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Abstract:

In this paper we consider a state estimation problem over a wireless sensor network. A fusion
center dynamically forms a local multi-hop tree of sensors and fuses the data into a state
estimate. It is shown that the optimal estimator over a sensor tree is given by a Kalman filter
of certain structure. Using estimation quality as a metric, two communication schemes are
studied and compared. In scheme one, sensor nodes communicate measurement data to their
parent nodes, while in scheme two, sensor nodes communicate their local state estimates to
their parent nodes. We show that under perfect communication links, the two schemes produce
the same estimate at the fusion center with unlimited computation at each sensor node; scheme
one is always better than scheme two with limited computation. When data packet drops occur
on the communication links, we show that scheme two always outperforms scheme one with
unlimited computation; with limited computation, we show that there exists a critical packet
arrival rate, above which, scheme one outperforms scheme two. Simulations are provided to
demonstrate the two schemes under various circumstances.

1. INTRODUCTION

Control over large resource-constrained infrastructures re-
quires new design paradigms beyond traditional sampled-
data control. The main difficulties arise from the con-
strained communication and computation capabilities.
Communication between network nodes is limited due
to the limited energy available, particularly, if nodes are
located physically far way from each other. It takes time
to transfer information from one node to another, and in
many cases this time increases if the information needs
to be reliably delivered. Node interference, obstacles that
block wireless signals, etc can sometimes cause data pack-
ets dropped in the network and hence lead to imperfect
communications. Computation capability of each network
node may be limited as well, for example, in a wireless
sensor network, the central processing unit of each sensor
node can only perform simple calculations.

We study the problem of state estimation over a wireless
sensor network in this paper. The main contribution of
this paper is to provide a qualitative and quantitative
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analysis of the tradeoff between estimation qualities and
the communication and computation capabilities of each
network node. In particular, we study two communication
schemes and compare their performances under communi-
cation and computation constraints. We assume data are
communicated over a multi-hop wireless network, instead
of a single-hop network to conserve network energy usage
and therefore enhance whole system life. The resulting
local sensor topology has the structure of a tree for which
the fusion center is the root. The quality of the state
estimate depends not only on the sensor quality but also
on the communication delay, i.e., the number of hops the
sensor reading needs to take until it reaches the fusion
center.

There are several potential application areas of the work
presented in this paper, including building automation,
environmental monitoring, industrial automation, power
distribution, and transportation systems.

Some work related to this paper is described next. How to
efficiently encode control information for event-triggered
control over communication channels with severe band-
width limitations is discussed in Bao et al. [2006].

Kalman filtering under certain information constraints,
such as decentralized implementation, has been exten-
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sively studied Siljak [1978]. Implementations for which
the computations are distributed among network nodes is
considered in Alriksson and Rantzer [2006], Olfati-Saber
[2005], Spanos et al. [2005]. Kalman filtering over lossy
networks is considered in Sinopoli et al. [2004], Hespanha
et al. [2007]. The interaction between Kalman filtering and
how data is routed on a network seems to be less studied.
Routing of data packets in networks are typically done
based on the distance to the receiver node as in Bertsekas
and Gallager [1991]. Some recent work addresses how to
couple data routing with the sensing task using informa-
tion theoretic measures was given by Liu et al. [2005].

For control over wireless sensor networks, the experienced
delays and packet losses are important parameters. Ran-
domized routing protocols that gives probabilistic guaran-
tees on delay and loss are proposed in Bonivento et al.
[2006], Lai and Paschalidis [2006].

A compensation scheme in the controller for the varia-
tions on the transport layer that such routing protocols
give rise is presented in Witrant et al. [2007]. A robust
control approach to control over multi-hop networks is
discussed in Panousopoulou et al. [2006]. A general cross-
layer approach to control and data routing seems to be
an open and rather difficult topic due to many practical
constraints.

The two schemes proposed in this paper have been studied
for a special case (i.e., a sensor network consisting of
only one node with unlimited computation capability)
in Gupta et al. [2005], where the authors showed that pre-
processing the measurement by the sensor before sending
it to the controller is better than post-processing the
measurement after receiving it by the controller when the
communication link is imperfect.

The rest of the paper is organized as follows. The problem
setup is described in Section 2. Some definitions and
preliminary facts on Kalman filter is provided at Section 3.
Optimal estimation over a sensor tree using a Kalman
filter is discussed in Section 4 using both estimate and
measurement communication schemes. The two schemes
are further studied and compared in Section 5 under
communication and computation constraints. An example
is presented in Section 6 to illustrate the results obtained in
previous few sections. The paper is concluded in Section 7
with a discussion on future work.

2. PROBLEM SET-UP
2.1 Mathematical Models

Consider the feedback control system in Fig. 1. The plant
is given by

T = ATp—1 + Wk-1, (1)
where z € IR" is the state, wy, is white Gaussian noise with
zero-mean and covariance matrix @) > 0.

A wireless sensor network is used to measure the state.
The measurement equation for sensor .5; is given by

i i
Yr = Hizp + vy, (2)
where yi € R™ is the measurement, v} is white Gaussian
noise with zero-mean and covariance matrix II; > 0.
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Fig. 1. Structure of Closed-Loop Control System with
Measurements Gathered by a Wireless Sensor Tree

Each sensor can potentially communicate via a single-hop
connection with a subset of all the sensors by adjusting its
transmission power. Let us introduce a sensor Sy, which we
denote the fusion center, and consider a tree T" with root
So. Assume |T| = n+ 1, i.e., T contains n other sensor
nodes. We suppose that there is a non-zero single-hop
communication delay, which is smaller than the sampling
time of the plant. All sensors are synchronized in time, so
the data packet transmitted from S; to Sy is delayed one
sample when compared with the parent node of .5;.

2.2 Problems of Interest

We focus on the following estimation problem in the paper,
thus we assume the control law is computed and sent to
the plant once the controller obtains the state estimate.

Problem 2.1. Given a tree T representing sensor commu-
nications with Sy, what is the optimal state estimate & (T')
generated at the fusion center?

Apparently, the optimal estimation procedure depends on
whether the sensors communicate raw measurement or
local estimates to their parent nodes. Therefore we also
discuss the two sensor communication schemes in detail
and try to answer:

Problem 2.2. What is the optimal sensor communication
scheme when the communication links introduce packet
drops and when each sensor has limited computation
power?

In the remaining sections of the paper, we provide answers
to these two problems.

Remark 2.3. Although we consider link failure in this pa-
per, i.e., by studying the effect of packet drops when
sensors transmit data, we assume no sensor node failure.
In case node failure does occur in practice, a new sensor
communication tree can be established based on remain-
ing set of sensors, for example, by executing the sensor
reconfiguration algorithm in Shi et al. [2007].

3. DEFINITIONS AND KALMAN FILTER
PRELIMINARIES

In this section, we provide some definitions which are used
frequently in later sections. A brief introduction to Kalman
Filter is also included upon which the solution to the
optimal estimation problem is based.
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Define the following terms for a given a tree T representing
sensor communications with S.

e Famyp(S;): The subtree of T that is rooted at S;.
e Parp(S;): The parent node of S; in T

The depth of T is denoted hr. For all notations, we drop
the subscript T" when the considered tree follows from the
context.

Next, we formalize estimation over a sensor tree under
communication energy constraints, in which the operations
above can be used to improve the performance.

Let us define the following state estimates and other
quantities at Sp:
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Consider the following discrete time system

Ty =Azp_1 + wi—1

Yk = Crxp + vg
where wy_1 and v, are white Gaussian noises with zero-
mean and covariances @ > 0 and Ry > 0, respectively.
The estimates Zp and P, can be computed as

(Zk, Pr) = KF(Zr-1, Py—1, Yk, Ck, Q, Ry),
where KF denotes the Kalman filter given by the following
update equations:

&, = AZp_1, (3)
Py =AP, 1A' +Q, (4)
Ky, = P CL[Cr Py G + Ri] ™, (5)
Zp = A1 + Kp(yp — CrAzp_1), (6)
Po=(I — KxCi) Py (7)

4. OPTIMAL ESTIMATION OVER SENSOR TREES

In this section, we consider two sensor communication
schemes. Optimal estimation over a sensor tree using each
schemes is given. Then the two schemes are compared in
cases when communication links introduce packet drops
and when sensor nodes have limited computation power.
We provide conditions on which scheme is better than the
other in these cases.

4.1 Sensor Communication Schemes

Scheme One — Measurement Communication — In this
scheme, the sensors only send their raw measurement data
to its parent without processing which has been used in Shi
et al. [2007] to construct minimum energy sensor tree. The
fusion center Sy € T collects data from all sensors in T'.
The role of the fusion center is to compute an estimate of
x and forward it to a controller node.

ik :’ik
1 o ) =1 ® =2
vif vk &3 &

Scheme One Scheme Two

Fig. 2. Sensor Communication Schemes
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Fig. 3. Kalman Filter Iterations at Time k

Scheme Two — Estimate Communication  In this scheme
each sensor S; runs a local Kalman filter and computes
their own state estimate :%}C at time k. After 5% is obtained,
S; sends 7% to Par(S;). Par(S;) then updates its state
estimate by fusing the estimates from its children with its
own. Since the computation is distributed in this scheme
and each S; maintains a local estimate of the state, this
scheme is more robust than scheme one when there is data
packet drops as shown in Theorem 5.1. In principle, after
fusing the estimates from its child nodes, the parent node
can also send the estimate back to its child nodes and
hence improve their estimation quality. The analysis in
this paper extends straightforward to this case.

4.2 Optimal Estimation Over Sensor Trees: Scheme One

Let the tree T with depth h that represents the sensor
communications with the FC be given. Define y,fﬂﬂ as
all measurements available at the FC for time k —i + 1 at
time k,2 = 1,--- , h. Figure 3 shows the overall estimation
scheme at time k, where

VY2 {yi_41: S is 1 hop away from Sp},l=1,--- , h.

Let S;; be the node that is j hops away from Sp. Define

Fjé[H1j;H2j;-'~],j: 1,---,h
Ci2[ly;---;Ty,i=1,--- ,h
T, £diag{Ily, I, - },j=1,--- ,h
R; & diag{Yy,--- ,V;},i=1,--- ,h
For X > 0, define
go,(X) 2 AXA' 4+ Q — AXCIC; XC + R 'C; X A'.
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Theorem 4.1. Consider a sensor tree T with depth h.
(1) & and Py can be computed from h parallel filter as

(Zr—n+1, Pe—n+1)
_ . k—h+l
=KF(&p—n, Pr—n, V), ,Ch,Q,Ry)

(Tk—1, Pr—1)
=KF ()2, Po2, Yy, C2,Q, R2)
(T, Pr)
=KF (&1, Po—1, V8, C1,Q, R1)
(2) Furthermore P, and Py satisfies
P =90, 090, (Py_y) (8)
P =gc, -0 9c,_,(Py) )
where P,, is the unique solution to g¢, (Pg) = Px.
Proof: See Shi et al. [2007].

4.8 Optimal Estimation Over Sensor Trees: Scheme Two

In this section, we assume each sensor node has enough
computation power to run a local Kalman filter and
hence generate its own estimate of the state. It then
communicates the estimate to its parent node.

Let % and 2% be the local state estimate and P} and P}
be the local error covariance of S; before and after fusing
with its children’s estimates respectively.

After yi is obtained, S; runs the Kalman filter in its
information form as follows

= Ay, (10)
Plm=AP}_ A" +Q, (11)
(P = (P) ™+ HIIG H (12)
B =2, + Kilyi — Hidy] (13)

where K} = P} H/II;*.

Then S; sends &%, P{™, &%, P to its parent node. Notice
that for the leaf nodes, #i and P} are the same as i
and P}. For intermediate nodes, after they receive the
local estimates from their children, they update the state
estimate and error covariance according to

(Pi) = (F)”
DY
j:Par(S;)=S;

s=r{(B)H+ Y

j:Par(S;)=5S;
[(B) & - (P) "4}

Denote Zx(1) and Zx(2) as the state estimate at Sy using
scheme one and two respectively. Pi (1) and P (2) etc,
are denoted in the same way. Since S; is the root of subtree
Fam(S;), if we define I'j, C;, T, R;, g, similarly as in the

1

(B =) aw

(15)

previous section for root Sy, we immediately obtain the
following theorem.

Theorem 4.2. (1) If Zo(1) = £0(2) and Py(1) = Py(2),
then 2 (1) = & (2) for all k.
(2) _ B
P :gcz“'ogchrl(Pég) (16)
where h; is the depth of Fam(S;) and P is the
unique solution to

ge,, (Pi5) =P (17)

Proof:

(1) Tt is shown in Rao and Durrant-Whyte [1991] that
#i from Eqn (15) is the same as computed from
a centralized Kalman filter where the measurements
from its children are collected at S;. Consequently, Z,
at Sy using scheme two is the same as using scheme
one.

(2) Direct result from Theorem 4.1.

5. COMPARISON OF THE TWO SCHEMES

We assume when the computation power of each sensor
node is limited, the local state estimate transmitted from
a sensor node to its parent node is delayed by one time step
using scheme two. Since using scheme one, the sensor nodes
simply forward the measurement data, hence there is no
delay in transmitting its data. With this assumption, the
two schemes are compared in the following four scenarios
when communication links introduce packet drops and
when sensor nodes have limited computation power. We
provide conditions on one scheme is better than the other.

5.1 Perfect Communication with Unlimited Computation

With no packet drops and unlimited computation, Sy has
the same estimate using either scheme as we have stated
in the previous section.

5.2 Imperfect Communication with Unlimited Computation

With unlimited computation at each sensor node, if packet
drops occur due to interference, network congestion etc,
scheme two outperforms scheme one in the expected sense
as shown in Theorem 5.1. Furthermore, there exist cases
that scheme one is arbitrarily worse than scheme two as
shown in Theorem 5.2.

Let vi(1) and v;(2) be the indicator functions of whether
the packet from S; is successfully transmitted to Par(.S;)
(=1) or dropped ( = 0). To compare the performance of
the two schemes, assume 7}, = 75(1) = 75 (2) for all k and
1. Then we have the following result.

Theorem 5.1. Assume unlimited computation at each sen-
sor node and P, (1) = P, (2). Then

E[P; ()] = E[P, (2)]
for all £ > 0.
Proof: We give a proof for the case where there is only

one sensor (see Fig. 4). The idea is straightforward to
present in the general case. Since we only consider one
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Fig. 4. Comparison of Two Communication Schemes

sensor here, we simply write 7} as 7. Then by definition
of the expected value, we only need to show that

b (1) = P (2) (18)
for a particular realization of the packet drop sequences
~i. We use mathematical induction to prove Eqn (18).

(1) Py (1) > Py (2) holds by assumption in the theorem.
(2) Assume P, (1) > P (2) for 0 <m < k.

(3) At m+ 1.
(&) I ymyr = 1, Pm+1 = g™ (Fy (2))
( n: 1)

Pm-‘rl (
)
>gm+1(P0 (2))
(

_Pf

m—+1 2)

(b) If Tm+1 = 07

P (1) =h(P,(1))
> h(P,,(2))

=Fo11(2).

where the inequalities are from properties of h and ¢
functions and can be found in Sinopoli et al. [2004]. The
three steps above complete the induction. |
Theorem 5.2. Consider the one sensor case (Fig. 4). As-
sume unlimited computation at each sensor node and
Py (1) = P, (2). Further assume that A is unstable,
(Hy,A) is detectable and (4,+/Q) is controllable. Then
the following are true.

(1) For any k > 1 and any packet drop sequences ~v;,l =
1,k
PZ(1) > P(2). (19)
(2) If H1_1 does not exist, then there exist ¢cg > 0,¢ > 1,
a positive integer ki, and a packet drop sequence
Y,0 =1,---  k, such that
P (1) > cocf P (2)
for all k > kypin.

(3) If H; ' exists, then for any packet drop sequence,
there does not exist ¢ > 1 such that Equ (20) holds.

(20)

Proof:

(1) See proof to Theorem 5.1.
(2) Assume H; ' does not exist. We explicitly construct
a class of packet drop sequences for which ¢ > 1 and

Eqn (20) holds. Let 6 be a given positive integer.
Consider the packet drop sequence

--100---00100---001
—_——  ——
6 zeros 6 zeros

e, v = 1for I mod (0 +1) =
otherwise. Let k,,;, be such that
g (Py(2)) < (L+¢)P(2)
where 0 < € < 1. Such ki, exists as
Jim 9" (Py (2)) = P%(2).

land 7y = 0

Therefore
P (2) <h?((1+€)Px(2))
for all k > kpin. Write k = 0k+k' for k > kpin, where
1<k <0. Then
P (1) = 1 o g((h9)* (Py (1))
Since H; ' does not exist and A is unstable, we can

pick a § > 1 such that (heg)’~€ diverges. For this 6,
there exists ¢ > 1 such that

P (1) > &Py (1).
Let P (1)
1 A
c= ()7 ,co = (1 + ) P=(2)
then
P (1) > coc P (2).
(3) If H;' exists, then g(X) < M where M =

AH[' (H}) "' A’ + Q according to Shi et al. [2005].
Hence there exists ki, > 0 such that if & > k5, and
Y = 1, we have P, (1) < ¢ P, (2) where
M
0 =—-—.
L -9

If v, = 0 and let
K =min{s < k:v,(1) =v5(2) =1,

then
P

)
<h’“k( w(2))

(Pw(2)
—Clp()

Remark 5.3. Theorem 5.2 only considers the one sensor
case. Generalization to multiple sensor case is straight-
forward. Theorems 5.1 and 5.2 show that scheme one is
at most as good as and could be arbitrarily worse than
scheme two depending on the packet drops. The results
suggest that in a network where busty packet drops can
occur, it is always better to process the measurement
before sending it to its parent node assuming unlimited
computation power at each sensor node. However, this
does not always hold when the computation power at each
sensor node is limited as shown in the next two sections.

5.8 Perfect Communications with Limited Computation

With limited computation at each sensor node, if there are
no packet drops, scheme one is always better than scheme
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two. This is quite different from the unlimited computation
case where scheme two is always better than scheme one.

Theorem 5.4. Assume limited computation at each sensor

node and no packet drops occur. Then if Py (1) = Py (2),
P (1) <P, (2) VEk.

Proof: We give a proof for the case where there is only

one sensor (Fig. 4). We have assumed that transmitting

the estimate to its parent node has one time delay for a

sensor when using scheme two, and has no time delay when

using scheme one, therefore in this case,

b (1) = 9(P (1)), P (2) = hlg(F5(2)))-

Assume P, (1) < P_ (2) for all k < m — 1. Then we have

This completes the induction step as P, (1) = Py (2). N
5.4 Imperfect Communications with Limited Computation

With limited computation at each sensor node, if the
communication network introduces packet drops, scheme
one is not always better than scheme two. As we show
next, there exists some critical packet arrival rate, only
above which, scheme one is better. Fig. 8 in Section 6
demonstrates this phenomenon. The results is stated in
the following theorem.

Theorem 5.5. Assume limited computation at each sensor

node and P; (1) = P, (2). Further assume [Hy; Ho; - -+ ; H,] ™1

does not exist. Let v;(1) = v;(2) = ; for all i and denote

V—i = (FY17 Sy Vi1, Yitls a’yn)
Then for fixed v_;, there exists ; such that if v, < 7;,
E[P, (1)] 2 E[P, (2)]V k

and otherwise if v; > ;.

Proof: We give a proof for the case where there is only
one sensor (Fig. 4). Again, it is straightforward to extend
it in the general case. Following the same line as in the
proof of Theorem 5.2 (i.e., by constructing explicit packet
arrival sequences), we can show that there exists 7; such

E[P; (1)] > B[P (2)].

We can make the bound tighter by noticing that when
~v; = 1 for all 4, from Theorem 5.4,

E[P; (D] = B (1) < B (2) = E[F, (2)]

Since E[P, (1)] and E[P, (2)] are continuous and decreas-
ing functions with respect to -;, from real analysis, we
know there exists v < <1 such that if ~; < 7;,

E[P, (1)] 2 E[P, (2)]V k
and otherwise if ~; > ;. |

6. EXAMPLES

We consider an integrator chain as an example in this
section to demonstrate the performance of the two schemes

So S1 So
@—C0O+—=0

Fig. 5. Integrator Chain Example

Y=Y, = 1 with unlimited computation Y=Y, = 1 with limited computation

25 25
—— Centralized KF —— Centralized KF
'='='Scheme 1 . ='='Scheme 1
2 = = =Scheme 2 2 : = = =Scheme 2
I
K
"
1504 1.5
= | S
= SR
1he 1t
" '
'\_-\-\-—-—--‘-—-—-‘-- By -
N K
0.5 0.5
0 0
0 10 20 30 40 50 0 20 40
k k

Fig. 6. Comparison of Two Schemes Under Perfect Com-
munication

under various circumstances. The discrete time system
dynamics is given by Eqn (1) with

10.1
a=5%

with process noise covariance ¢ = 0.31. There are two
sensors available. The measurement equations are given
by

yli:[o 1]xk+vl£7
e =11 0]zp + v}

where v} are white Gaussian with zero-mean and covari-
ances II; = 0.25 and II, = 0.5. Assume sensor 7 is i hops
away from Sy (Fig. 5).

Notice that A is unstable in this example. In Fig. 6, we
plot the error covariance evolution of the two schemes. We
also plot the centralized Kalman filter solution. The figure
on the left hand side show that the two schemes produce
the same error covariance and it is bigger than the solution
from the centralized Kalman filter, which is as expected.
The figure on the right side shows the case with limited
computation at the sensor nodes. It shows in this case
that scheme two produces a worse result than scheme one,
which is stated in Theorem 5.4.

In Fig. 7, we plot the difference of the error covariance for
the two schemes. The top figure shows that scheme one is
always worse than scheme two after the transient period
with imperfect communication and unlimited computation
at each sensor node, which is captured in Theorem 5.2.
The bottom figure shows that when the packet drop rates
are low, the expected value of the error covariance from
scheme one is smaller than that from scheme two, which
corresponds to Theorem 5.5.

In Fig. 8, we fix 5 at different values and plot the average
of Trace(Px(1)) and Trace(Py(1)) respectively. It shows
that when ~5 is relatively big, i.e., 79 = 0.8, scheme one
starts to become worse than scheme two after v; becomes
smaller than 0.3; when v, is relatively small, i.e., 7o = 0.4,
scheme one starts to become worse than scheme two after
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¥, =0.7, 7, = 0.8 with unlimited computation

— Trace(P,(1) - P,(2))
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¥, = 0.7, 7, = 0.8 with limited computation

‘ — Trace(P,(1) - P,(2))
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Fig. 7. Comparison of Two Schemes Under Imperfect

Communlcatlon
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Fig. 8. Comparison of Two Schemes With Limited Com-
putation

~v1 becomes smaller than 0.63. The results agree with
Theorem 5.5.

7. CONCLUSION AND FUTURE WORK

In this paper, we consider an estimation problem over
wireless sensor networks. We derive optimal estimation
for a sensor tree and study two communication schemes.
We show that the two schemes have distinct performance
with/without stochastic packet drops and with/without
unlimited computation at each sensor node. We also pro-
vide conditions on which scheme is better in different
scenarios.

There are a few extensions of this work that will be
pursued in the near future, which includes: closing the
loop over the network using the estimation schemes we
have proposed; finding the closed form solution to the
critical packet arrival rate in Theorem 5.5; conducting
experiments using the MVWT wireless testbed ( Jin et al.
[2004]) at Caltech to demonstrate the results in the paper.
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