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Abstract— Given a platoon of vehicles traveling uphill, this
paper considers the finite-time road grade computation prob-
lem. We propose a decentralized algorithm for an arbitrarily
chosen vehicle to compute the road grade in a finite number of
time-steps by using only its own successive velocity measure-
ments. Simulations then illustrate the theoretical results. These
new results can be applied to real-world vehicle platooning
problems to reduce fuel consumption and carbon dioxide
emissions.

I. INTRODUCTION

Urban highways in major cities nowadays suffer from
traffic congestion, which increases fuel consumption and air
pollution. A recent study [1] by the International Transport
Forum shows that the transport-sector carbon dioxide (CO2)
emission represents 23% globally and 30% within the OECD
countries of the overall CO2 emissions from fossil fuel
combustion.

Vehicle platooning has been widely recognized as a
promising solution to reduce fuel consumption and carbon
dioxide emissions, to enhance the safety, and to improve
highway utility (see for instance [2]–[5]). To study this
problem, vehicle dynamics are quite often modeled as a
second order differential equation [6]–[8], or modeled as a
double integrator [5], [9], [10]. Regulation of the relative
positions between neighboring vehicles, while maintaining
a set velocity, is a key goal of vehicle platooning. Several
control solutions can be traced back to the earlier work
of [6], [7]. The control of vehicle platooning has attracted
renewed interests [5], [8]–[15] due to the recent advances in
manufactory vehicle industry, wireless communication, and
distributed control.

Typically, heavy duty vehicles speed up down hill and
loose speed climbing uphill. If the road grade ahead of
the vehicle is known, the vehicle can adjust its speed in
advance of uphill and downhill road segments. This road
grade estimation problem was considered in [16], [17], where
the authors proposed an algorithm to estimate the road grade.
However, the considered model was a single vehicle rather
than a platoon of vehicles.

This paper considers a platoon of multiple vehicles travel-
ing uphill and proposes a decentralized algorithm for any
vehicle in the platoon to compute the road grade in a
finite number of time-steps using only its own velocity
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measurements. The analysis is built upon the work of [18],
[19], which allows any agent to compute the consensus value
for a connected graph in a finite number of steps using only
its own state history. Comparing to the work of [16], the
proposed algorithm exactly computes the road grade for a
platoon of vehicles on-line. The computation of the road
grade for a platoon of vehicles is important and can be used
online in fuel-optimized collaborative cruise controllers [15].

The remainder of the paper is organized as follows: Sec-
tion II introduces preliminary concepts and notations. Section
III presents the motivation and formulates the finite-time road
grade computation problem for a vehicle platoon. Section
IV gives a necessary and sufficient condition on feedback
gain parameters of a controller which utilizes the relative
position errors and absolute velocity errors, for achieving
the key goal of vehicle platooning. Section V proposes a
decentralized algorithm for solving the finite-time road grade
computation problem. Section VI illustrates the results with
several examples. Finally, Section VII concludes the paper
and points out future directions.

II. PRELIMINARIES AND NOTATIONS

Consider an undirected graph G = (V ,E ), with the set
of nodes V = {1, . . . ,N} and the set of edges E ⊆ V ×V .
A matrix W ∈RN×N is the corresponding adjacency matrix,
with Wi j = Wji = 1 if and only if the edge (i, j) ∈ E and
Wi j = 0 otherwise. We assume that there is no self-loop, i.e.,
Wii = 0 for i ∈ V . The set of neighboring agents of agent i is
defined as Ni = { j ∈ V |Wi j $= 0}. A path from node i1 to ik
is a sequence of nodes {i1, . . . , ik} such that (i j, i j+1)∈ E for
j = 1, . . . ,k−1. An undirected graph is said to be connected
if there exists a path between any pair of distinct nodes.

For an undirected graph G , a matrix L = {!}i j ∈ RN×N

with !ii = ∑N
j=1, j $=i Wi j and !i j =−Wi j for j $= i, is called the

Laplacian matrix associated with G . It is well known that the
Laplacian matrix has the property that all row sums are zero.
If the undirected graph G is connected, then L has a simple
eigenvalue at zero with the corresponding right eigenvector
1 and all other eigenvalues are strictly positive. According to
Gershgorin disk theorem, all the eigenvalues can be ordered
as 0 = λ1 < λ2 ≤ . . .≤ λN .

Given a matrix A, AT denotes its transpose, rank(A)
denotes its rank and ker(A) denotes its nullspace. We denote
by A⊗B the Kronecker product between matrices A and B.
We denote eT

r as the unit row vector whose r-th entry is one
while all the other entries are zeros. IN denotes the identity
matrix of dimension N ×N. 1N denotes the column vector
with each entry being 1. N denotes the set of all the positive
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integers. For column vectors x1, . . . ,xN , the stacked column
vector of x1, . . . ,xN is denoted by [x1; . . . ;xN ].

Definition 1: (Minimal polynomial of a matrix) The min-
imal polynomial associated with the matrix A ∈ Rn×n is
the monic polynomial q(t) ! tD+1 +∑D

i=0 αit i with smallest
degree D+1 that satisfies q(A) = 0.

Definition 2: (Minimal polynomial of a matrix pair) The
minimal polynomial associated with the matrix pair (A,Cr)

denoted by qr(t) ! tDr+1 + ∑Dr
i=0 α(r)

i t i is the monic poly-
nomial of smallest degree Dr + 1 ≤ D + 1 that satisfies
Crqr(A) = 0.

III. MOTIVATION AND PROBLEM STATEMENT

The mathematical problem considered in this paper is
motivated by vehicle platooning as introduced in Section
I. Consider a platoon of N vehicles, as shown in Fig. 1,
operating at close intermediate spacings and traveling up hill
with a road grade α .

α

    N

     1

     2

d1,2

. . .

Fig. 1. A platoon of N vehicles traveling on a hilly road with grade α .

This unknown road grade (incline angle) α can be viewed
as a constant disturbance to the vehicle’s model. Each vehicle
along the longitudinal direction is modeled by a discrete-time
double integrator

xi(k+1) = xi(k)+ vi(k), (1a)
vi(k+1) = vi(k)+ui(k)−gsinα, i ∈ {1, . . . ,N}, (1b)

where xi(k),vi(k),ui(k) represent the (longitudinal) position,
the velocity, and the control input of the vehicle i at time step
k, respectively, and g is the gravity of the earth. This gravity
does not affect our analysis, and to simplify the presentation
we can rescale the variables and parameters to make g = 1.

In addition to simplify the analysis, we assume that α is
small so that α ≈ sinα , which can be easily relaxed. Thus
from (1), we obtain the following dynamics.

xi(k+1) = xi(k)+ vi(k), (2a)
vi(k+1) = vi(k)+ui(k)−α, i ∈ {1, . . . ,N}. (2b)

This model is the discrete-time counterpart of the continuous-
time model considered in [8], [9] with drag coefficients
per unit being zeros, and has also been considered in [20,
Chapter 4]. We also assume that these vehicles are equipped
with Radars, which allow them to measure relative positions
to both preceding and succeeding vehicles. This scenario can
be represented by a line graph given in Fig. 2.

In some cases, each vehicle is equipped with wireless
sensor which can sense not only its own position relative to

N 123. . .

Fig. 2. One-hop neighbors vehicle communication topology.

that of one-hop neighbors, but also that of multi-hop neigh-
bors via wireless communication, see for instance [5], [13].
For example, Fig. 3 shows the case where each vehicle can
also sense its two-hop neighbors. In both one-hop neighbors

N . . .N-1 . . . 123. . .

Fig. 3. Two-hop neighbors vehicle communication topology.

communications and multi-hop neighbors communications,
communications among vehicles can be modelled as an
undirected connected graph G = (V ,E ).

The desired position of the vehicle i is given by xd,i =
(i − 1)δ + vdk, where vd is the desired velocity and δ is
the desired distance between the neighboring vehicles. Every
vehicle is assumed to have access to both vd and δ . We
consider the controller which utilizes relative position errors
between neighboring vehicles and the absolute velocities
errors

ui =− f1 ∑
j∈Ni

Wi j(xi − x j −d j,i)− f2(vi − vd), (3)

where d j,i = (i− j)δ . This controller has also been consid-
ered in [10], [13] for a platoon of vehicle traveling with zero
road grade.

We then define the position error x̄i = xi −xd,i and the ve-
locity error v̄i = vi−vd . In view of these deviation variables,
the vehicle dynamics (2) become

x̄i(k+1) = x̄i(k)+ v̄i(k), (4a)
v̄i(k+1) = v̄i(k)+ui(k)−α , i ∈ {1, . . . ,N}, (4b)

and the controller (3) becomes

ui =− f1 ∑
j∈Ni

Wi j(x̄i − x̄ j)− f2v̄i. (5)

In matrix form, the vehicle dynamics (4) can be repre-
sented as

[
x̄(k+1)
v̄(k+1)

]
=

[
IN IN
0 IN

][
x̄(k)
v̄(k)

]
+

[
0
IN

]
(u(k)−α1), (6)

and the controller (5) can be represented as

u(k) =− f1Lx̄(k)− f2v̄(k), (7)

where x̄(k), v̄(k), and u(k) denote the position error, the ve-
locity error, and the control input vectors at time instance k,
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respectively, e.g., x̄(k) = [x̄1(k); . . . ; x̄N(k)]. Thus, the closed-
loop systems of (6) and (7) can be written as

[
x̄(k+1)
v̄(k+1)

]
= A

[
x̄(k)
v̄(k)

]
−Bα1, (8)

where

A =

[
IN IN

− f1L (1− f2)IN

]
, B =

[
0
IN

]
. (9)

Our ultimate goal of this paper is to consider the finite-
time road grade computation problem for a vehicle platoon.
Thus the first goal is to guarantee that the key goal of vehicle
platooning is achieved. This is formally stated as below:

Problem 1: Consider a platoon of N vehicles (2) and the
controller (3). For a given set velocity vd and desired inter-
vehicle distance δ , the vehicle platooning problem is to
appropriately choose feedback gain parameters f1 and f2
such that the key goal of vehicle platooning is achieved,
that is,

lim
k→∞

vi(k) = vd + ε, i = 1, . . . ,N (10a)

lim
k→∞

(xi+1(k)− xi(k+1)) = δ , i = 1, . . . ,N −1, (10b)

where ε is some constant which depends on α , f1 and f2.
Once Problem 1 is solved, we are able to obtain the value

of the constant ε by using ε = limk→∞ vi(k)−vd . This implies
that we can obtain the road grade asymptotically provided
that the relationship between ε and α can be characterized
explicitly. However, this steady-state needs a very large
number of steps to achieve, moreover, it may lead to very
complicated transient behavior which results in a high fuel
consumption.

This naturally leads to the key problem considered in
this paper, that is, the finite-time road grade computation
problem. To this end, we assume that each vehicle has
memory to store its own velocity value over a range of
time-steps. This is however not restricted since most heavy
duty vehicles nowadays are equipped with computers. This
problem is formally formulated as below:

Problem 2: Consider a platoon of N vehicles (2) and the
controller (3). Assume that an arbitrarily chosen vehicle r
observes its velocity. The problem is to compute the road
grade α in a finite number of time-steps by using it own
successive velocity measurements, observed over a range of
time-steps.

In what follows, we shall present solutions to the two
proposed problems in the subsequent sections, respectively.

IV. KEY GOAL OF VEHICLE PLATOONING

In this section, we shall present our main result to the
first proposed problem. The following proposition states a
necessary and sufficient condition for solving Problem 1. The
proof has been omitted due to the space limitation and can
be found in [21].

Proposition 1: Consider a platoon of N vehicles (2) and
the controller (3). The vehicle platooning is achieved, that

is,

lim
k→∞

vi(k) = vd −
α
f2
, i ∈ V , (11a)

lim
k→∞

(xi+1(k)− xi(k)) = δ , i = 1, . . . ,N −1, (11b)

if and only if
0 < f1λN < f2 < 2, (12)

where λN is the largest eigenvalue of the Laplacian matrix
associated with the communication graph G .

V. FINITE-TIME ROAD GRADE COMPUTATION

In this section we shall assume that the gain parameters f1
and f2 satisfy (12), so that Problem 1 is solved, that is, the
goal of vehicle platooning is achieved. Our goal here is to
consider Problem 2, where each vehicle r observes its own
velocity, i.e.,

yr(k) =Cr

[
x(k)
v(k)

]
(13)

with
Cr =

[
0 eT

r
]
, (14)

x(k) = [x1(k); . . . ;xN(k)] and v(k) = [v1(k); . . . ;vN(k)].
We shall show that for almost all initial conditions (except

a set of initial conditions with Lebesgue measure zero),
vehicle r can obtain the final value of the velocity φv =
limk→∞ vr(k) by using its own successive measurements yr(k)
observed over a finite number of steps. The number of
steps does not depend explicitly on the size of the network.
We then use the value of φv to compute the road grade
α = (vd −φv) f2 according to (11a).

Before presenting the main theorem, we present the fol-
lowing lemma whose proof is given in Appendix A.

Lemma 1: Consider a platoon of N vehicles (2) and
the controller (3). Let qr(t) = ∑Dr+1

i=0 α(r)
i t i be the minimal

polynomial for the matrix pair (A,Cr) with A and Cr given by
(9) and (14), respectively. Then the dynamics of observations
yr(k) given by (13) satisfy the following regression equation

dr+1

∑
i=0

αr,iyr(k+ i) = 0, ∀k ∈ N, (15)

where dr = Dr +1 and the coefficients

αr,i = α(r)
i−1 −α(r)

i , i = 0, . . . ,dr +1, (16)

with α(r)
−1 = α(r)

Dr+2 = 0 for the convention.
For simplicity of presentation, we make the following

assumption for the rest of the paper. The assumption can
be easily relaxed by using a similar analysis from [19].

Assumption 1: The matrix A given by (9) has full rank.
Now, we consider 2k + 1 successive observations of

yr(k) = vr(k) from agent r as

V (r)
0,1,...,2k = (vr(0),vr(1), . . . ,vr(2k))
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and define its associated Hankel matrix as

Γ{V (r)
0,1,...,2k}!





vr(0) vr(1) . . . vr(k)
vr(1) vr(2) . . . vr(k+1)

...
...

. . .
...

vr(k) vr(k+1) . . . vr(2k)




.

We are now ready to present our main theorem whose proof
is given in Appendix B.

Theorem 1: Consider a platoon of N vehicles (2) and
the controller (3). Let qr(t) = ∑Dr+1

i=0 α(r)
i t i be the minimal

polynomial for the matrix pair (A,Cr) with A and Cr given by
(9) and (14), respectively. Suppose that an arbitrarily chosen
vehicle r has successive observations of its own velocity
given by (13). Then starting from an arbitrary step, vehicle
r can compute the final value for the velocity φv by

φv =
yT

dr
β (r)

1Tβ (r) , (17)

and thus the road grade by

α = (vd −φv) f2, (18)

where yT
dr
=
[
yr(0) yr(1) . . . yr(Dr +1)

]
and

β (r) =
[
β (r)

0 . . . β (r)
Dr

1
]T

for β (r)
i = α(r)

i , i = 0, . . . ,Dr. Moreover, the coefficients β (r)
i

can be obtained as the normalized kernel of the Hankel
matrix Γ{V̄ (r)

0,1,...,2(Dr+1)} with {V̄ (r)
0,1,...,2k} is given in (20), i.e.,

[
β (r)

0 . . . β (r)
Dr

1
]T

∈ ker(Γ{V̄ (r)
0,1,...,2(Dr+1)}).

The proof of Theorem 1 naturally leads a decentralized
algorithm for vehicle r to compute the road grade α by
using its own successive velocity observations in 2(Dr +2)
number of time-steps, which is minimum as shown in [19].
We summarize the procedure in Algorithm 1.

Algorithm 1 Finite-time road grade computation
Data: Successive observations of yr(k) = vr(k), k ∈ N.
Result: The road grade α .
Step 1: Compute the vector of differences V̄ r

0,1,...,2k.
Step 2: Increase the dimension k of the Hankel matrix
Γ{V̄ (r)

0,1,...,2k} until it loses rank and store the first defective
Hankel matrix.
Step 3: Compute the kernel β (r) =

[
β (r)

0 . . . β (r)
Dr

1
]T

of
the first defective Hankel matrix.
Step 4: Compute the velocity consensus value φv using (17).
Step 5: Compute the road grade α using (18).

Next we shall relate the required number of steps 2(Dr+2)
to the required number of steps [19] for computing final
consensus value. We have the following result:

Proposition 2: Consider the observability matrices

Ωr,v =





Cr
CrA

...
CrA2N−1




, Θr =





eT
r

eT
rL
...

eT
rLN−1




,

then Dr +2 = rank(Ωr,v)+1 = 2rank(Θr).
Proof : The first equality follows from [19, Proposition 2]
and the fact that dr = Dr + 1 from Lemma 1. To show the
second equality, we note that it follows from [19, Theorem
2] that rank(Θr) = N − µr, where µr is the number of
eigenvalues shared between L and Lr, and Lr is the submatrix
of L obtained by deleting the r-th row and r-th column. Thus,
it is equivalent to show that dim(ker(Ωr,v)) = 2µr +1. This
can be seen as follows. We first note that the vector [1T,0T]T

is in the null space of the observability matrix Ωr,v. Let pi for
i= {1, . . . ,µr} be the µr vectors which span the null space of
the observability matrix Θr, i.e., Θr pi = 0. It is then easy to
check that the vector [pT

i ,0
T] and [0T, pT

i ] are in the null space
of the observability matrix Ωr,v. Hence, the result follows.

Remark 1: It follows from Proposition 2 that the number
of steps for vehicle r to compute the consensus velocity value
and thus the road grade is 2(Dr +2) = 4rank(Θr), while the
required number of steps to compute the consensus value
for the single-integrator case is 2rank(Θr) as given in [19,
Proposition 1]. Hence, in our case it takes exactly twice the
time-steps compared to the single-integrator case.

VI. MOTIVATING EXAMPLE REVISIT

In this section, we illustrate our results by revisiting the
motivating examples in Section III.

A. One-hop neighbors communications
Consider the case given in Fig. 1 for N = 6 vehicles, and

the vehicle communication topology is given by Fig. 2 with
N = 6. The desired inter-vehicle distance is δ = 20, the set
velocity is vd = 40, and the road grade is α = 0.2.

We choose f1 = 0.35 and f2 = 1.9 such that the condition
(12) is satisfied. We choose the initial states as x(0) =
[6;3;2;4;1;5], v(0) = [7;8;9;10;11;12].

The evolution of the velocity vi and inter-vehicle distance
di,i+1 are plotted in Fig. 4 and Fig. 5, respectively. From
Fig. 4, we see that the steady-state value for the velocity is
39.8947, which agrees with the value computed by (11a).
Fig. 5 clearly shows that in steady state, the inter-vehicle
distances d1,2 = d2,3 = d3,4 = d4,5 = δ = 20.
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Fig. 4. Evolution of the velocity of all vehicles in one-hop topology.

Suppose that vehicle r has successive observations of its
own velocity given by (13). By applying Algorithm 1 to
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Fig. 5. The inter-vehicle distance trajectories versus the number of time-
steps for the one-hop communication topology.

each vehicle, we see that vehicles 1, 3, 4, and 6 compute the
consensus value φv = 39.8947 in 2× 12 = 24 steps, while
vehicles 2 and 5 compute the consensus value in 2×10 = 20
steps, compared to roughly 70 steps as shown in Fig. 4. Each
vehicle can then compute the road grade by (18) and obtain
0.2, which agrees with the fact that α = 0.2.

B. Two-hop neighbors communications
We now consider the case where the vehicle communi-

cations are given by Fig. 3 with N = 6. The inter-vehicle
distance, the set velocity, and the road grade are the same.

For this case, the same feedback gain parameters f1 = 0.35
and f2 = 1.9 also satisfy the condition (12). We also choose
the same initial states as before. The evolution of the velocity
vi and inter-vehicle distance di,i+1 are plotted in Fig. 6 and
Fig. 7, respectively.
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Fig. 6. Evolution of the velocity in two-hop communication topology.

By applying Algorithm 1 to each vehicle, we see that
vehicles 1 and 6 compute the consensus value φv = 39.8947
in 2×10= 20 steps, while vehicles 2, 3, 4 and 5 compute the
consensus value in 2× 12 = 24 steps, compared to roughly
200 steps as shown in Fig. 6. Each vehicle can then compute
the road grade by (18) and obtain 0.2, which agrees with the
fact that α = 0.2.

C. Comparison
As seen from both cases, the number of steps for each

vehicle to compute the final consensus value and thus
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Fig. 7. The inter-vehicle distance trajectories versus the number of time-
steps for the two-hop communication topology.

road grade has been dramatically reduced. With this newly
introduced algorithm, it can avoid undesirable oscillatory
behavior for vehicle platooning.

By comparing Fig. 5 and Fig. 7, we see that the inter-
vehicle distances in case of two-hop neighbor communica-
tions have oscillations before they settle down to the steady-
state. By comparing Fig. 4 and Fig. 6, we see that the veloc-
ities converge to the same steady-state value faster in case of
one-hop neighbor communications. For the computation of
the road grade, in case of two-hop neighbor communications,
the number of time-steps for vehicles 1 and 6 have been
reduced from 24 to 20, while the number of time-steps for
vehicles 2 and 5 increase from 20 to 24, for vehicles 3
and 5 stay the same. These time-steps are related to the
communication topology. We are currently carrying out the
detailed graph-theoretical analysis regarding this issue.

VII. CONCLUSION

This paper proposed a decentralized algorithm for any
vehicle traveling uphill in a platoon to compute the road
grade in a finite number of steps by using its own successive
velocity measurements. We assumed that these measure-
ments are perfect. We are currently investigating the case
where these measurements are imperfect, in particular, the
case where they are subject to packet loss.
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APPENDIX

A. Proof of Lemma 1

Let us define q(k) = [x̄(k); v̄(k)]. Since qr(t) =∑Dr+1
i=0 α(r)

i t i

is the minimal polynomial for the matrix pair (A,Cr), it then
follows from Definition 2 that Crqr(A)=Cr ∑Dr+1

i=0 α(r)
i Ai = 0.

By using this and the coefficients αr,i given in (16), we obtain
that

dr+1

∑
i=0

αr,iyr(k+ i)

=
dr+1

∑
i=0

αr,iv̄r(k+ i)

=Cr

dr+1

∑
i=0

αr,iAiq(k)−Cr

dr+1

∑
i=0

αr,i

i−1

∑
j=0

A jBα1

=Cr

dr+1

∑
i=0

(α(r)
i−1 −α(r)

i )Aiq(k)

−Cr

dr+1

∑
i=0

(α(r)
i−1 −α(r)

i )
i−1

∑
j=0

A jBα1

=−Cr

Dr+1

∑
i=0

α(r)
i Ai(I −A)q(k)−Cr

Dr+1

∑
i=0

α(r)
i AiBα1 = 0.

Hence, the dynamics of observation yr(k) = vr(k) satisfy the
regression equation (15).

B. Proof of Theorem 1
Let us denote the z-transform of yr(k) as Yr(z)!Z(yr(k)).

From (15) and the time-shift property of the z−transform, it
is easy to show that

Yr(z) =
∑dr+1

i=1 αr,i ∑i−1
!=0 yr(!)zi−!

qr(z)
! H(z)

qr(z)
. (19)

Note that qr(t) = 0 does not possess any unstable root
apart from single one at 1 since the matrix A given by
(9) has only a single unstable eigenvalue at 1, which has
been shown in the proof of Theorem 1. We then define the
polynomial pr(z) ! qr(z)

z−1 . Then we can show that pr(z) =

∑dr
i=0 β (r)

i zi, for β (r)
i =

[
β (r)

0 . . . β (r)
dr−1 β (r)

dr

]T

with β (r)
i =

−∑i
j=0 αr, j, i = 0, . . . ,dr. This together with dr = Dr +1 and

(16) implies that β (r)
i = α(r)

i for i = 0, . . . ,Dr + 1. We can
then obtain the final value φv for the velocity by applying
the final-value theorem and some simple algebra

φv = lim
k→∞

yr(k) = lim
z→1

(z−1)Yr(z) =
yT

dr
β (r)

1Tβ (r) .

We see that if we can obtain the unknown coefficients
β (r)

i , then an arbitrarily chosen vehicle r ∈ V can compute
the consensus value for the velocities by using only a finite
number of successive observations of its own velocity.

Next, we shall show how vehicle r can compute the
unknown coefficients β (r)

i in (17) and hence compute the
final value for the velocity. It then follows from (11a) that
the road grade can be compute by (18).

We assemble the difference between successive values of
yr(k) = vr(k) as

V̄ (r)
0,1,...,2k = (vr(1)− vr(0), . . . ,vr(2k+1)− vr(2k)). (20)

By using (15) and the fact that ∑dr
i=0 αr,i =−1, we can show

that for any k ∈ N,

vr(k+dr +1)− vr(k+dr)

=−β (r)
dr

(vr(k+dr)− vr(k+dr −1))

− . . .−β (r)
0 (vr(k+1)− vr(k)).

When Γ{V̄ (r)
0,1,...,2k} loses rank, we can then compute the

kernel which gives
[
β (r)

0 . . . β (r)
dr−1 1

]T

.
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