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ABSTRACT

Advanced driver assistance systems for heavy duty vehicles, such as look-
ahead cruise and gearshift controllers, rely on high quality map data. Current
digital maps do not offer the required level of road grade information. This
contribution presents an algorithm for on-board road grade estimation based
on fusion of GPS and vehicle sensor data with measurements from previous
runs over the same road segment. An incremental update scheme is utilized
to ensure that data storage requirements are independent of the number of
measurement runs. Results of the implemented system based on six traversals
of a known road with three different vehicles are presented.

INTRODUCTION

Several algorithms in today’s heavy duty vehicle (HDV) embedded systems are based on
state information of the vehicle. Such state estimates are traditionally obtained from
one or more sensors in the vehicle. In addition to the traditional applications new ad-
vanced driver assistance systems under development predict the future dynamics of the
vehicle. These predictions combine the current state of the vehicle with, stored or sensed,
information about the road ahead e.g., the topology, the curvature or the traffic situation.

Prediction of the behavior of the vehicle over significant distances requires high quality
map data. Highway speed optimization for heavy duty vehicles often requires prediction
of the vehicle dynamics for the next kilometre or more. The maps can either be bought or
obtained by own measurements. In order to get adequate data quality from a single drive
over the road it is necessary to use sophisticated measurement equipment. Combining
sensor fusion, based on several ordinary sensors, and data fusion of multiple measurement
runs obtained for the same road segment, it is possible to approach the required quality
level. This paper outlines such a system suitable for HDVs which travel the same highways
frequently and characterizes its performance. The system is based on standard mounted
sensors and a GPS receiver.



RELATED WORK

How knowledge about the upcoming road topology can be used for optimizing the vehi-
cle’s speed profile with respect to fuel consumption has been presented in several recent
contributions e.g., [1, 2, 3, 4].In this line of work knowledge about the road grade ahead
of the truck is assumed to be available e.g., via a map. As previously mentioned, this
contribution considers the task of developing a system for creating road grade maps for
this type of application. The idea is to create a system that merges sensor data from
several data sequences measured on a road segment into a map. An earlier version of the
method described herein, without the enhancements derived from the latest experiments,
can be found in [5]. That account contains more details about the models and Kalman
filtering.

Similar ideas have been presented by Schroedel et. al. [6] and Briintrup et. al. [7] where
data mining is used to automatically create road network maps from a (large) collection
of individual GPS traces. Neither of these sources however explicitly address road grade
estimation or the possibility to use a vehicle model to improve estimation quality.

There are several different methods proposed in the literature for estimation of the road
grade. One way is to use a sensor that is directly related to the grade. Such a solution
is presented by Bae et al [8] where the grade is determined using a GPS receiver by
calculating the ratio between the vehicle’s vertical velocity and its horizontal velocity. A
GPS receiver needs good satellite coverage to obtain decent estimates. This is however, a
constraint that is difficult to sustain in areas with buildings, trees, tunnels or other large
objects. There are also methods that recursively estimates the road grade without using
direct sensor information. Lingman and Schmidtbauer [9] presents a method where the
road grade is estimated using a Kalman filter-based on measured or estimated propulsion
force, estimated retardation forces and measured velocity. Vahidi et. al. [10] presents
a similar method where the grade is estimated using Recursive Least Squares-based on
a simple motion model. An advantage with these methods is that no extra sensors are
required. There are however certain occasions when these two methods fail, or have major
difficulties, to deliver reliable estimates e.g., when the friction brakes are applied or when
gearshifts are performed.

CONTRIBUTION

This paper presents a method to estimate the road grade-based on standard mounted
HDV sensors and a GPS unit along with measured results from an implementation of
the method. The performance of the system is investigated, and key considerations are
highlighted with measured data. The behavior of the method when either GPS or vehicle
model data are unavailable is presented. The combined road grade estimate from six
measurements with three vehicles is compared to independent reference road data. A
major contribution in the method is the spatial sampling of the sensor fusion estimate
which through the estimate error covariance matrix enables data fusion of an arbitrary
number of measurement series at difference time instants.



MODELS AND MEASUREMENTS

MODELS

In order to do model-based sensor fusion it is necessary to establish some basic relation-
ships between the various signals that are available for measurement and the quantities
to be estimated. The used model is divided into two parts. The first one describes the
longitudinal movement of the vehicle. The second part describes the topology of the road
by relating the altitude with the grade and the speed of the vehicle.
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Figure 1: Longitudinal forces acting on the vehicle.

Information about the road grade can be obtained from the engine loading and velocity
behavior of the vehicle. A principal sketch of the longitudinal forces acting on a HDV
is shown in Figure 1. Fyngne is the net pull force produced by the engine, Fi,are is the
applied brake force, Fiirarag is the air drag, Fiopn is the rolling resistance and Fyavity s the
gravity induced force. Using Newton’s law of motion the force balance for the HDV in
Figure 1 is given by

i 1
U= E (Fengine - Fbrake - Fairdrag - Froll - Fgravity) (1)
t
where my is the total accelerated mass, v is the velocity and o denotes the road grade.
For more details on this model refer to [5, 11]

Two states are used to describe the topology of the road, the altitude z and the grade a.
The dynamics for these two states are modeled as

2(t) = v(t) sin a(t)‘

a(t) =0 2)

Since the data fusion method used utilizes spatially sampled measurements the time
domain relations (1) and (2) have to be expressed in the spatial domain instead. A com-
bination of the spatial versions of (1)-(2) together with a first order Euler approximation
yields a discrete spatially sampled model with sampling distance As as

Uk Vp—1 + AsAv, wy
2k | = |2k-1 + Assinag_y | + |wh (3)
Qy, 1 wy
Tk flzr_1) Wk
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where process noise wy has been added to capture the uncertainty in the model. Subscript
k denotes the discrete sample number. Through modeling of the forces in Figure 1 the
change in velocity Avy during the travel from the previous sample point is given by

M4 1 sin(ag_1)
— CUg—1 — C3 —C4
Vk—1 Vk—1 Vk—1

where ¢y, ..., ¢4 are vehicle parameters and M is the net driveline torque.

Av, =

MEASUREMENTS

This section describes the measured quantities and their relation to the states in (3). Two
sequences of data from measurements on the Swedish highway E4 are shown in Figure 2.
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Figure 2: Source data from measurements 2 (solid) and 6 (dashed) on a segment of
highway E4 south of Sodertalje. From the top the plots show the GPS altitude signal, the
number of active satellites, the engine torque and the measured mean front axle speed.

A GPS is used to record latitude, longitude, velocity, altitude and the number of active
satellites. The latitude, longitude and velocity signals are used to resample the recorded
measurements from the original time indexed to a distance indexed form. The altitude
signal is used in the road grade estimation with the sensor model

GPS GPS
2 =z e (4)
Here €%6PS is used to represent stochastic measurement noise.

From standard internal sensors in the vehicle the velocity, net engine torque, brake system
usage, current gear and gear shifts are recorded. The vehicle velocity is denoted vV*" and
is obtained from the wheel speed sensors. The filter measurement equation becomes

Uveh U 6vveh
Y = Lképs =2 + e{GPS : (5)
e N——
h(wk) €k
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ROAD GRADE ESTIMATION

Combining the previous sections the measurements and the state update are described
by the state-space system

T — f('rk—l) + Wi (6)
yr = h(xy) + ey

cf., (3) and (5). It is assumed that the noise sources wj and e, can be represented
by zero-mean white Gaussian noise processes. With this assumption, extended Kalman
filtering [12] provides a method for estimation of the state vector xy based on the mea-
surements yx. This method will be used to create an estimate of the road grade for each
measurement run. The extended Kalman filter is defined by the system equations (6)
together with the covariances for w;, and e,. An overview of the data flow in the proposed
method is given in Figure 3
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Figure 3: Overview of filter architecture for road grade estimation. Information from the
vehicle’s data bus is integrated using an extended Kalman filter, followed by a smoothing
algorithm. The smoothed data are then merged with pre-existing data sequences. Infor-
mation is delivered to the data bus from on-board embedded systems and a GPS receiver.
The grade estimate is denoted a.

KALMAN FILTERING AND SMOOTHING

In extended Kalman filtering the non-linear system is linearized around the current tra-
jectory. The standard recursions for Kalman filtering are then applied on the linearized
system. These recursions are described by two update steps: a time update and a mea-
surement update. In the first step, the time update, the state estimate 2;_; and the error
covariance Pj_; are updated according to

of .
Fk = a—i(l'kl)

LIAﬁlC = ij:kfl
P, = FkPk—lFlz + Qk



Event Effect

Friction brake use Driveline torque unknown
Auxiliary brake use Uncertain driveline torque
Gear shifts Unmodelled driveline dynamics

GPS signal masking No or low quality GPS data

Table 1: Recorded events which are taken into account when determining the time varying
process noise covariance (@) and measurement noise covariance (Ry).

where (), is the covariance of the process noise wy. The second step is a measurement
update where the estimate is corrected based on the measurements according to
oh
Hy = —(
g &75( 2
Ky, == P H (H PH] + Ry,)™"

T = I + Ky — h(2y))

where R, is the covariance of the measurement noise ey,.

By completing the measurement of a road segment before application of the sensor and
data fusion, smoothing can be used to compensate for the filtering delay and include
information from future sampling points in each estimate. In this work the Rauch-Tung-
Striebel fixed point smoothing algorithm has been used. The algorithm is described in
for example [13]. The smoothing is applied as a backwards recursion and the filtered
estimates Z; and the estimated error covariance matrices P, are used in the process.
The smoothed state estimates Z}, and corresponding smoothed estimated error covariance
matrices P are later used when several measurements are combined. The final state of
the filter recursion is used as initialization for the smoothing backwards recursion

Fy = P.E P

Tp = B + (254 — Tprn)
Py = Pt Fi(Pay — Pes) FE.

COVARIANCE MATRICES

The implementation is now straightforward, with the exception of choosing noise covari-
ances. To simply the design it is assumed that the covariance matrices are diagonal. The
true system and measurement covariances may change while driving. An attempt to ac-
count for this is made by setting up rules for adjusting ), and Rj; based on the events
listed in Table . For detection of these events the recorded signals from the vehicle are
used. The estimated time varying error covariance P; will contain confidence information
for the estimate at each sample point. This information is useful in the data fusion step.

Signal masking in the GPS-receiver, i.e. reduced number of available satellites due to
obstacles in the vicinity has severe effects on the quality of the measurements of the GPS-
receiver. Especially the precision of the altitude estimate is dependent on the number



available satellites (and also their relative positions, although this effect is not considered
here). Therefore the size of the variance of e?“F® is varied based on the current number
of visible satellites. When the satellite count drops below four, altitude determination is
not possible with GPS, and a very high variance is set.

A similar reasoning can be applied for braking and shifting, with the addition that these
affect the vehicle behavior and thus the process noise as well. It is difficult to estimate
the brake force that acts on the vehicle. As a consequence, the model for the longitudinal
dynamics becomes uncertain. A way to handle this is to increase the process noise wy,
whenever the brake system is engaged. Using wheel rotation to determine the vehicle
speed becomes less reliable during braking, since the amount of slip changes and even
lockups can occur. During gear shifts the produced torques in the driveline are difficult
to model, large oscillations which are not included in the relatively simple driveline model
may appear.

DATA FUSION

To optimally use all the road information in several measurement a large Kalman filter
could be used. This approach would require all the data to be considered at the same time,
but could be feasible in a one shot map creation scenario. In order to incrementally build
a map however, it is desirable to have to store as little as possible from the source data for
future iterations. In this work a weighted average is used to incrementally create a total
estimate based on one estimate from previous measurements and one new measurement
run. This limits the storage requirement to the current set of state estimates and their
estimated error covariances. When a new measurement sequence becomes available it is
used to find a new estimate of the grade profile, with an associated error covariance. The
approach is inspired by the general fusion formula described in e.g. [14].

P=((P)™ + (P
by o= P((Pe) ™ + (P 71aR).

Here 2{, Pf denotes the resulting fused state and error covariances, and 1, P} and 22, P?
denote the source quantities. Two of the states used in the road grade estimation, z; and
ayg, are directly related to the road. The third state, vy, describes the measurement vehicle,
and is not constant between measurements. Only the states describing the road are used
in the data fusion process, giving 21 = [2’£ dfk}T. If two overlapping data sequences are
being merged 1, P! and %2, P? consist of the relevant elements of the smoothed estimates
25 and Pg. If a new measurement is merged with an existing map (based on two or more
previously merged overlapping data sequences) one of the source estimates is the smoothed

new measurement data, and the other source estimate is the map.

The experiments show that using the error cross covariances in the off-diagonal elements
of the error covariance matrices actually decrease the quality of the data fusion. This ef-
fect seems to come from the relatively large uncertainty in the absolute altitude estimate.
As can be seen in Figure 2 (and deduced from GPS receiver specifications) the absolute
error can be tens of meters even under good conditions. The relative altitude precision is
generally much better. To prevent large absolute altitude uncertainties from interfering



Vehicle Configuration Weight [t] Axles Used for measurements

A Tractor and semi-trailer 39 5) 1,2,3
B Tractor 13 2 4.5
C Rigid truck 21 3 6

Table 2: Test vehicles used to collect experiment data for the proposed road grade esti-
mation algorithm.

with the slope estimates currently only the error covariance matrix elements on the di-
agonal are used, effectively yielding a scalar fusion for each of the states. The estimated
error covariance of a fused estimate will be lower than that of any of the source data sets.
If the errors in different measurement runs are not independent as assumed, the fused P}
will be an underestimate. Segments of each source estimate with high error covariance
estimates will have less weight in the calculation. As a result measurements obtained
during periods of braking or loss of satellite coverage in one of the data sequences will not
destroy higher quality information in the other. A problem to consider is that inherently
difficult sections, such as downhill tunnel segments will still be very hard to estimate
accurately, since any measurement will most likely contain low-quality estimates.

RESULTS

The measurements have been performed with three different Scania test vehicles driving
on the same stretch of road. The three vehicles differ in their configuration and the ex-
periments have been conducted on different days. Separate sets of parameters for the
truck model in the EKF have been used for the different vehicles. Due to the differences
between the vehicles types and varying weight, model errors are likely to vary somewhat
between vehicles. The experimental data thus includes some of the uncertainties which
would affect a real world system used in several vehicles with varying weight and envi-
ronmental conditions. Key parameters for the test vehicles are given in Table 2. Most
of the collected data have been logged from the on-board CAN bus. Since there is no
standard mounted GPS in today’s trucks an external VBOX GPS unit connected to a
second CAN channel has been used. The measurements used in this paper represent 10km
of the southbound E4 highway just south of Sodertalje, Sweden.

ALGORITHM PERFORMANCE

Absolute vehicle position recorded from the GPS was used to syncronize the different
measurements. Positioning errors and differing travel paths on the roadway limit the
synchronization accuracy. A reference position from the first measurement has been used
find a common starting point in all measurements. Apart from that fixed point only the
distance traveled is used for positioning, which limits the useable segment length for study
to 10-15 km. Longer segments will have drifted too much in the later part. All the figures
in this paper are based on the same road segment and share a common distance scale for
easy cross-referencing. An independent road grade profile measured using a specialized
survey vehicle is used for validation of the results. This measurement lacks absolute



coordinates in any dimension. The position along the road is found from minimizing the
difference between the reference and estimated road profiles, and the relative altitude
is obtained from numerical integration of the slopes. Figure 4 shows a close-up of the
agreement between the reference road grade profile and the merged estimate based on all
six measurement runs. There is a good overall agreement with a mean squared difference
of 0.13% slope for this segment.

| | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Distance [m]

Figure 4: Comparison of final merged grade estimate (solid) with reference from spe-
cialized road grade measurement car (dashed). The thin lines flanking the road grade
estimate illustrate the numerically calculated one standard deviation distance from the
grade estimate, for each sample point based on the six measurements.

The test road contains one steep downhill slope section where ultimately vehicle A needs
to apply a brake force to avoid over speeding. The steep portion of the slope lasts
approximately from 1000 m to 2600 m. During the braking the torque in the vehicle
model is described as unknown. Increased modeled process noise, )y, in the velocity
state indicates less reliance on the accuracy of the vehicle model, and leads to a higher
estimated slope error covariance. Further down the road around the 4000 m mark there
is an uphill section where vehicle A needs to change gears. Vehicle C encounters some
congestions and uses the brakes to slow down after about 6600 m. All these events and
their influence on the estimated slope error covariance P,j(&g) for measurements 3 and 6
are shown in Figure 5.

The descent described above ist the most challenging part of the studied road segment
Figure 6 shows a close-up of all six smoothed grade estimates together with a simple mean
and the final merged estimate from the proposed algorithm. Vehicle B and C are not heavy
enough to need a brake force applied during the descent, and thus their estimates will
have a higher weight in the merging. Particularly the second measurement yields a bad
grade estimate in this section, and it can be seen that the effect from this on the merged
result is less adverse than it is on the simple mean.

The GPS altitude information reduces the appearance of a grade estimate bias from mod-
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Figure 5: When braking or shifting gears the estimated slope covariance (top subfigure)
will increase, which reduces the weight for the measurement in the merge step. The events
used in the algorithm are indicated in the second (braking) and third (shifting) subfigures.
The data shown are from measurements two (vehicle A, solid) and six (vehicle C, dashed).
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Figure 6: The final merged grade estimate (solid) is shown together with a simple mean
of the individual smoothed estimates (dashed) for the difficult downhill section of the test
road. When a vehicle brekes or shifts gears the estimated slope error covariance goes up,
which reduces the weight in the merge. Out of the six smoothed grade estimates (thin,
solid) the one based on measurement two is particularly at odds with the consensus,
which is due to a GPS altitude signal disturbance during braking. During braking the
GPS is more important than normal in the filter. Since the brake system was engaged,
the disturbed estimate has a lower weight in the merge than in the simple mean, as can
be seen from 1400 m to 1600 m and from 1800 m to 2000 m.
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eling or model parameter errors. To investigate the influence of GPS altitude information
on the grade estimate a version of the filter modified to use only the vehicle velocity as
measured input has been used. A comparison of estimated road grade and altitude pro-
files obtained with the GPS enabled and disable is shown in Figure 7. The estimate from
the filter without GPS information and the survey vehicle integrated reference altitude
are initialized at the same altitude as the GPS based filter in order to make the compar-
ison. The presented data are based on measurement two with the fully loaded tractor
semi-trailer combination (vehicle A). This is the vehicle type best described by the vehicle
model, the observed drift without GPS data with the other two vehicles was two to five
times larger.
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Figure 7: The first plot shows the road grade estimate for measurement two with (solid)
and without (dashed) the GPS enabled. Without the GPS some model or parameter error
on average causes a slight bias in the road grade. It can also be seen that a GPS signal
disturbance while braking in the downhill section has a significant impact on the estimated
grade. The second plot illustrates the grade estimate bias without GPS by showing the
estimated altitude with (solid) and without (dashed) the GPS enabled together with the
calculated altitude from the reference measurement (dotted).

CONCLUSIONS

The proposed method used on overlapping, vehicle sensor and GPS, data sequences can
produce results which are very similar to a single pass reference measurement using a
specialized measurement vehicle. The scheme to vary the process noise and measurement
error covariance matrices depending on additional information from the measurement
allows the filter to use the best information from multiple overlapping data sequences for
estimating a particular road section. The performance of the algorithm depends on the
accuracy of the altitude measurement of the GPS. An area of future work is to compare
the performance when using a standard quality vehicle mounted GPS to the GPS unit
used here. Further development of the methods used to select the covariances Ry and Qg
can hopefully increase the robustness of the method.
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