
Optimal sampling of multiple linear processes over a shared medium

Sebin Mathew, Karl H. Johannson, Aditya Mahajan

Abstract— In many emerging applications, multiple sensors
transmit their measurements to a remote estimator over a
shared medium. In such a system, the optimal sampling
rates at each sensor depend on the nature of the stochastic
process being observed as well as the available communication
capacity. Our main contribution is to show that the problem of
determining optimal sampling rates may be posed as a network
utility maximization problem and solved using appropriate
modifications of the standard dual decomposition algorithms for
network utility maximization. We present two such algorithms,
one synchronous and one asynchronous, and show that under
mild technical conditions, both algorithms converge to the
optimal rate allocation. We present a detailed simulation study
to illustrate that the asynchronous algorithm is able to adapt
the sampling rate to change in the number of sensors and the
available channel capacity and is robust to packet drops.

I. INTRODUCTION

Recent advances in wireless communication have enabled
the use of wireless sensor networks in various applications
such as environment monitoring, healthcare, home automation,
and so on. Sensors in a wireless sensor network have limited
power, computation, and communication capabilities and
operate over a time-varying network. In applications where
remote estimation is critical, each sensor periodically samples
its observation and transmits the sampled measurements to
a remote estimator over the network. When these sensors
communicate over a shared medium, the available capacity
becomes a limited resource that has to be allocated optimally
to prevent congestion and minimize estimation error at the
remote estimator.

Several variations of remote estimation and sensor schedul-
ing under communication constraints have been investigated
in the literature. A typical class of problems is to find
optimal offline sensor schedule in terms of the estimation error
covariance under various resource constraints [1]–[5]. Despite
the advantage of low computation capacity requirement and
simple implementation, offline methods work inefficiently.
Event-based schedules, where a sensor communicates with
the remote estimator only when a pre-defined event happens,
often has superior performance compared to using time-
based schedules [6], [7]. It has been shown that the optimal
transmission policy for a scalar linear stochastic process
either with limited transmission opportunities or with cost
transmission is of the event-trigger form [8]–[10]. Sensor
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scheduling policies to achieve trade-off between sensor-to-
estimator communication rate and the estimation quality for
event-based sampling was investigated in [7], [11]–[13]

The traditional approach to monitor the system state is
to sample and send the signals periodically. The problem
of finding optimal time-periodic sensor schedules for esti-
mating the state of discrete-time dynamical systems was
discussed in [14]. An event-triggered control strategy was
proposed in [15] by striking a balance with conventional
periodic sampled-data control, leading to so-called periodic
event-triggered control. Design trade-offs between estimation
performance, processing delay, and communication cost for
a sensor scheduling problem over a heterogeneous network
was discussed in [16].

Resource allocation is a fundamental problem in shared
communication networks. An efficient resource allocation
strategy ensures successful sharing of the communication
channel among sensors while maximizing system performance
as a whole. On the other hand, stability, fairness and
robustness of rate control algorithms is critical [17]. Resource
allocation problems are typically framed as optimization
problems where the objective is to maximize aggregate sensor
utility over their transmission rates. The authors of [18]
provide synchronous and asynchronous distributed algorithms
for such a network utility maximization problem and prove
their convergence in a static environment. Applying decom-
position techniques allows us to identify critical information
that needs to be communicated between nodes and across
layers, and suggests how network elements should react in
order to attain the global optimum. Decentralized techniques
for utility-maximizing protocols – primal, dual, and cross
decomposition was studied in [17]–[20].

The main contribution of this paper is the use of dual
decomposition algorithms for optimal sampling in a remote
estimation system. In Section II we discuss the system model
and formulate the objective in terms of network utility of the
remote estimation system. In Section III we describe the
synchronous and asynchronous dual decomposition algorithms
and prove their convergence. In Section IV we conduct a
detailed simulation study and demonstrate the robustness of
the asynchronous algorithm to changing network conditions
and packet drops.

II. MODEL AND PROBLEM FORMULATION

A. Model

Consider a remote estimation system in which n sensors are
connected to a remote estimator over a network. The sensors
are indexed by the set N := {1, . . . , n}. Sensor i, i ∈ N ,
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observes a continuous-time stochastic process {Xi(t)}t≥0,
Xi(t) ∈ R, where Xi(0) ∼ N (0, θ) and for t ≥ 0

dXi(t) = aiXi(t)dt+ dWi(t)

where ai ∈ R is a known constant and {Wi(t)}t≥0, Wi(t) ∈
R, is a stationary stochastic process with finite variance
and satisfies a technical assumption (A1) that we state later.
We assume that the initial states {Xi(0)}, i ∈ N , and
the processes {Wi(t)}t≥0, i ∈ N , are independent. This
implies that the stochastic processes {Xi(t)}t≥0, i ∈ N , are
independent across sensors.

Sensor i, i ∈ N , samples its observation at a rate of
Ri = 1/Ti and sends the sampled measurements to the
remote estimator over the network. It is assumed that the
network is ideal and does not cause any delays or packet
drops.1 However, the network has a finite capacity C and the
rates R = (R1, . . . , Rn) must lie in the rate region

R =

{
(R1, . . . , Rn) ∈ Rn≥0 :

n∑

i=1

Ri = C

}
.

In between the sampling instances, the estimator generates
estimates {X̂i(t)}t≥0 to minimize the mean-squared error. In
particular, it can be shown that the optimal estimation strategy
is as follows: at the sampling time of sensor i, X̂i(t) = Xi(t);
at other times

dX̂i(t) = aiX̂i(t)dt.

Define the error process as Ei(t) = Xi(t)− X̂i(t). Then,
for all sampling times t = kTi, k ∈ Z≥0, Ei(t) = 0, and for
t ∈ (kTi, (k + 1)Ti), it follows the dynamics

dEi(t) = aiEi(t)dt+ dWi(t).

Since Ei(t) is a periodic process, the average mean-squared
error (MSE) Mi(Ti) for sensor i when the sampling period
is Ti is given by

Mi(Ti) =
1

Ti
E

[ ∫ Ti

0

(Xi(t)− X̂i(t))
2dt

]

=
1

Ti
E

[ ∫ Ti

0

(Ei(t))
2dt

]

=
1

Ti

∫ Ti

0

Var(Ei(t))dt. (1)

where E and Var denote mean and variance. The total mean-
square error across all sensors is given by

n∑

i=1

Mi(Ti). (2)

Example 1 Suppose the noise process at sensor i, i ∈ N , is
a Wiener process with variance σ2

i . Then, the state process
is a stationary Gauss-Markov (or a Ornstein-Uhlenbeck)
process, which we denote by GaussMarkov(ai, σi). For any
t ∈ (0, Ti), we have that

E[Ei(t)] = 0, and Var(Ei(t)) =
σ2
i

2ai
(e2ait − 1).

1Delays and packet drops will increase the mean-squared error but not
change the nature of the problem in any fundamental way.

Substituting this in (1), we get that

Mi(Ti) =
σ2
i

2ai

[
e2aiTi − 1

2aiTi
− 1

]
.

B. Problem formulation

We are interested in the following optimization problem.

Problem 1 Find a rate vector (R1, . . . , Rn) in the rate
region R that minimizes the mean-squared error (2). Or
formally,

min
R∈Rn

≥0

n∑

i=1

Mi

(
1

Ri

)
such that

n∑

i=1

Ri ≤ C. (3)

The above problem is similar in spirit to the class of
resource allocation problems known as network utility maxi-
mization [17]–[20]. We can think of the channel capacity as
the resource and the total mean-squared error as the negative
of the network utility. In network utility maximization, the
constraint optimization problem (3) is viewed as a primal
problem. Instead of solving it directly, one considers its
Lagrangian dual:

D(λ) = min
R∈Rn

≥0

L(R, λ)

where

L(R, λ) =

n∑

i=1

Mi

(
1

Ri

)
− λ
(
C −

n∑

i=1

Ri

)

=

n∑

i=1

(
Mi

(
1

Ri

)
+ λRi

)
− λC. (4)

The key to a distributed solution lies in decomposing the
dual objective (4) into two levels of optimization problems.
In the context of the above model, at the lower level, it is
assumed that the Lagrange multiplier λ is known and each
sensor i, i ∈ N , chooses a sampling rate as a solution to the
following optimization problem:

R∗i (λ) = arg min
Ri∈R≥0

Mi

(
1

Ri

)
+ λRi. (5)

At the higher level, the network assumes that the sensors
use rates according to the solution of (5) and chooses the
Lagrange multiplier by solving the dual problem

min
λ∈R≥0

L(R∗(λ), λ), (6)

where R∗(λ) = (R∗1(λ), . . . , R∗n(λ)).
In the sequel, we consider two different algorithms for

simultaneously solving (5) and (6); we call these synchronous
and asynchronous algorithms. Both algorithms are iterative
algorithms where the remote estimator updates the value
of the Lagrange multiplier (or the shadow price) λ and
sensor i updates the value of the rate Ri. In both algorithms
it is assumed that the remote estimator can broadcast the
Lagrange multiplier λ to all sensors. The synchronous and
asynchronous algorithms differ in how the update of the rates
Ri is communicated back to the remote estimator.
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The synchronous algorithm is performed as part of the
initial handshaking protocol during which the sensors can
directly communicate their updated rates to the remote
estimator. Thus, at each iteration, the remote estimator
synchronously updates the rates of all sensors. The algorithm
is described in detail in Section III-A.

The synchronous algorithm requires a control channel and
additional bandwidth for signalling overhead. On the other
hand, the asynchronous algorithm is an on line algorithm
where no additional bandwidth is required for signalling. The
sensors do not explicitly communicate the updated rates to
the remote estimator. Rather they simply transmit data at the
updated rates and the remote estimator infers the rate through
the inter-arrival time between successive transmissions. The
algorithm is described in detail in Section III-B.

For both algorithms, we assume that the model satisfies
the following assumptions:

(A1) For all sensors i, i ∈ N , and any sampling
period Ti ∈ R≥0, the mean-squared error in (1)
is strictly increasing and convex in Ti.

(A2) Mi(Ti) is twice differentiable and the curvature
M ′′i (Ti) on R is uniformly bounded away from
zero, i.e., there exists a positive constant γ̄ such
that M ′′i (Ti) ≥ γ̄ for all Ti ∈ R≥0 and i ∈ N .

Since Ri = 1/Ti, we can equivalently write (A1) and (A2)
as follows:

(A1’) For all sensors i, i ∈ N , and any sampling
rate Ri ∈ R≥0, the mean-squared error in (1) is
strictly decreasing and convex in Ri.

(A2’) Mi(1/Ri) is twice differentiable and the curvature
M ′′i (1/Ri) on R is uniformly bounded away from
zero, i.e., there exists a positive constant γ̄ such that
M ′′i (1/Ri) ≥ γ̄ for all Ri ∈ R≥0 and i ∈ N .

These assumptions are mild and will be satisfied in most
sensor networks. In particular, if Var(Ei(t)) > ctα where c
and α are positive constants, then Mi(Ti) is strictly increasing
in Ti; if Var(Ei(t)) is differentiable, then, Mi(Ti) is twice
differentiable.

The above assumptions are satisfied in Example 1 when
ai > 0. To see that note that,

M ′i(Ti) =
σ2
i

4a2iT
2
i

[
e2aiTi(2aiTi − 1) + 1

]

and

M ′′i (Ti) =
σ2
i e

2aiTi − 2M ′i(Ti)
Ti

.

It can be shown that for all x ∈ R>0, ex(x− 1) + 1 > 0 and
ex

2x −
ex(x−1)+1

x3 > 1/6. Substituting x = 2aiTi with ai > 0,
we get that M ′i(Ti) > 0 and M ′′i (Ti) > 2aiσ

2
i /3, thus, (A1)

and (A2) are satisfied.

III. THE TWO DUAL-DECOMPOSITION ALGORITHMS

A. The synchronous dual decomposition algorithm

The synchronous dual decomposition algorithm may be
viewed as an iterative gradient descent algorithm used by the
remote estimator to solve (6). The remote estimator starts

Algorithm 1 Synchronous allocation of sampling rates

Input Set of sensors S, network capacity C, number of
iterations K, gradient descent step size α, initial Lagrange
multiplier λ0.
procedure SYNC(S, C, K, α, λ0)

for k = 0 upto K do
for each i in S do

solve Ri,k : M
′

i (1/Ri,k)−R2
i,kλk = 0

end for
λk+1 =

[
λk − α(C −

∑N
i=1Ri,k)

]+

end for
return (R1,K , . . . , Rn,K)

end procedure

with an initial guess λ0 of the optimal Lagrange multiplier.
At each iteration k, the following steps are performed (See
Algorithm 1 for a formal description):
• Sensor i, i ∈ N , chooses a rate Ri,k = R∗i,k(λk) by

solving the optimization problem (5), which is a convex
optimization problem. One possible solution is to identify
a rate Ri,k that satisfies

M ′i(1/Ri,k)− λkR2
i,k = 0 (7)

where M ′i denotes the derivative of Mi. Sensor i then
communicates Ri,k to the remote estimator.

• Upon receiving the updated rate vectors
(R1,k, . . . , Rn,k), the remote estimator updates
the Lagrange multiplier in the direction of the gradient2

as follows:

λk+1 =

[
λk − αk

(
C −

∑

i∈N
R∗i (λk)

)]+
, (8)

where αk > 0 is an appropriately chosen learning rate
and [x]+ = max{x, 0}.

Theorem 1 Under assumptions (A1’) and (A2’) there exists
a unique solution R∗ = (R∗1, . . . , R

∗
n) of Problem 1. Moreover,

for any initial guess λ0 > 0 and sufficiently small step size α,
the rates Rk = (R1,k, . . . , Rn,k) chosen in the synchronous
dual decomposition algorithm converge to the optimal rates
R∗ as k →∞.

Proof: Conditions (A1’) and (A2’) are equivalent to the
conditions (C1) and (C2) of Theorem 1 in [18]. The proof
follows from [18, Appendix I].

B. The asynchronous dual decomposition algorithm

In the asynchronous dual decomposition algorithm, each
sensor i, i ∈ N , keeps track of the time TSi at which it
will take the next sample. The remote estimator keeps track
of the times TRi,k when each sensor last transmitted and its
estimate of their transmission rates R̂i. The remote estimator
initializes TRi,−1 = 0 and chooses an initial guess λ0 of

2Note that for a given choice of rates R, the derivative of L(R, λ) with
respect to λ is given by C −

∑n
i=1Ri.
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Algorithm 2 Asynchronous allocation of sampling rates

Input Network capacity C, Gradient descent step size α,
initial Lagrange multiplier λ0.

do initialization
for each i in S do

solve Ri : M
′

i (1/Ri)−R2
iλ0 = 0

set TSi = t+ 1
Ri

; TRi,−1 = t, where t = current time.
end for

end

procedure ASYNC-SENSOR-i
upon event 〈Current time t = TSi 〉 do

sample the state of the process and transmit
observe updated λ
solve Ri : M

′

i (1/Ri)−R2
iλ0 = 0

set TSi = TSi + (1/Ri)
end initialization

end procedure

procedure ASYNC-ESTIMATOR(C)
upon event 〈Packet received for sensor jk〉 do

update TRi,k as given in (9)
update R̂i,k as given in (10)

λk+1 =
[
λk − α(C −

∑N
i=1 R̂i,k)

]+

k = k + 1
end initialization

end procedure

the Lagrange multiplier and broadcasts it to all sensors.
Each sensor i, i ∈ N , then computes Ri by solving (7)
and initializes TSi = 1/Ri. Then the following steps are
performed at every iteration k (See Algorithm 2 for formal
description):
• Let jk denote the sensor with the lowest sampling time
TSi . At time TSjk , sensor jk takes a sample and sends its
measurements to the remote estimator over the network.

• Upon receiving the message from sensor jk, the remote
estimator sets

TRi,k =

{
TSjk if i = jk

TRi,k−1 otherwise
(9)

and

R̂i,k =





1

TRi,k − TRi,k−1
if i = jk

R̂i,k−1 otherwise
(10)

• The remote estimator then chooses λk+1 by updating
the Lagrange multiplier by taking a step in the direction
of the gradient as follows:

λk+1 =

[
λk − αk

(
C −

∑

i∈N
R̂i,k(λk)

)]+
, (11)

where αk > 0 is an appropriately chosen learning rate
and [x]+ = max{x, 0}.
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Fig. 1: Plot of (a) Lagrange multiplier λ and (b) rates R1 and
R2 versus iteration for the illustrative example of Sec. III-C.

• The Lagrange multiplier λk+1 is broadcast and sensor
jk updates the sampling rate Rjk according to (5) or (7)
and sets TSjk = TSjk + 1

Rjk
.

Let T R = {TRjk,k}k≥0 denote the set of time instances at
which the remote estimator updates the Lagrange multiplier
based on the current estimate of the sensor rates. Also, let
T Si , i ∈ N , denote the set of time instances at which the
sensor i updates its rate based on the Lagrange multiplier
broadcast to it. It is assumed that the following is satisfied:

(A3) The time between consecutive updates in T R (i.e.,
at the remote estimator) and T Si , i ∈ N , (i.e., at
every sensor) are bounded.

Note that (A3) is satisfied if for all λ ∈ R>0, the optimal
rate R∗i (λ) obtained in (5) is bounded. This is the case in
Example 1 if ai > 0.

Theorem 2 Under assumptions (A1’), (A2’) and (A3), for
any initial guess λ0 > 0 and sufficiently small step
size αk, the rates Rk = (R1,k, . . . , Rn,k) chosen in the
asynchronous dual decomposition algorithm converges to
the unique solution R∗ of Problem 1. Moreover, if the
synchronous and asynchronous algorithms use the same
learning rates {αk}k≥0, then the corresponding Lagrange
multipliers converge to the same value.

Proof: Assumption (A3) being equivalent to (C3) in
[18], the proof follows from [18, Theorem 2].

Remark 1 The dual decomposition algorithm does not en-
sure that the dual iterates are feasible (i.e., at the intermediate
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Fig. 2: Plot of Lagrange multiplier λ versus iteration for the
asynchronous algorithm under packet drop for the illustrative
example of Sec. III-C.

steps of the algorithm, it is not guaranteed that
∑
i∈N Ri,k ≤

C ). To keep the iterates feasible, one could start with a large
value of λ0, which will ensure that the sensors pick small
values of the initial rates {Ri}i∈N .

Remark 2 A feature of Algorithm 2 is that the clocks at
the sensors and the remote estimator do not need to be
synchronized.

C. An illustrative example

To illustrate how the algorithm works, consider
a system with two sensors, GaussMarkov(1, 1) and
GaussMarkov(1, 2), and a total capacity of C = 1. For
the synchronous algorithm, suppose the remote estimator
starts with an initial guess λ0 = 10 and both sensors use a
constant learning rate3 of αk = 10. Then, the rates converge
to (R1, R2) = (0.4355, 0.5645) and λ = 88.9136. After 200
iterations, the value of λ is 88.357, which is within 0.625%
of the optimal value.

For the asynchronous algorithm, we again assume that the
remote estimator starts with an initial guess λ0 = 10 and both
sensors use a constant learning rate of αk = 10. After 200
iterations, the value of λ is 88.399, which is within 0.579%
of the optimal value.

For comparison, we plot the value of the Lagrange
multiplier λ and rates R1 and R2 vs iteration for both the
synchronous and the asynchronous algorithms in Fig. 1. As
can been seen from the figure, at each iteration, the Lagrange
multiplier and the rates for both the synchronous and the
asynchronous algorithms are fairly close. The key difference
is that the synchronous algorithm is implemented as part of
the initial handshaking protocol (which requires an additional
signaling overhead) while the asynchronous algorithm is on
line where the sensors adapt their transmission rates while
transmitting data (so there is no signaling overhead). The 200
iterations of asynchronous algorithm takes about 194 sec.

D. Robustness of asynchronous algorithm to packet drops

For the asynchronous algorithm we assumed an ideal
communication channel. The algorithm is robust to packet
drops introduced by the channel as long as assumption (A3)
continues to hold. To illustrate this point, we reconsider the
example of Sec. III-C but assume that packets are dropped
with probability p. The plot of Lagrange multiplier versus
number of iterations for different values of packet drop
probability p is shown in Fig. 2. As can be seen from the
figure, there is very little impact of packet drops on the
convergence of the algorithm.

IV. NUMERICAL EXAMPLE

In the model described in Sec. II, the system is assumed
to be static. However, in many applications, the network
conditions change with time: new sensors may come onboard,
existing sensors may leave, or the channel capacity might
change. In general, the dual decomposition algorithm is
robust to slow changes in the network conditions, so we
expect the asynchronous algorithm to be able to adapt to
changing network conditions. In this section, we present a
detailed simulation study to illustrate the robustness of the
asynchronous algorithm to network changes.

We consider an experimental setup where the number of
sensors N(t) changes according to a stochastic process. We
assume that new sensors arive according to a Poisson process
with rate ρ and stays in the system for an exponentially
distributed amount of time with rate ρ, after which the sensor
leaves the system. Each new sensor is GaussMarkov(ai, σi)
where ai and σi are chosen randomly. We assume that
the remote estimator broadcasts the value of the Lagrange
multiplier λ at all times. When a new sensor arrives, its initial
sampling rate is determined based on the current value of
λ. The remote estimator continues to adapt λ according to
Algorithm 2, without being explicitly aware that a new sensor
has arrived. Similarly, the remote estimator is not explicitly
aware when a sensor leaves the system.

We consider a scenario of 450 seconds where we start with
N(0) = 25 sensors and sensors arrive and leave at a rate of
ρ = 2 per minute. Each new sensor is GaussMarkov(ai, σi),
where ai ∼ Unif[0.1, 2] and σi = 1. At T = 0, the system
capacity is 25; at T = 200, the capacity changes to C =
20; and at T = 400, it changes to C = 30. We run the
asynchronous algorithm with a constant learning rate of αk =
0.01 throughout. The plot of N(t) and λ versus time as well
as
∑
i∈N Ri versus time are shown in Fig. 4. These plots

illustrate the robustness of the asynchronous algorithm to
changing network conditions.

In Fig. 3(a), we zoom into Fig. 4(b) at T = 127 when the
system has 27 sensors, C = 25, and λ = 3.41. At this time,
one of the sensors leaves and the sum rate falls below the
network capacity. The remote estimator adjusts the Lagrange
multiplier λ according to (6). Since there is one less sensor

3In practice, convergence speeds up considerably if the learning rate
is adapted according the gradient (e.g., using ADAM or ADAGrad [21]).
However, in this example, we choose a constant learning rate to simplify
exposition.
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Fig. 3: Plot of sum rate
∑
i∈N Ri and λ versus time for the asynchronous algorithm, illustrating (a) sensor leaving, (b) sensor

coming aboard and (c) capacity change for the system described in Sec. IV.
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Fig. 4: Plot of (a) number of sensors N and λ, and (b) sum
rate

∑
i∈N Ri versus time for the asynchronous algorithm

for the system described in Sec. IV.

competing for the same resource, the Lagrange multiplier
decreases and converges to 2.88 at T = 135.

In Fig. 3(b), we zoom into Fig. 4(b) at T = 180 when
the system has 25 sensors, C = 25, and λ = 2.58. At this
time, a new sensor comes aboard, sees the current value of
λ and chooses a transmission rate using (5). When the new
sensor transmits, the sum rate exceeds the channel capacity4

The remote estimator adjusts Lagrange multiplier λ according
to (6). Since there is one more sensor competing for the same

4In practice, the sum rate exceeding the channel capacity will result in
delay or packet drops but such effects are not taken into account in our
model.

resource, the Lagrange multiplier increases and converges to
3.09 at T = 189.

In Fig. 3(c), we zoom into Fig. 4(b) at T = 200 when the
system has 26 sensors, C = 25, and λ = 3.09. At this time,
the system capacity reduces to C = 20. The remote estimator
adjusts the Lagrange multiplier using (6). Since there are
the same number of sensors competing for less resources,
the Lagrange multiplier increases and converges to 7.65 at
T = 227.

To observe how individual sensor rates vary with
changes in network conditions, we pick two sensors,
GaussMarkov(1.3, 1) and GaussMarkov(0.4, 1) that stay
active throughout the experiment. The rate allocation by the
asynchronous algorithm for these sensors is shown in Fig. 5(a)
and the empirical MSE is shown in Fig. 5(b).

We compare the optimal rate allocation described in the
asynchronous dual decomposition algorithm with two baseline
equal rate allocation schemes. In Scheme 1, we assume that
N(t) ≤ 30 and allocate a constant sampling rate Ri = C/30
to all active sensors i ∈ N ; in Scheme 2, we assume that
the remote estimator keeps track of N(t) and allocates a rate
of Ri = C/N(t) to all active sensors i ∈ N . We plot the
aggregate empirical MSE for the system in Fig. 6, which
shows that, as expected, the optimal scheme performance
better than the two baselines and the difference in performance
is significant when the channel capacity is low.

V. CONCLUSION

In this paper, we proposed a dual decomposition technique
to minimize mean-squared error in a remote estimation system
subject to capacity constraint, by posing the objective as a
variant of the network utility maximization problem. We
derived an asynchronous rate allocation algorithm where the
sensors and the remote estimator communicate and update
their controls asynchronously. The two dual decomposition
algorithms described in the paper provide a decentralized
approach to rate allocation for sensors communicating over
a shared medium. The algorithms are provably convergent to
the global optimum in a static network and robust to slowly
changing network conditions and packet drops. Using an

1717



100 200 300 400

0.5

1

1.5

T (sec)

R
A

T
E

GaussMarkov(1.3, 1) GaussMarkov(0.4, 1)

(a)

100 200 300 400

1

2

3

T (sec)

M
S

E

GaussMarkov(1.3, 1) GaussMarkov(0.4, 1)

(b)

Fig. 5: Plot of (a) sampling rate and (b) empirical MSE versus
time for GaussMarkov(1.3, 1) and GaussMarkov(0.4, 1) for
the system described in Sec. IV.

experimental setup, the performance and optimality of the
asynchronous algorithm is illustrated.
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