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Abstract: Look-ahead cruise controllers and other advanced driver assistance systems for
heavy duty vehicles require high precision digital maps. This contribution presents a road grade
estimation algorithm for creation of such maps based on Kalman filter fusion of vehicle sensor
data and GNSS positioning information. The algorithm uses data from multiple traversals of
the same road to improve previously stored road grade estimates. Measurement data from three
test vehicles and six road traversals has been used to evaluate the quality of the obtained road
grade estimate compared to a known reference.
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1. INTRODUCTION

Modern heavy duty vehicles (HDV) employ several elec-
tronic control systems which utilize vehicle and environ-
ment state information to increase efficiency, safety and
comfort. The road grade is one state which heavily influ-
ences the longitudinal dynamics and energy flow in a heavy
duty vehicle. It is used in engine and gearbox controllers to
help meet the instantaneous power demand while keeping
fuel consumption and environmental impact as low as
possible.

The current state of the vehicle is commonly obtained
through various on-board sensors. Advance knowledge, or
look ahead, of future key influences on the vehicle enables
new control algorithms to improve overall vehicle perfor-
mance. As an example knowledge of the road grade about
one kilometer ahead of the vehicle makes it possible to
automatically adjust the speed ahead of up- and downhill
sections and thus conserve fuel without increasing trip
time. The preview road grade information can also be uti-
lized when determining if a gearshift should be performed
or the state of some energy buffer changed.

In order to reap the benefits described there has to be some
way of knowing attributes related to the road ahead. This
can be accomplished by using a global navigation satellite
system (GNSS) receiver in combination with a digital map.
GNSS receivers are already commonplace in vehicles, as
are digital maps used for navigation. The road grade is
currently not generally available in navigation maps, and
has to be obtained by other means. One method is to use
on-board sensors to estimate the road grade and create
a map as the vehicle drives down the road. If a road is
driven frequently, many estimates of the road grade can
be obtained. These can be used to increase confidence in
the created map. This contribution investigates properties
of a proposed method for road grade estimation. The

method combines road grade estimates based on standard
mounted on-board sensors and a GPS receiver from many
overlapping road traversals into a road grade map. Each
time a known road is driven again the map can be updated.
The method is tested with three types of HDVs, seen in
Figure 1.

Fig. 1. The vehicle types used for verification. Starting
from the left a tractor-semitrailer combination (A),
tractor only (B), and rigid truck (C) were used.

1.1 Related Work

The potential for improved energy efficiency through speed
optimization based on future road grade has recently been
treated by e.g. Lattemann et al. [2004], Terwen et al.
[2004], Hellström et al. [2007], Fröberg and Nielsen [2007].
Knowledge of future energy needs combined with new
auxiliary units which enable increased power comsumption
scheduling over time can improve total energy efficiency,
as explored in Pettersson and Johansson [2006/05/]In this
context the future road grade is assumed to be known,
for example from a map. Automatic map generation ideas
have been described by Schroedl et al. [2004] and Brüntrup
et al. [2005]. These contributions do not however specifi-
cally address road grade maps, or the possibility to use a
vehicle model and driveline sensors to improve accuracy.

Many different methods for estimating the road grade
can be found in the literature. One approach is to use
a sensor directly related to the grade. This is used for



example in Bae et al. [2001] where the grade is determined
using a GPS receiver which give both a vertical and
horizontal velocity. The road grade can then be found
through the ratio of the velocities. Such a method relies
heavily on the existence of a high quality GPS signal,
something which is not always available. The idea of
using vehicle sensor information to find the road grade
has been explored in Lingman and Schmidtbauer [2001]
where a Kalman filter is used to process a measured or
estimated propulsion force or estimated retardation force
and a measured velocity. A similar method, where the
grade is estimated using Recursive Least Squares based on
a simple motion model has been suggested by Vahidi et al.
[2005]. These methods have the advantage of not needing
any extra sensors, such as the GPS, but then neither
provide the extra bias compensation or easy inclusion
of data from multiple road traversals. Earlier treatments
of the proposed grade estimation method can be found
in Sahlholm et al. [2007b,a].

1.2 Contribution

This paper introduces a method for HDVs to estimate
the road grade using only standard mounted sensors and
a GPS receiver. Two implementations are presented, one
based on a non-linear vehicle model and extended Kalman
filtering and one based on a piecewise linear model and a
standard Kalman filter. The method includes a systematic
way of improving the current grade estimate using new
passes over a know road segment. Incremental improve-
ments are made possible by the use of spatial sampling
and storage of the estimated error covariance matrix for
the current road grade estimate. Grade estimates obtained
under good conditions have a higher weight in the final
estimate than those that are created under greater uncer-
tainty. The storage requirement for a particular road will
not grow as new measurements are incorporated. A step by
step illustration of the effects of adding new measurements
is presented. The grade estimation method detects and
handles disturbances caused by GPS unavailability and
driving events which change the vehicle dynamics. The
proposed method is evaluated using three test vehicles
driven a total of six times over the same test road segment.
The obtained final grade estimate compares favorably to
one acquired from specialized road grade measurement
equipment.

1.3 Outline

The paper is organized as follows. Section 2 describes the
the road grade estimation method by introducing the ve-
hicle model, two different filtering approaches, smoothing
and data fusion. It also explains the experimental setup.
Results are given in section 3, and the paper ends with
conclusions and a discussion in section 4.

2. METHODOLOGY

A non-linear vehicle model and an extended Kalman filter
(EKF) are used to estimate the road grade. To investigate
the effect of the nonlinearity, and obtain a linear model for
further analysis, a piecewise constant linear vehicle model
is also used for comparison. The road grade estimates from

six test runs on highway E4 south of Södertälje, Sweden
have been merged using a the proposed method.

2.1 Vehicle Model and Measurements

The first step of the road grade estimation method involves
the integration of drive line sensors with GPS data. A
longitudinal vehicle model is used to relate the various
sensor signals to the road grade. A known vehicle mass and
engine load at a particular gear together with the vehicle
speed makes it possible to calculate the road grade. The
most important forces which affects the vehicle are shown
in Figure 2. The quantities are generally time varying, time
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Fig. 2. Longitudinal forces acting on the vehicle.

has been left out of the equations for clarity. Fengine =
itifηtηf

rw
M is the net engine force. Knowledge of the selected

gear yields the gear ratio it and the efficiency ηt from
tables. The final gear ratio if , efficiency ηf and wheel
radius rw are known vehicle constants. The engine torque
measurement M is obtained from the engine management
system. Fairdrag = 1

2cwAaρav
2 is known through the

measured vehicle speed v together with the constants
air drag coefficient cw, vehicle frontal area Aa, and air
density ρair. A very simple model Froll = mgcr gives
the rolling resistance from the vehicle mass m, gravity
g, and coefficient of rolling resistance cr. The road grade
α enters the model through the gravity induced force
Fgravity = mg sin α. The brake force Fbrake is excluded
from the model since it is generally unknown in a standard
HDV, its influence is considered at a later stage. The
total dynamic vehicle mass is expressed as mt = Jw

r2
w

+

m +
i2t i2f ηtηfJe

r2
w

where Jw and Je represent the inertia of

the engine and the wheels respectively. Newton’s laws of
motion are used to attain a time relation between forces
and velocity change.

A GPS receiver provides a three dimensional position
(latitude, longitude, and altitude) together with a signal
indicating the number of satellites used for the position fix.
The vehicle speed and the road grade are used to calculate
the time derivative of the altitude and thus provides a
link between the GPS and the vehicle model. The changes
in road grade are not modeled and the engine torque is
regarded as an input signal u(t) = M(t). Put together

with the state vector x = [v z α]
T

this gives the continuous
time vehicle and road model ẋ(t) = f(x) with the dynamic
equations given in (1). More details on the vehicle model
formulation can be found in Kiencke and Nielsen [2003].



v̇(t) =
1

mt
(Fengine

− Fairdrag − Froll − Fgravity)

ż(t) = v(t) sin α(t)

α̇(t) = 0

(1)

In order to easily obtain estimates at specific spatial
locations rather than time instants a spatially sampled
version of the model is derived through the relation

∂v(t)

∂t
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∂v(t)

∂s(t)
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v(t)

.

The continuous model is then discretized with the distance
step ∆s for use in the Kalman filter based state estimation.
The discretized model is given in (2).
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The rate of change in velocity from the previous sample
point is given by (3).
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It can be noted that the values of c1,c2, and c3 depend
on the vehicle parameters as well as the selected gear.
The presence of the efficiencies ηt and ηf also make the
expression (3) dependent on whether the net engine torque
is positive or negative.

To evaluate the influence of the nonlinearity in the vehicle
model a piecewise constant version is derived. The lin-
earization is done around an equilibrium, and reiterated at
gear changes and depending on the direction of power flow
in the drive line. When the engine is powering the vehicle
the gearbox and final drive losses lead to lower total power
at the wheels than at the engine. During coasting the
engine acts as a break force and the situation is reversed,
requiring adaptation of the model. Each gear and power
flow direction will lead to a different mode, denoted by
m, with a specific required torque to maintain a constant
speed, and equilibrium in the model. The linear discretized
model around the equilibrium xm is given by the system
transition matrix Fm and the input model G according to

x̃k+1 = Fmx̃k + Gũk (4)

where x̃ = x− xm is the state relative to the linearization
point , ũ = M − Mm is the relative engine torque. The

transition matrix is given by Fm = I + ∂f
∂x

∣
∣
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the model from before Fm and G became
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where ∆vm = −c1,m ∗
Mm

v2
m

− c2,m + c3

v2
m

(cr + sinαm). The

constants c1,m, c2,m, and c3,m are obtained by setting
the gear ratio it and efficiencies ηt and ηf to the values
appropriate for each mode. The equilibrium point xm is
obtained by choosing vm = 80km/h, zm = 0m, αm = 0.

This gives Mm =
c2v2

m+c3cr+c3 sin αm

c1
N.

Two states and the input torque M are measured for
the state estimation. The measured states are the vehicle
velocity v and the altitude z. This leads to a linear
measurement equation (5)which can be used for both the
linear and non-linear vehicle model representations.
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[
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0 1 0
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(5)

2.2 State Estimation

Two different Kalman filters are used to estimate the
road grade and other model states. The non-linear model
is used together with an EKF, and the piecewise linear
model with a standard Kalman filter (KF). The process
and measurement noises in the vehicle model are updated
depending on the characteristics of the driving situation
and GPS position reliability.

Fig. 3. Overview of the data filtering, smoothing and fusion
of the proposed road grade estimation method.

Using the notation of the previous section the estimation
model for the nonlinear EKF with a linear measurement
equation is given by (6).

xk = f(xk−1, uk) + wk

yk = Hxk + ek
(6)

Details on the Kalman filters can be found in Kailath
et al. [2000]. In the EKF the nonlinear model is linearized
around the current state at every time step. The obtained
transition matrix Fk is then used to complete the steps
of the standard Kalman filter recursions. These recursions
are described by two update steps: a time update and a
measurement update. In the time update the system model
is used to predict the future state of the system. Using the
notation x̂k|k−1 to denote the quantity x̂ at time k based



on information available up to time k− 1 the time update
is done according to (7).

x̂k|k−1 = f(xk−1, uk)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk

(7)

Similarly to the piecewise linear model the transition ma-

trix Fk is defined to be the Jacobian Fk = ∂f
∂x

∣
∣
∣
x̂k−1|k−1,uk

.

Pk|k−1 is the estimated error covariance, and Qk = E[w2
k]

is the process noise covariance. After the time update
the measurement at time k is used in a measurement
update to improve the estimate. The measurement update
is described by (8).

Kk = Pk|k−1H
T (HPk|k−1H

T + Rk)−1

x̂k|k = x̂k|k−1 + Kk(yk − Hx̂k|k−1)

Pk|k = (I − KkH)Pk|k−1

(8)

Here Kk is the Kalman gain, and Rk = E[e2
k] is the

measurement noise covariance.

The piecewise constant linear model is filtered using a
regular Kalman filter. At each mode change between
different linearizations the final state of the old filter is
used to initialize the new one. The linear system model in
each mode is given by (9) where ỹk = yk − Hxm.

x̃k = Fmx̃k−1 + Gũk + wk

ỹk = Hx̃k + ek
(9)

Which leads to the KF time update equations (10).

x̂k|k−1 = Fmx̂k−1|k−1 + Guk

Pk|k−1 = FkPk−1|k−1F
T
k + Qk

(10)

The measurement update equations are identical to the
EKF case.

For this method the true process and noise covariances
Rk and Qk are not known from the start. Instead they
are used as time varying design parameters to tune the
filter to different driving situations. To simplify the design
the noise covariance matrices were chosen to be diagonal.
The diagonal elements are directly associated to the three
model states and two measured quantities. For normal
driving at a fixed gear Qk was tuned to give a filter with
a time constant similar to the one used to produce our
reference road grade estimate. Rk was adjusted depending
on the number of GPS satellites available. While other
factors also affect the GPS position accuracy the number
of satellites was the only relevant signal available from
the satellite receiver used. When satellite coverage was
lost a very high variance for was set for the altitude
measurement, causing the grade estimate only to depend
on vehicle signals. Driving events such as gearshifts and
braking affect the vehicle in ways that are not covered
by the relatively simple vehicle model given in (1). To
account for this the process variance for the velocity state
was increased during those events.

By running the data fusion step off line when complete
road sections had been estimated it is possible to use
smoothing to compensate for the filtering delay and in-
clude later measurements in the estimate for each data
point. The Rauch-Tung-Striebel fixed point smoothing al-
gorithm, introduced in Rauch et al. [1965], was used in this
work. The smoothing was applied as a backwards recursion
on the completed estimate of a road section. The final

states, where k = N , of the filtered quantities were used
to initialize the recursion. P s

k denotes the smoothed error
covariance, x̂s

k is the smoothed state estimate, and Ks
k

is the smoothing gain. The smoothing recursion is given
by (11).

Ks
k = Pk|kFT

k P−1
k+1|k

x̂s
k|N = x̂k|k + Ks

k(x̂s
k+1|N − x̂k+1|k)

P s
k|N = Pk|k + Ks

k(P s
k+1|N − Pk+1|k)Ks

k
T

(11)

2.3 Data Fusion

In order to merge data from many passes over the same
road segment a distributed data fusion method is used.
The distributed approach has the important advantage
that the data which has to be stored does not increase
as additional measurements of known road segments are
incorporated into the map. For each road segment, the
map consists of the road related states (altitude z and
slope α) and the associated estimated error covariance
estimates for those states. Based on the map estimated
error covariances and the estimated error covariances of
a new smoothed estimate, an updated map is created
each time a new measurement of a road segment becomes
available. The new map becomes a weighted average of the
two sources. Details on the data fusion algorithm (12) can
be found in Gustafsson [2000].

P
f
k = ((P 1

k )−1 + (P 2
k )−1)−1

x̂
f
k = P

f
k ((P 1

k )−1x̂1
k + (P 2

k )−1x̂2
k)

(12)

P
f
k is the resulting error covariance, x̂

f
k is the new slope

estimate for the map. The quantities P 1
k , P 2

k , x̂1
k, and x̂2

k

are the source estimates and estimated error covariances.
Initially both the source sets are smoothed results from
individual measurement runs, after that one source will
be the map (based on all previous runs), and one will be
the new measurement to be incorporated.

2.4 Experiment setup

The proposed road grade estimation algorithm has been
tested on highway E4 south of Södertälje in Sweden. Three
test vehicles, representing the different types shown in
Figure 1 were used. Important properties for the test
vehicles are listed in Table 1. A total of six round-trip
measurements were conducted. The different vehicles were
driven on different days under varying weather conditions.
Separate model parameters were used for each of the
vehicles. The use of more than one vehicle type intro-
duced a beneficial spread of the parameter errors. The
measurements thus included some of the variations that
would affect a real world system used in many separate
vehicles.

Most of the signals needed for the road grade estimation
are available on the CAN bus of stock production trucks.
These are the vehicle speed, engine torque, current gear,
gearshift status, and brake utilization. The CAN bus
signals were recorded using a laptop. There was no GPS
data available on the vehicle bus, instead an external
VBOX GPS receiver with a CAN interface was used.
The GPS data was logged using the same computer as



Table 1. Key properties of the test vehicles
used to collect experiment data. The total

vehicle weight is given in tons.

Vehicle Configuration Weight Axles Meas.

A Tractor and semi-trailer 39t 5 1,2,3

B Tractor 13t 2 4,5

C Rigid truck 21t 3 6

the vehicle data, which provided for easy and accurate
synchronization with the vehicle data.

The described method is intended for highway use, where
the wheel slip is relatively small and constant. The front
wheel rotation sensor was used to determine the vehicle
speed v, with a compensation factor calculated from GPS
velocity measurements during good signal conditions. The
engine torque was reported from the engine management
system, based on fuel injection data. The quality of this
signal is usually reasonable, even though variations be-
tween individual engines, and over the life of a single engine
are present. The gearbox management system relayed the
current gear, and if a shift was in process. The truck brake
system reported when either the auxiliary or wheel brakes
were in use, but could only give a torque estimate for the
auxiliary brake.

The absolute position obtained from the GPS was used
to synchronize data from the different measurements in
order to complete the data fusion. First a reference point
was chosen in one of the measurements. The closest
points in the other measurements were then used as their
respective starting points. From the starting point the
traveled distance information in each measurement was
used to resample all signals to a common distance vector.
With common distance indexing it was then possible to
complete the road grade estimation and data fusion steps.

3. RESULTS

Road grade estimates obtained from regular highway driv-
ing at the normal cruising speed are very good. Without
the GPS altitude measurements the vehicle model and
measured signals give an estimated grade which has a
bias due to modeling errors. The bias is reduced when
the GPS altitude measurement is introduced as an in-
dependent correction in the filter. Using more than one
road traversal and more than one vehicle improves the
final grade estimate. All result figures presented share the
same distance scale for easy cross-referencing. A reference
grade profile obtained from a specialized measurement
vehicle is used to evaluate the estimates. Figure 4 shows
the agreement of the final grade estimate with the refer-
ence for a part of the test road. The numerical standard
deviation for the smoothed estimates from the individual
traversals is also shown. The part of the test road shown
in Figure 4 contains a downhill section, from 1000m to
2600m. Around 2000m vehicle A needs to apply the brakes
in order to avoid over speeding. During braking the torque
affecting the vehicle is unknown. The process noise term
in Qk corresponding to the velocity state is increased in
order to decrease the reliance on the model and increase
the estimated slope error covariance. The braking in the
downhill section leads to a lower quality overall grade
estimate, which shows up as an increased confidence mar-
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Fig. 4. The final grade estimate calculated through data
fusion based on six road traversals (solid) agrees
well with the reference grade profile (dashed) from
a specialized measurement vehicle. The numerical
one standard deviation confidence interval around the
final grade estimate at each sample point is also shown
(thin lines).

gin. Figure 5 shows the increased estimated slope error
covariance for measurement two P s

k(3,3) as a result of the

braking together with the effects of gearshifts mandated
by the hill around 4000m.
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Fig. 5. The influence on the estimated slope error covari-
ance P s

k(3,3) (top figure) from braking (logical signal

in the middle figure) and shifting (logical signal in
the bottom figure) during measurement two is shown.
When the estimated error covariance is high for one
grade estimate that data carries less weight in the
data fusion step.

3.1 Data Fusion

Figure 6 shows a comparison of the smoothed estimates
from all six traversals with the final grade estimate and
the reference grade profile for the most challenging part of
the test road, the downhill section from 1300m to 2300m.
The mean value at each sample point is also shown to
illustrate the effect of the data fusion step. When using
data from more than one vehicle, collected on different
days, many of the attributes determining how well the
vehicle model fits will vary. If the variation is centered
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(a) The first measurement forms a road grade
map by itself. Estimation errors cause it to
differ from the reference road grade.
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(b) When a second measurement is added
to the one in (a) a new road grade map
is obtained. The large disturbance in mea-
surement two at 1900 m has a relatively low
weight in the data fusion, due to high uncer-
tainty.
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(c) The third estimate from vehicle A does
not differ much from the map based on the
previous two road traversals.
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(d) The fourth estimate, obtained using vehi-
cle B, shows larger differences. This is proba-
bly in part due to different model parameter
errors.
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(e) Estimate five is based on vehicle B, just
the one in (d).
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(f) When the sixth estimate, recorded with
vehicle C, has been added the map shows
good agreement with the reference road
grade.

Fig. 7. As more measurements are added the road grade map is improved. The sub-figures (a)-(f) show the progression
as six measurements are combined into one road grade map. Each figure shows the latest measurement (dashed),
the road grade map based on all measurements added so far (solid) and the reference road grade (dotted).

around the value assumed in the processing, using many
road traversals can significantly improve the final result.
The grade maps resulting from the progressive inclusion
of the six recorded road traversals can be seen in Figure 7.

3.2 Linearization Effects

The results from using the piecewise constant linear model
instead of the time-varying non-linear model indicated
only marginal changes in the estimated slope for the
investigated road segment. A comparison of road grade
estimates obtained with the two methods is given in Fig-
ure 8. The main non-linearity in the vehicle model, for
the magnitude of slopes considered, is in the velocity.
During most of the test road measurements the velocity
of the measuring vehicle was near the linearization point
80km/h. Other tests with larger velocity deviations, to-
gether with frequent linear model switching when changing
to lower gears due to a rapid speed decrease suggested
larger differences between the two methods. The number
of mode switches between different linear models can be
decreased by neglecting the efficiencies ηt and ηf , this
would make engine powered and coasting modes identical
and cut the number of required modes by one half to the
number of possible gears. It is however not possible to use
a constant linear model, since gear changes heavily affects
the matrices F and G through the change in the ratio ig.

4. CONCLUSIONS AND DISCUSSION

For the investigated test cases the piecewise linear model
performs in a similar manner to the time-varying non-
linear model for the task of estimating highway grades.
This opens up possibilities both to lower the computa-
tional requirements to get more insight into how various
events affect the filter. One such planned extension is the
estimation of the true process and measurement noise co-
variances Q and R. Better synchronization of the different
measurement runs based on the absolute positions at more
instants than the start of measurement has the potential
to reduce slope errors caused by misalignment between
measurements. This is particularly true when the grade
changes quickly. Misalignment occurs primarily because
of different systematic odometry errors in vehicles, and
varying traveled paths on the road surface.

Measurements from more vehicles and more road passes
will make it possible to deduce more precisely what grade
estimation errors are random and reduced with additional
data, and which are systematic and more crucial to deal
with in the method. Already at this stage the proposed
method is feasible for collecting road grade data of suf-
ficient quality for model predictive control based energy
optimization of the vehicle longitudinal motion.
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Fig. 6. The final merged road grade estimate (solid) is
shown with the reference grade profile (dashed) and
the mean value of all smoothed estimates (dotted).
The smoothed estimates from the individual traver-
sals are also included (thin lines). This is a magnifi-
cation of the most challenging part of the test road.
Measurement two is particularly at odds with the rest
around the braking instances shown in Figure 5 (at
1500m and 1900m). This is due to a combination
of poor GPS coverage and the effect of the braking
at those points. Due to the higher estimated error
covariance these artifacts have less influence on the
fused estimate than on the mean of all the estimates.
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Fig. 8. The final grade estimate based on the non-linear
model (solid) with confidence interval (thin lines) is
shown together with the one based on the piecewise
constant linear model (dashed). The reference grade is
also shown (dotted thin line). The differences between
the two methods are slight, and significantly smaller
than the deviation from the reference grade.
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