (12) is more restrictive than
Theorem 1.

Proof. See [28]

Example 1. We numerically compare the sufficient stability
condition in [22] and the necessary and sufficient condition in
Theorem 1 for a three-plant-two-channel scenario with ρ2

max = 2.
The plant system matrices are

A1 =

[
1.1 0.2
0.2 0.8

]
,A2 =

[
1.2 0.2
0.2 0.9

]
,A3 =

[
1.3 0.2
0.2 1.05

]
,

and the measurement matrices and the covariance matrices are
equal to the identity matrix, i.e., Cn = Wn = Zn = I. We
consider different channel state transition matrices (11) for the
second frequency channel with parameters: (a) α(2)

00 = 0.9, α
(2)
11 =

0.9, (b) α(2)
00 = 0.9, α

(2)
11 = 0.1, (c) α(2)

00 = 0.6, α
(2)
11 = 0.9,

and (d) α(2)
00 = 0.6, α

(2)
11 = 0.1. A larger α(2)

00 and α
(2)
11 lead

to a longer channel state memory in the ‘off’ and the ‘on’ state,
respectively. Then the stability regions in terms of the parameters
of first frequency channel state transition matrices, α(1)

00 and α(1)
11 ,

are shown in Fig. 2.
It is clear that Theorem 1 has a larger stability region than [22]

in case (c), which corresponds to that the second frequency
channel has a shorter memory in the bad (‘off’) state and a
longer memory in the good (‘on’) state. Hence when the quality
of the second frequency channel is pretty good, the stability
requirement on the first channel based on [22] is more restrictive
than Theorem 1. �

We will prove the necessary and sufficiency parts of Theorem 1
in the sequel.

B. Proof of Necessity

1) Policy Construction: To prove the necessity, we consider
the scenario that only the estimate of the process with the largest
spectral radius is scheduled for transmission in each time slot in
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Fig. 2. Comparison between stability conditions of Theorem 1 (solid line)
and [22] (dashed line). The gray area denotes the parameter sets that satisfy
the stability conditions.

a selected frequency channel, while the other sensors’ estimates
are perfectly known by the remote estimator and do not need
any transmission. In other words, only one packet is scheduled
in each time slot. We recall that process 1 has the largest spectral
radius, and we drop out the process index n in the following
analysis.

The channel scheduling policy (6) is reduced to

ν(t) = π(φ(t),h(t− 1)) ∈M, (13)

where ν(t) and φ(t) denote ν1(t) and φ1(t), respectively, for ease
of notation.

From (13), once the AoI φ is given, the channel selection rule
given the previous channel state information can be written as

v(φ) = [v1(φ), . . . , vM̄ (φ)] ∈MM̄ ,

where vi(φ) = π(φ,hi).
Given the channel selection vector v(φ), we define the suc-

cessful transmission probability matrix Ẽ(v(φ)) ∈ RM̄ × RM̄ ,
where

[Ẽ(v(φ))]i,j , Prob
[
h(t) = hj ,hj ∈ S̃vi(φ)|h(t− 1) = hi

]
= pi,j1(hj ∈ S̃vi(φ)).

In other words, [Ẽ(v(φ))]i,j is the probability that the current
channel state is hj and the transmission is successful in the
selected vi(φ)th frequency channel given that the previous chan-
nel state is hi. Accordingly, we define the failed transmission
probability matrix

E(v(φ)) ,M− Ẽ(v(φ)) ∈ RM̄ × RM̄ .

2) Analysis of the Average Cost: Similar to [14], we consider
an estimation cycle based analysis method. Each estimation cycle
starts after a successful transmission and ends at the next one, and
thus the AoI state φ at the beginning of each estimation cycle is
equal to 1. Tk is the sum of transmissions in the kth estimation

cycle. Ck is the sum MSE in the kth estimation cycle and is a
function of Tk as

Ck = g(Tk) ,
Tk∑
j=1

c(j). (14)

The channel state before the kth cycle is denoted as bk ∈ S, and
a successful transmission occurs at bk. Similar to Lemma 1 in
[14], we have the following Markovian property of the pre-cycle
channel states.

Lemma 2. {b}N0
is a time-homogeneous ergodic Markov chain

with M̄1 ≤ M̄ irreducible states of S. The state transition matrix
of {b}N0

is G′, which is the M̄1-by-M̄1 matrix taken from the
top-left corner of

G =

∞∑
j=1

Ξ̃(j),

where
Ξ̃(j) = Ξ(j − 1)Ẽ(v(j)), j = 1, 2, . . . . (15)

and

Ξ(j) =

{
I, j = 0∏j
i=1 E(v(i)), j > 0.

The stationary distribution of {b}N0
is β , [β1, . . . , βM̄1

]>,
which is the unique null-space vector of (I−G′)> and βi >
0,∀i ∈ M̄1, where M̄1 , {1, 2, . . . , M̄1}.

Remark 2. Only the first M̄1 channel states can be a pre-cycle
state, and thus the last (M̄ − M̄1) columns of G are all zeros.

From (7) it follows that the average estimation MSE can be
rewritten as

J = lim sup
K→∞

1
K (C1 + C2 + · · ·+ CK)
1
K (T1 + T2 + · · ·+ TK)

=
E [C]

E [T ]
,

where the last equality holds because the distributions of Tk and
Ck depend on bk, which is ergodic, and hence the unconditional
distributions of Tk and Ck are also ergodic; time averages are
equal to the ensemble averages and we drop the time indexes.
Then, we have

E [T ] = lim
K→∞

1

K

K∑
k=1

Tk =

M̄∑
m=1

βmE [T |b = hm] , (16)

and

E [C] = lim
K→∞

1

K

K∑
k=1

Ck =

M̄∑
m=1

βmE [C|b = hm] , (17)

where βm is defined in Lemma 2 when m ∈ M̄1, and βm = 0
when m ∈ M̄0 , M̄\M̄1 = {M̄1 + 1, . . . , M̄}.

From the definition of estimation cycle and the property of
channel state transition, the conditional probability of the length
of an estimation cycle is obtained as

Prob [T = i|b=hm]=ϑ
(
LmΞ̃(i)

)
,

M̄∑
k=1

[
Ξ̃(i)

]
m,k

,∀m ∈ M̄

(18)
where Lm is an all-zero matrix except for the mth diagonal
element, which equals to 1.
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Taking (18) into (16) and into (17), then after some algebraic
manipulations, one can obtain

E [T ] =

M̄∑
m=1

βm

( ∞∑
i=1

iϑ
(
LmΞ̃(i)

))
,

E [C] =

M̄∑
m=1

βm

( ∞∑
i=1

g(i)ϑ
(
LmΞ̃(i)

))
. (19)

From the definition of g(i) in (14) and the property of c(i)
in Lemma 1, g(i) grows exponentially fast with i. It is easy to
verify the property below.

Lemma 3. J <∞ if and only if E [C] <∞.

From Lemma 3, it follows that it suffices to only investigate
conditions such that E [C] <∞ in the following.

3) Proof of Necessity: We define a set of channel selection
vectors F ⊂ MM̄ , where for any v ∈ F we have Ẽ(v) = 0
leading to zero chance of successful transmission in any of the
frequency channels. Thus, for any v ∈ F̃ , MM̄\F , we have
Ẽ(v) 6= 0. It is clear that if F̃ = ∅, the packet dropout occurs all
the time at all frequency channels. From the definition (9), we
can prove that λ∞ = 1 as E(v) is a stochastic matrix for any v ∈
MM̄ . Thus, the necessary condition of stability is straightforward
as ρ2(A) < 1, which can be written as ρ2(A)λ∞ < 1. In what
follows, we will focus on the scenario with F̃ 6= ∅.

We categorize all possible scheduling policies into two types:

Definition 2 (Type-I and II Policies). For a type-I policy, there
exists φ̄ > 0 such that

v(φ) ∈ F ,∀φ > φ̄,

For a type-II policy, if v(φ) ∈ F̃ , one can always find φ′ > φ
such that v(φ′) ∈ F̃ .

A type-I policy has a strictly zero chance of successful
transmission when the AoI is larger than a threshold, while a
type-II policy still has a non-zero success probability when the
AoI is arbitrarily large. Thus, to stabilize the system, a type-I
policy should guarantee successful transmission within the first
φ̄ attempts, while it is not necessary for a type-II policy.

We first prove the necessary condition for type I and then type
II policies. Before proceeding further, we define the following

λm,∞ , lim inf
L→∞

λm,L,m ∈ M̄, (20)

and

λm,L , min
vl∈MM̄

ρ (LmE(v1)E(v2) · · ·E(vL))
1
L .

Type-I Policy. Since the scheduling policy consistently chooses
channel selection vectors from F in the high AoI scenario that
leads to zero chance of success, it is clear that a necessary
condition to stabilize the system is that the transmission process
has a zero probability to fail for consecutive φ̄ times at the
beginning of an estimation cycle. This can be written as

max
m∈M̄

ϑ(LmE(v(1))E(v(2)) · · ·E(v(φ̄))) = 0,

and hence maxm∈M̄ λm,∞ = 0. In the following, we focus on
the type-II policy.

Type-II Policy. We categorize the channel states h in two cases:
(i) the pre-cycle states h = hm with βm > 0, i.e., m ∈ M̄1, and

(ii) the non-pre-cycle states h = hm with βm = 0, i.e., m ∈ M̄0.
In other words, an estimation cycle can and cannot start after a
case (i) and a case (ii) channel state, respectively. Due to the
ergodicity of the channel states, both the cases of channel states
occur with non-zero probabilities. Then, we analyze the necessary
conditions to (i) make the average sum MSE of an estimation
cycle in (19) bounded that starts after a pre-cycle state

∞∑
j=1

g(j)ϑ
(
LmΞ̃(j)

)
<∞ (21)

and to (ii) make the average sum MSE of an estimation cycle
bounded that contains a non-pre-cycle state.

(i) Assume that the channel state hm is a pre-cycle state. Using
Perron–Frobenius Theorem [29], we have

ϑ (LmΞ(i)) ≥ ρ (LmΞ(i)) , (22)

thus, there exists an element in LmΞ(i), e.g., the m′th element
of the mth row, such that

[LmΞ(i)]m,m′ ≥
1

M̄
ρ (LmΞ(i)) . (23)

From (20), there is a constant κ0 > 0 such that ρ (LmΞ(i)) ≥
κ0(λm,∞)i. Let F(i) ∈ RM̄×M̄ denote a degraded matrix of
LmΞ(i), where [F(i)]m,m′ = [LmΞ(i)]m,m′ and the other
elements of F(i) are zeros. From (23), it is clear that

ϑ (LmΞ(i)) ≥ ϑ (F(i)) ≥ κ0

M̄
(λm,∞)

i
. (24)

Based on the property of type-II policy, we define an infinite
sequence of AoI variables {φ̃1, φ̃2, . . . }, where φ̃i < φ̃j if i < j,
and v(φ) ∈ F̃ if and only if φ ∈ {φ̃}N. Also, we define the
operator dxeA as the smallest value in the set A that is no smaller
than x. Building on {φ̃1, φ̃2, . . . } and a constant L ∈ N, we
construct a sequence of AoI as {ϕ1, ϕ2, . . . }, where

ϕi =

{
dLe{φ̃}N , i = 1

dϕi−1 + Le{φ̃}N , i > 1,
(25)

and thus v(ϕi) ∈ F̃ , ϕi+1 − ϕi ≥ L,∀i ∈ N.
Then, we introduce the following technical lemma.

Lemma 4. There is a constant L > 0 such that the transmission
is successful with at least a non-zero probability ξ within the
next L steps for any channel selection vector at the Lth step
vL ∈ F̃ , no matter what the current channel state is and the first
(L− 1)-step channel selection vectors are, i.e.,

ξ , min
v1,v2,...,vL−1∈MM̄ ,vL∈F̃

min
m∈M̄

max
l=1,...,L

ϑ(LmE(v1)E(v2) · · ·E(vl−1)Ẽ(vl)) > 0,

where E(v0) , I.

Proof. See [28].
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From Lemma 4, we can find a constant L to construct the AoI
sequence {ϕ}N in (25). Then, using Lemma 1 and (24), we have

ϕi∑
j=ϕi−L

g(j)ϑ
(
LmΞ̃(j)

)
≥ g(ϕi)ϑ

(
LmΞ̃(ϕi)

)
≥ g(ϕi − L)ϑ

(
LmΞ(ϕi − L)E(v(ϕi − L+ 1))

E(v(ϕi − L+ 2)) · · ·E(v(ϕi − 1))Ẽ(v(ϕi))
)

≥ g(ϕi − L)ϑ (LmΞ(ϕi − L)) ξ

≥ κ0ξ

M̄
(ρ(A)2)ϕi−L (λm,∞)

ϕi−L .

Now the average sum MSE per cycle in (21) is

∞∑
j=1

g(j)ϑ
(
LmΞ̃(j)

)
≥
∞∑
i=1

ϕi∑
j=ϕi−L

g(j)ϑ
(
LmΞ̃(j)

)
≥
∞∑
i=1

κ0ξ

M̄
(ρ(A)2)ϕi−L (λm,∞)

ϕi−L .

(26)

To make the last sum in (26) bounded, we must
have lim

i→∞
(ρ(A)2)ϕi (λm,∞)

ϕi = 0, i.e., (ρ(A)2)λm,∞ <

1. Thus, by considering all the pre-cycle channel states,
maxm∈M̄1

ρ(A)2λm,∞ < 1 holds if E [C] in (19) is bounded.
(ii) Assume now that the channel state hm′ is a non-pre-cycle

state. Since the channel state transition process is an ergodic
Markov chain, given a state hm with m ∈ M̄1, it will take
finite steps to arrive at hm′ ,m

′ ∈ M̄0 with a positive probability
no matter what the channel scheduling policy is. Mathematically,
there exists L′ ≥ 1 such that

β̃m,m′ , [LmΞ(L′)]m,m′ > 0.

Then, it is straightforward to have

ϑ(LmΞ(i))≥ β̃m,m′ϑ(Lm′E(vL′+1)E(vL′+2) · · ·E(vi)),∀i≥L′.
(27)

We see that the right-hand side of (27) has a similar for-
mat to the left-hand side of (22) in case (i). Then by tak-
ing (27) into (21), following similar steps as in case (i) and
considering all the non-pre-cycle channel states, we obtain that
maxm′∈M̄0

ρ(A)2λm′,∞ < 1 holds if E [C] in (19) is bounded.
From cases (i) and (ii), a necessary condition to bound E [C]

can be uniformly written as

max
m∈M̄

ρ(A)2λm,∞ < 1.

From the technical lemma below, it is easy to prove that
maxm∈M̄ λm,∞ = λ∞. Then, the necessary condition of type-I
and II policies can be jointly written as ρ(A)2λ∞ < 1, which
completes the proof of the necessity of Theorem 1.

Lemma 5. Given a sequence of N -by-N matrices
{M1,M2, . . . }, the following equation holds

max
i∈N

lim inf
L→∞

ρ (LiM1M2 · · ·ML)
1
L =lim inf

L→∞
ρ (M1M2 · · ·ML)

1
L ,

where Li ∈ RN×N has the ith diagonal element equal to 1 and
all other elements equal to zero.

Proof. See [28].

C. Proof of Sufficiency

1) Policy Construction: We consider a persistent serial
scheduling policy that persistently schedules the transmission of
one sensor at a time until it is successful and then schedules
the next sensor and so on. Although it seems that such a policy
cannot take advantage of the parallel channels, we will show that
the policy stabilizes the remote estimator if condition (10) holds.
The policy can be written as

π(φ(t),h(t−1))=


π1(φ1(t),h(t− 1)), if φn(t)=1, n=N

πn+1(φn+1(t),h(t− 1)), if φn(t)=1, n<N

π(φ(t− 1),h(t− 2)), else

where the policy

πn(φn(t),h(t− 1)) = [0, . . . , 0︸ ︷︷ ︸
n−1

, νn(t), 0, . . . , 0︸ ︷︷ ︸
N−n

], n ∈ N (28)

denotes scheduling the nth sensor on the νn(t)th frequency
channel. Without loss of generality, the initial scheduling policy
is given by π(φ(1),h(0)) = π1(φ1(1),h(0)). With a slight abuse
of notation, we drop out the zeros in (28) so that the frequency
channel selection rule for sensor n is rewritten as

πn(φn(t),h(t− 1)) = νn(t) ∈M, n ∈ N .

Once the AoI of sensor n, φn, is given, the channel selection rule
with different previous channel states is denoted as

vn(φn) , [πn(φn,h1), πn(φn,h2), . . . , πn(φn,hM̄ )] ∈MM̄ .

Moreover, we assume that the frequency channel selection
rule vn(φn),∀n ∈ N , is a periodic policy in terms of φn
with L potential channel selection vectors taken from the set
V , {ṽn(1), ṽn(2), . . . , ṽn(L)}, where ṽn(L) ∈ MM̄ . From
the definition of λ∞ in (8), for an arbitrarily small ε > 0, we can
find a constant L and a L-length channel-selection-vector set V
satisfying the condition that

ρ (E(ṽn(1))E(ṽn(2)) · · ·E(ṽn(L)))
1
L ≤ λ∞ + ε.

The periodic channel selection policy of sensor n is defined as

vn(φn) = ṽn(φn mod L),

where (a mod b) denotes the remainder of the Euclidean division
of a by b if the remainder is non-zero, otherwise (a mod b) = b.

2) Analysis of the Average Cost: To analyze the average cost of
the average estimation MSE of the nth process Jn, the estimation
cycle starts after a successful transmission of process n and
ends at the following one. Tn,k and Cn,k denote the sum of
transmissions and the sum MSE of the kth estimation cycle:

Cn,k = g(Tn,k) ,
Tn,k∑
j=1

cn(j), (29)

Tn,k =

N∑
i=1

T(n,i),k,

where T(n,i),k is the time duration scheduled for the sensor i’s
transmission during the kth estimation cycle of process n.

Similar to the single-sensor case, it can be proved that the time
average of {Cn}N0

is equal to its ensemble average, and Jn is
bounded if E [Cn] is. In the following, we drop out the time index
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k and will analyze E [Cn]. For the ease of notation but without
loss of generality, we analyze E [CN ] for the N th process:

E [CN ]=

∞∑
t1=1

. . .

∞∑
tN−1=1

E
[
CN |T(N,1) = t1, . . . , T(N,N−1) = tN−1

]
× Prob

[
T(N,1) = t1, . . . , T(N,N−1) = tN−1

]
.

Let bN denote the channel state before an estimation cycle
of process N . From (18), it is easy to obtain the conditional
probability

Prob
[
T(N,N) = tN |T(N,1) = t1, . . . , T(N,N−1) = tn−1

]
= ϑ(diag{[ς1, . . . , ςM̄ ]}Ξ̃(tN )),

(30)

where

ςm,Prob
[
bN =hm|T(N,1) = t1, . . . , T(N,N−1) = tn−1

]
,m∈M̄.

Recall that Ξ̃(·) was defined in (15).
Thus, from (29) and (30), the conditional expectation is sim-

plified as

E
[
CN |T(N,1) = t1, . . . , T(N,N−1) = tN−1

]
=

∞∑
tN=1

g

(
N∑
i=1

ti

)
× Prob

[
T(N,N) = tN |T(N,1) = t1, . . . , T(N,N−1) = tn−1

]
=

∞∑
tN=1

g

(
N∑
i=1

ti

)
ϑ(diag{[ς1, . . . , ςM̄ ]}Ξ̃(tN )).

(31)
3) Proof of Sufficiency: Using Lemma 1 and the conditional

expectation (31), we can obtain an upper bound of E [CN ] and
derive the sufficient condition making the average cost bounded.
The detailed proof is included in [28] due to the space limitation.

Remark 3. The policy above with persistent sensor scheduling
and periodic channel selection is a stability-guaranteeing policy.
Note that such a policy, which does not utilize the parallel
frequency channels, is only constructed for the proof of the
sufficiency of Theorem 1, and is not optimal. Once the stability
condition is satisfied, we can find the optimal policies in (6), e.g.,
by designing suitable MDP problems, see for example [22].

IV. CONCLUSIONS

We have derived the necessary and sufficient stability condi-
tion of the multi-plant remote estimation system over Markov
fading channels, which is more effective than existing sufficient
conditions available in the literature. For future work, we will
consider stability analysis of a multi-control-loop system over
shared wireless channels. In addition, it is also worth extending
to practical nonlinear systems, e.g., building on the literature of
fuzzy systems (see e.g., [30], [31] and the references therein).
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