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Abstract— Distributed state estimation under uncertain pro-
cess and measurement noise covariances is considered. An
algorithm based on sensor fusion using Kalman filtering is
investigated. It is shown that if the covariances are decomposed
into a known nominal covariance plus an uncertainty term, then
the uncertainty of the actual estimation error covariance for the
Kalman filter grows linearly with the size of the uncertainty
term. This result is extended to the sensor fusion scheme to
give an upper bound on the actual error covariance for the
fused state estimate. Examples are provided to illustrate how
the theory can be applied in practice.

I. I NTRODUCTION

Modern sensor and communication technologies enable a
variety of new networked monitoring and control applica-
tions. In many of these applications, there is an economic in-
centive towards using off-the-shelf sensors and standardized
communication solutions. A consequence of this is that the
individual hardware components might be of relatively low
quality and that communication resources are quite limited.
These problems can sometimes be efficiently tackled through
intelligent software implementations. A particular instance
of this approach is the distributed estimation algorithms that
take the added uncertainties and resource constraints into
account discussed in this paper.

Networked sensor and control applications are found in
a growing number of areas, including automobiles, au-
tonomous vehicles, environmental monitoring, industrial au-
tomation, power distribution, space exploration, surveillance,
and transportation. Let us discuss three concrete examples
that have motivated our work. Alice is an autonomous vehicle
that was developed at California Institute of Technology for
the 2005 DARPA Grand Challenge [1]. The sensors mounted
on Alice include an inertial measurement unit (IMU), global
positioning system (GPS), velocity and measurement range
sensors, and monocular vision. To allow the vehicle to
autonomously navigate through its environment, sensor data
are fused to provide Alice with an estimate of its own state
and of the environment around it. The heterogeneous set of
sensors is connected with the computation platform through
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an Ethernet local area network providing an architecture for
networked estimation and control.

Another class of examples is enabled by the standardized
controller area network (CAN), which is used in most cars
and trucks today and has revolutionized the automotive in-
dustry, where embedded control has grown from stand-alone
systems to highly integrated and networked systems [2].
Look-ahead driver assistance systems and control systems
for improved fuel efficiency of auxiliary units are instances
of currently developed technologies in heavy duty vehicles
based on on-board sensors, online digitized maps, and var-
ious traffic information systems [3], [4]. As the number
of these type of systems grow, the resource constraints of
the CAN and the implementation complexity need to be
considered in the design on the distributed estimation and
control algorithms. The results of this paper is applied to
a road grade estimation problem for a look-ahead cruise
controller.

Kalman filtering [5] is a well established methodology
for model-based fusion of sensor data [6]–[9]. Despite the
great success of this approach, with extensions to for in-
stance nonlinear and decentralized systems, only recently the
specific characteristics of the sensing and communication in
networked estimation systems have been considered. Estima-
tion under certain communication constraints has been con-
sidered, e.g., bandwidth limitation [10] and packet loss [11],
[12]. The shared communication resource can be efficiently
controlled through an active scheduling mechanism [13].

The traditional Kalman filter requires exact knowledge of
the plant model and the statistics of the process noise and
measurement noise. In sensor network applications this infor-
mation is often uncertain due to hardware variability, sensor
drift, unmodeled plant dynamics etc. Kalman filtering with
unknown process noise and measurement noise covariances
is a classical problem, e.g., [14]. A variety of methods have
been developed to simultaneously estimate the covariances
with the state [8]. An alternative approach is to consider the
influence on the estimation from unknown but fixed errors in
the noise statistics. This is the approach taken in this paper,
where bounds are given on the estimation error both for
the conventional Kalman filter but also for a sensor fusion
scheme suitable for a networked implementation.

The main contribution of this paper is on deriving a new
performance bound for a sensor fusion scheme that explicitly
takes the model uncertainty of the underlying processes and
sensors into account. Based on the classical Kalman filter,
the estimation error covariance is computed for given uncer-
tainties of the process and measurement noise covariances.
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Fig. 1. Sensor fusion block diagram

It is shown that if the covariances are decomposed into a
known nominal covariance plus an uncertainty term, then the
uncertainty of the actual estimation error covariance for the
Kalman filter grows linearly with the size of the uncertainty
term. It is also shown how these results can be extended
to a networked system, where partial estimates of the plant
state are fused in a central node. An upper bound on the
actual error covariance for the fused state estimate is derived.
Examples are provided to illustrate how the theory can be
applied in practice.

The outline of the paper is as follows. The state estimation
problem is formulated in Section II followed by some
preliminaries on Kalman filtering in Section III. A theorem
on the estimation error covariance for uncertain process and
measurement noise covariances is given in Section IV. The
result is utilized in Section V, where the main theorem of
the paper is presented. It states the influence of the uncertain
noise covariances on a commonly used sensor fusion scheme
from the literature. Section VI illustrates the theory through
some simulated examples of increasing complexity. The
paper is concluded in Section VII.

II. PROBLEM SET UP

Consider a sensor network consisting ofN ≥ 1 sensors
that take measurements for the same process and send their
individual estimate of the state to a remote fusion center (see
Figure 1). The process dynamics is given by

xk = Axk−1 + wk−1, (1)

and the measurement equation of each sensori is given by

yi
k = Cixk + vi

k, (2)

where i = 1, · · · , N , k = 1, 2, · · · and wk−1, v
i
k are white

gaussian noises with covariance matricesQ ≥ 0 andRi > 0
respectively. Assume

Q = Q0 + λΨΨ′, Ri = R0i + γiΦiΦ′i,

whereQ0 ≥ 0, R0i > 0 are known, butλΨΨ′ and γiΦiΦ′i
are unknown. Each sensori runs a Kalman filter for gen-
erating its state estimatêxi

k at timek with error covariance
P i

k. Those estimates and error covariances are then sent to a
fusion center to obtain a final state estimate.

For each sensori, if there is no uncertainty in the noise
covariance,i.e., λΨΨ′ = 0 andγiΦiΦ′i = 0, then the Kalman
filter provides an optimal estimate of the statexk. It gives
an efficient means to estimate the state of the process, in a
way that minimizes the mean of the squared error.

On the other hand, if the exact noise covariance is not
known, i.e., λΨΨ′ 6= 0 or γiΦiΦ′i 6= 0, it is clear that the
output from the Kalman filter based onA,Q0, C,R0i, which
we denote as thecomputed error covariancedoes not give
the true error covariance.

We are interested in how the uncertainties in the process
and measurement noise covariances from each individual
sensor affect the fused state estimate. The estimate is un-
biased but the computed error covariance will not converage
to the true value. We provide bounds on the steady state
value of the covariance.

We first study the one-sensor case and find the relationship
between the actual error covariance and the uncertainties
associated with the process and measurement noise covari-
ances. For this part, we drop the subscripti in Equ (2) and
write the measurement noise asvk which has covariance
R = R0 + γΦΦ′. We then apply the result to the multiple
sensor fusion problem with details in Section V.

III. PRELIMINARIES

We briefly introduce the essence of Kalman filter in this
section. Before we give the recursive equations for Kalman
filter, let us first define the following quantities

x̂−k , E[xk|Yk−1] (3)

e−k , xk − x̂−k (4)

P−k , E[e−k e−
′

k |Yk−1] (5)

x̂k , E[xk|Yk] (6)

ek , xk − x̂k (7)

Pk , E[eke′k|Yk] (8)

whereYk , [y1, · · · , yk].
When λ = 0 and γ = 0, the Kalman filter computes the

state estimate and the error covariance as follows

x̂−k = Ax̂k−1, (9)

P−k = APk−1A
′ + Q0. (10)

x̂k = Ax̂k−1 + Kk(yk − CAx̂k−1), (11)

Kk = P−k C ′[CP−k C ′ + R0]−1, (12)

Pk = (I −KkC)P−k . (13)

It can be shown thatP−k evolves as

P−k = AP−k−1A
′ + Q0

−AP−k−1C
′[CP−k−1C

′ + R0]−1CP−k−1A
′, (14)



andPk evolves as

Pk = (KkCA−A)Pk−1(KkCA−A)′ + KkR0K
′
k

+ (KkC − I)Q0(KkC − I)′. (15)

IV. K ALMAN FILTER WITH UNCERTAINTIES IN PROCESS

AND MEASUREMENTNOISE COVARIANCE

In this section, we consider the process and measurement
noise covariances take the form as stated in Section II

Q = Q0 + λΨΨ′, R = R0 + γΦΦ′.

Only Q0 and R0 are used in the Kalman filter update
equations asλΨΨ′ andγΦΦ′ are unknown. As a result the
computedPk from (9)-(13) is not the actual error covariance.
We define the latter as̄Pk. Notice that the state estimatêxk

still converges to the mean of the process statexk as the
estimate is unbiased. Define

P∞ , lim
k→∞

P−k ,K , lim
k→∞

Kk

which satisfy

P∞ = AP∞A′ + Q0

−AP∞C ′[CP∞C ′ + R0]−1CP∞A′, (16)

K = P∞C ′[CP∞C ′ + R0]−1. (17)

Further define, if the limit exists,

P̄∞(λ, γ) = P̄∞ , lim
k→∞

P̄k.

Then we have the following result.

Theorem 1:Assume(C, A) observable and(A,Q
1
2
0 ) con-

trollable. Then P̄∞ ≥ 0 is the unique solution to the
following discrete time Lyapunov equation

P̄∞ = (KCA−A)P̄∞(KCA−A)′ + KR0K
′

+λ(KCΨ−Ψ)(KCΨ−Ψ)′ + γKΦΦ′K ′

+(KC − I)Q0(KC − I)′ (18)

Moreover,

P̄∞(λ, γ) = P̄∞(0, 0) + λV1 + γV2

where

M = (KCΨ−Ψ)(KCΨ−Ψ)′

V1 =
∞∑

k=0

(KCA−A)kM(KCA−A)′k.

V2 =
∞∑

k=0

(KCA−A)kKΦΦ′K ′(KCA−A)′k.

Remark 2:Notice that the second part of the theorem tells
us the actual error covariance grows linearly as a function
of the uncertainties of the process and measurement noise
covariances.

We need a few tools before proving this theorem.

Lemma 3:Consider the discrete-time Lyapunov equation

HXH ′ −X + M = 0,

whereM is hermitian. Then the following are true.
1) If H is stable, thenX is unique and Hermitian and

X =
∞∑

k=0

HkMH ′k.

2) If H is stable andM > 0 (or M ≥ 0), thenX is unique,
Hermitian andX > 0 (or X ≥ 0).

Proof: The proof is omitted as this is from the standard
analysis of discrete time Lyapunov equation.

Lemma 4:Suppose thatX ∈ Rm×n andY ∈ Rn×m with
m ≤ n. ThenY X has the same eigenvalues asXY , counting
multiplicity, together with an additionaln −m eigenvalues
equal to 0.

Proof: See [15], Theorem 1.3.20, page 53.
Lemma 5:Consider the discrete time Riccati Equa-

tion (14) whereP−0 ≥ 0 is arbitrary. Assume the pair(C, A)
is observable, and(A,Q

1
2
0 ) is controllable. Then

1) There exists aP ≥ 0 such that for allP−0 ≥ 0,

lim
k→∞

P−k = P.

Furthermore,P is the unique solution of the algebraic matrix
equation

P = A(P − PC ′[CPC ′ + R0]−1CP )A′ + Q0

within the class of positive semidefinite symmetric matrices.
2) The eigenvalues of the matrix

D = A′ − C ′[CPC ′ + R0]−1CPA′

are strictly within the unit circle.
Proof: See [16], Proposition 4.4.1, page 145, with slight

modification of the parameters (i.e., replacingA with A′ and
B with C ′.

We have defined̄Pk as the actual error covariance and we
will derive the update equation for̄Pk below. Notice that
as long as the parameters(A,C,Q0, R0) are given, the a
priori estimation error covarianceP−k is updated recursively
according to Equ (14), and the Kalman gainKk is then
updated according to Equ (12). Those two update steps do
not depend onλΨΨ′ or γΦΦ′.

From Equ (11), we expandyk − CAx̂k to get

x̂k = Ax̂k−1 + Kk(CAek−1 + Cwk−1 + vk),

where as beforeKk is given by Equ (12) andP−k is given
by Equ (14). We can then write

ek = Aek−1 + wk−1 −Kk(CAek−1 + Cwk−1 + vk).

Since the actual process and measurement noise covariances
are given by

E[wk−1w
′
k−1] = Q0 + λΨΨ′, E[vkv′k] = R0 + γΦΦ′,

we have

P̄k = E[eke′k]
= AP̄k−1A

′ + Q0 + λΨΨ′ + Kk(CAP̄k−1A
′C ′ +

+CQ0C
′ + λCΨΨ′C ′ + R0 + γΦΦ′)K ′

k

−AP̄k−1A
′C ′K ′

k −KkCAP̄k−1A
′

−(Q0 + λΨΨ′)C ′K ′
k −KkC(Q0 + λΨΨ′).



After some simplification, we can writēPk as

P̄k = (KkCA−A)P̄k−1(KkCA−A)′ + KkR0K
′
k

+(KkC − I)Q0(KkC − I)′ + γKkΦΦ′K ′
k

+λ(KkCΨ−Ψ)(KkCΨ−Ψ)′. (19)

Now we are ready to prove Theorem 1.

Proof: First notice that if (C, A) observable and

(A,Q
1
2
0 ) controllable, Equ (16)-(17 ) have unique solutions

P∞ andK from part one of Lemma 5. It remains to show that
P̄∞ exists for anyλΨΨ′ ≥ −Q0 and anyγΦΦ′ ≥ −R0 . We
first show thatKCA−A = (KC − I)A is stable, which is
equivalent to show thatA(KC − I) = AKC −A is stable.
The equivalence is due to Lemma 4. SinceX ∈ Rn×n is
stable iff−X ′ is stable,KCA− A is stable is then further
equivalently to−(AKC −A)′ is stable.

−(AKC −A)′ = A′ − C ′K ′A′

= A′ − C ′[CPC ′ + R0]−1CPA′

By part two of Lemma 5, the above matrix is stable, which
proves KCA − A is stable. As a consequence, Lemma
3 guaranteesP̄∞(λ, γ) ≥ 0 exists and is unique for any
λΨΨ′ ≥ −Q0 and anyγΦΦ′ ≥ −R0.
Since(KCA − A) is stable, it is clear that the second part
of the theorem is true from Lemma 3.

Corollary 6: 1) If λ1 ≤ λ2 andγ1 ≤ γ2, then

P̄∞(λ1, 0) ≤ P̄∞(λ2, 0), and P̄∞(0, γ1) ≤ P̄∞(0, γ2).

2) If −Q0 ≤ λΨΨ′ ≤ 0 and−R0 ≤ γΦΦ′ ≤ 0, then

P̄∞(λ, γ) ≤ P̄∞(0, 0).

3) If λΨΨ′ ≥ 0 andγΦΦ′ ≥ 0, then

P̄∞(λ, γ) ≥ P̄∞(0, 0).
Proof: 1)

P̄∞(λ2, 0)− P̄∞(λ1, 0) = P̄∞(λ2 − λ1, 0) ≥ 0

P̄∞(0, γ2)− P̄∞(0, γ1) = P̄∞(0, γ2 − γ1) ≥ 0

2) Notice that if−Q0 ≤ λΨΨ′ ≤ 0 and−R0 ≤ γΦΦ′ ≤ 0,
thenλV1 ≤ 0 andγV2 ≤ 0 whereV1 andV2 are defined in
Theorem 1. Hence we have

P̄∞(λ, γ) = P̄∞(0, 0) + λV1 + γV2 ≤ P̄∞(0, 0).

3) The third part is similar to the second part.
Remark 7:Part two of Corollary 6 tells us that if the ac-

tual process and measurement noise covariances (Q0+γΨΨ′

andR0 + λΦΦ′) are smaller than the nominal ones used in
the Kalman filter, the actual estimation error covariance will
be smaller than the output from the Kalman filter. Therefore
it is always better to over estimate the noise covariances than
under estimate them as long as the over estimated noise
covariances satisfy the required performance. This can be
explained as follows. For general Kalman filter,Pk is a
function of Kk as well asQ0, R0. Pk is minimized for the
Kk given by Equ (12), assumingQ0 and R0 are fixed. In

our analysis,Kk is the same for different noise covariances.
It is then true thatPk will be smaller for the the one having
smaller noise covariances.

V. SENSORFUSION IN A SENSORNETWORK

In this section, we apply the previous results to the sensor
fusion problem in a sensor network stated in Section II. We
get an upper bound on the fused state estimation error. For
each sensori = 1, · · · , N, the associated variables (defined
as in Section IV) are(x̂i

k, ei
k, P i

k, P̄ i
k, P i

∞, P̄ i
∞, V i

1 , V i
2 ). Let

the fused state estimate at timek be x̂k. For ease of notation,
let us define

J ,
N∑

i=1

(
P i

k

)−1
,

Fi ,


I +

N∑

j=1,j 6=i

P i
k(P j

k )−1



−1

.

It can be showed that
∑N

i=1 Fi = I.
Assuming no uncertainties associated with the process

or the measurement noise covariances, the optimal com-
bined estimate can be computed using the general fusion
formula [9]

x̂k = J−1

[
N∑

i=1

(P i
k)−1x̂i

k

]
=

N∑

i=1

Fix̂
i
k. (20)

Now assume the uncertainties exist so that the actual error
covariancesP̄ i

k 6= P i
k. The fusion center still makes use of

the fusion rule (20). We have the following result regarding
the actual error covariance of the fused estimate.

Theorem 8:The actual error covariancēPk from the fu-
sion rule (20) satisfies

P̄k ≤
[

N∑

i=1

Fi(P̄ i
k)

1
2

][
N∑

i=1

Fi(P̄ i
k)

1
2

]′
. (21)

Proof: We can write the state estimation error as

ek =

(
N∑

i=1

Fi

)
xk −

N∑

i=1

Fix̂
i
k

=
N∑

i=1

Fie
i
k.

Therefore we have

P̄k = E[eke′k]

=
N∑

i=1

N∑

j=1

FiE[ei
kej′

k ]F ′j

≤
N∑

i=1

N∑

j=1

Fi(E[ei
kei′

k ])
1
2 (E[ej

kej′

k ])
1
2 F ′j

=

[
N∑

i=1

Fi(P̄ i
k)

1
2

][
N∑

i=1

Fi(P̄ i
k)

1
2

]′



where the inequality comes from Cauchy-Schwartz Inequal-
ity.

Let us define

F i
∞ ,


I +

N∑

j=1,j 6=i

P i
∞(P j

∞)−1



−1

.

P̃∞(λ, γ1, · · · , γN ) ,
N∑

i=1

F i
∞(P̄ i

∞(0, 0) + λV i
1 + γiV

i
2 )

1
2 .

Corollary 9: The actual error covariance in the steady

stateP̄∞ is related toP̃∞ = P̃∞(λ, γ1, · · · , γN ) as

P̄∞ ≤ P̃∞P̃ ′∞. (22)
Corollary 9 shows how the uncertainties in the individual

sensors affect the fused estimate in the steady state. If the
sensor measurements are less correlated, the upper bound is
tight.

VI. EXAMPLES AND SIMULATIONS

In this section, we provide three examples to demonstrate
the theory developed so far. Example 10 considers the single
sensor case and it corresponds to the results in Section
IV. Example 11 considers the two sensor case and is an
illustration for the results in Section V. We use the following
nominal parameters for the Kalman filter in both examples.

A =




1 0 0.5 0
0 1 0 0.5
0 0 1 0
0 0 0 1




Q0 =




0.0256 0.0039 0.0625 0.0156
0.0039 0.0256 0.0156 0.0625
0.0625 0.0156 0.2600 0.0625
0.0156 0.0625 0.0625 0.2600




C =
[

1 0 0 0
0 1 0 0

]
, R0 =

[
1 0
0 1

]

The example is taken from [13] with slight modification
of the process and measurement noise covariances. In order
to visualize general vector cases, we plot the squared norm
of the estimation errors and the trace of the computed error
covariances.

Example 10:In this example, we chooseλΨΨ′ = 0.1I
and γΦΦ′ = 2I, therefore the actual noise covariances are
bigger than the ones used in the Kalman filter. As a result the
actual error covarianceTr(P̄k) is bigger than the computed
error covarianceTr(Pk) from the Kalman filter. This can
be seen from Figure 2. We also plot the running average
1
k

∑k
i=1 |ek|2 in the figure and we can see that this empirical

average value converges toTr(P̄k).
Example 11:In this example, the nominal parameters of

the two sensors are

C1 = C2 =
[

1 0 1 0
0 1 0 1

]

R01 =
[

3 0
0 0.1

]
, R02 =

[
0.1 0
0 5

]
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Notice that sensor 1 has less noise in its second output
and sensor 2 has less noise in its first component. The
fused estimate should therefore be better than any individual
sensor, which is seen from Figure 3, where we choose
γ1Φ1Φ′1 = γ2Φ2Φ′2 = I andλΨΨ′ = 0.1I.
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Fig. 3. Individual and fused estimates

We provide a plot below showing how the upper bound
varies as the uncertaintyγ1Φ1Φ′1 of R1 increases (see
Figure 4, legend for each subplot is the same as in Figure 3).
It is clear that the upper bound increases as well. It is also
see from the plot that, if the uncertainties inR1 is small
enough, it is guaranteed that the fused state is better than
any individual ones. Once the uncertainties in sensor 1 is
bigger than certain value, it is then not guaranteed that the
fused state is better than using sensor 2 alone. We leave it to
the future work to analytically find out this threshold value
for guaranteed better fused performance due to the limited
time and space here.

Example 12:A Kalman filter for estimating the road
grade based on uncertain GPS readings is developed and
tested in [4]. The structure of the system is similar to the set-
up of this paper and the uncertainty of the sensor readings,
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correponding to the number of available satellites, is mod-
elled by varying the measurement noise covariance. We test
the validity of Theorem 1 by evaluating the estimation error
for data collected from a segment of a Swedish highway1

for various values of the measurement noise covariance, i.e.,
various values ofγ. Figure 5) shows the running average
of the squared error over a fixed time interval as a function
of the uncertaintyγ. As expected from Theorem 1, there is
approximately an affine relation betweenγ and the variance
of the estimation error.
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measurement noise uncertaintyγ. As expected from Theorem 1, the relation
is approximately affine.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have studied the estimation problem
using Kalman filter but subject to uncertainties in the pro-
cess and measurement noise covariances. Using the nominal
values of the noise covariances as input to the Kalman filter,
we have provided a closed form solution to how the actual
error covariance evolves as a function of these uncertainties.
We have also applied the theory developed in a sensor fusion

1The data were kindly provided by Per Sahlholm.

problem and provided an upper bound of the estimation error
covariance.

For the future work, we will study if the network that those
sensors send their measurements over is bandwidth limited.
In that case only a small portion of the sensors are allowed to
transmit at a time. In [17], the current authors have provided
several schemes for the uncertainty free cases. It will be
interesting to extend that result for this work.
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