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Abstract— A new game theory based framework is proposed
for path tracking and stabilization of autonomous vehicles. In
the developed framework, vehicle body and corner traction
control strategies are formulated in terms of players in a
differential game. An integrated stability and path tracking
control based on a non-cooperative differential game is devel-
oped. It includes bidirectional slip effect and wheel dynamics,
which reflect more accurate longitudinal and lateral dynamics
in harsh maneuvers and scenarios with sudden changes in
the path planners trajectories. The open-loop and closed-loop
Nash equilibrium control strategies are obtained by solving a
two-player linear-quadratic differential game for the dynamical
system of the overall tracking error. The performance of the
proposed control strategy is validated with software simulations
in various driving conditions.

I. INTRODUCTION

Game theory is a study of strategic interactions, including
conflict and cooperation, between rational decision makers
following some mathematical models. It has shown enor-
mous successful applications in social, network, and com-
puter sciences as well as engineering [1]–[5]. A cooperative
game is a strategic situation where the players (i.e., decision
makers) can make binding agreement to form coalitions. In
contrast, the players in a non-cooperative game can make
decisions independently to obtain their own best interests.

Differential game is usually cast into a non-cooperative
game, where each player can influence the evolution of a
state vector in a dynamical system modeling by differential
equations; it is closely related to optimal control, but with
two or more objective functions and control inputs. Players
aim to reach their own objectives by designing their control
inputs which then influence the common system. For differ-
ential game, two Nash equilibrium strategies, namely, open-
loop and closed-loop Nash equilibria, are usually studied.
Utilizing the information of current time and the initial
state, open-loop strategies are developed for the case where
the state vector is unknown [2], [3]. Closed-loop strategies
are the decision rules conditioned on the current state and
time information. Owing to exhibiting more robustness to
disturbances in practical dynamical systems, more attention
are focusing on closed-loop Nash equilibrium strategies [6]–
[8]. Although game theory based control strategies have been
used in intelligent transport for intersection traffic control [9],
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driver modeling [10], lane changing [11], [12], and cooper-
ative merging [13], employing the idea of non-cooperative
differential game for autonomous vehicles’ simultaneous
path tracking and lateral stabilization has not been well
investigated in the existing literature.

A persistent tracking problem is investigated in [14] and a
game-theoretic control strategy is designed for a mobile robot
to keep the tracking distance within a detection range while
tracking a moving target. Lane change decisions and control-
level accelerations are evaluated in [13] for an automated
driving control system, which has a receding horizon control
scheme to determine discrete desired lane sequences. The
problem is formulated as a differential game, in which the
steering and acceleration control decisions are made based
on the expected behaviour of other vehicles. A passive
proactive lane change framework is presented in [12] through
a combination of deep reinforcement learning and game
theory for lane change scenarios. A target pursuit model for
intelligent vehicles together with a motion planning scheme
based on the Stackelberg differential game is presented in
[15], in which terminal sliding mode approach is used to
design a path tracking controller by active front steering.
A cooperative difference game is used in [16] to develop a
vehicle lateral stability controller, in which the players are the
driver and direct yaw controller for a bicycle vehicle model
that utilizes a linear pure-slip tire model. A path tracking
control framework, in which a dynamic difference game is
used for active front and rear steering actuation for tracking
and vehicle lateral stabilization, is developed in [8].

Maintaining autonomous vehicles lateral stability during
path tracking is challenging due to different control inputs,
which might be conflicting based on various cost functions
in the vehicle body control and wheel dynamic stabilization
programs. This paper proposes a new game theory based
framework for stability control and path tracking of auto-
mated driving systems, in which guidance and corner traction
control strategies are formulated in terms of players in a
differential game. The main contributions of this paper are:
i) An integrated stability and path tracking control frame-
work for automated driving are developed based on a non-
cooperative differential game; and ii) The wheel dynamics
and bidirectional slip effect, which reflect more accurate
model description, are included in the framework to generate
control inputs that are feasible. The reason for choosing
a non-cooperative game is various stabilization, guidance,
and traction control programs (by different manufacturers)
that may not necessarily have access to the cost function
of other decision makers. The remainder of the paper is



organized as follows: Section II provides preliminaries and
model description. The controller framework including the
dynamical game for controller design is provided in Section
III. The performance of the proposed non-cooperative differ-
ential game is investigated in Section IV through software
simulations for (combined-slip) lane-change scenarios. The
conclusion is drawn in Section V.

II. PRELIMINARIES AND MODEL DESCRIPTION

Tire forces are nonlinear functions of longitudinal and
lateral slips, normal forces, and tire parameters. Due to
complexities in such nonlinear bidirectional slip model, tire
forces at each corner/tire ij, where i ∈ {f, r} (front and rear
axles) and j ∈ {l, r} (left and right tires) are approximated
by affine functions in this paper. Fig. 1a shows normalized
lateral tire forces (by vertical forces), which change not
only by slip ratio σ (horizontal axis), but by slip angle α
(variations across the plots). A double-track vehicle model is
used for the game theory based controller framework in this
paper. In this model, the vehicle longitudinal speed, lateral
speed, and yaw rate measured at vehicle CG are denoted by
u, v, and θ̇, respectively; wheel speeds at each corner are
ωij ; and position and attitude tracking errors are denoted by
εy, εθ. The slip ratio is defined in terms of the longitudinal
relative velocity as σij =

ũij
hij

, where ũij = Rωij−utij is the
relative longitudinal velocity at each tire due to the slip, R is
the tire rolling radius, utij is the longitudinal speed in the tire
coordinates that can be obtained by mapping vehicle’s CG
speed u to each corner, and hij = Rωij for the acceleration
case (ũij ≥ 0) and hij = utij for the brake case (ũij < 0).
The total slip angles (at each corner) are denoted by αij and
are defined in terms of vehicle longitudinal/lateral states as

αfj = δf + βf , αrj = βr, (1)
in which we define βf := − tan−1 vf

uf
and βr :=

− tan−1 vr
ur

, whereas vf = v + lf θ̇, uf = u + 0.5κj θ̇Wf

and vr = v − lr θ̇, ur = u+ 0.5κj θ̇Wr. The distances from
the center of the front and rear axles to CG are denoted
by lf , lr, the front and rear track widths are Wf ,Wr, and
κl = −κr = 1.

For the vehicle stability and path following controllers
in this paper, lateral tire forces are affinely described by
C1
α(ũij)αij for ∀|αij | < αst or −C2

α(ũij)αij + d2
ij for

∀|αij | ≥ αst, where αst is the saturation slip angle shown
by circles in Fig. 1a.
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Fig. 1: (a) Normalized lateral forces (b) Game-theoretic
realization for guidance control and stabilization

Normalized longitudinal forces at each tire also change
with respect to the slip ratio σij and the slip angle αij by
considering the bidirectional slip effect. Similar to lateral
forces, nonlinear longitudinal tire forces are affinely de-
scribed by C1

σ(αij)σij for ∀|σij | < σst or −C2
σ(αij)σij+d̄

2
ij

for ∀|σij | ≥ σst, where σst is the saturation slip ratio. It
should be mentioned that Cα(ũij) and Cσ(αij) resembles
dependency of cornering and longitudinal tire stiffness to
longitudinal and lateral slips ũij , αij , respectively (bidirec-
tional slip effect). Hence, the following general affine form
is used as corner forces in the dynamic model description:
Fyij = Cα(ũij)αij + dij , Fxij = Cσ(αij)σij + d̄ij (2)
By assuming longitudinal speed u as updated measurement

at each time step in (1), the rate of βij at each corner yields
β̇ij = τ rij ṙ + τvij v̇, (3)

in which τ rij and τvij are provided for front and rear axles
in Appendix I. The vehicle path following errors include
the lateral distance component εy from the vehicle CG to its
orthogonal projection point ō on the center line of the desired
path; and the heading error component εθ = θ−θr, in which
θr is the reference heading (tangential to the desired path).
The tracking error dynamics can be written as follows by
assuming small heading error [17]:

ε̇θ = θ̇ − uς, ε̇y = uεθ + v, (4)
where ς is the curvature of the desired path at point ō.

Using vehicle lateral kinetics, we can express yaw acceler-
ation and the rate of lateral speed as follows for the double-
track vehicle model:
θ̈ =

1

Iz
[lfFyf cδ − lrFyr −

Wf

2
F̃yf sδ +

Wr

2
F̃xr

+ (
Wf

2
cδ + lf sδ)Fxfl + (−Wf

2
cδ + lf sδs)Fxfr ], (5)

v̇ =
1

m
(Fyf cδ + Fyr + Fxf sδ)− θ̇u, (6)

where Fxf is the total longitudinal force on the front axle;
Fyf and Fyr are the total lateral forces on front and rear
axles; and F̃yf = Fyfl − Fyfr and F̃xr = Fxrl − Fxrr are
lateral and longitudinal force differences between the left-
and right-side tires. We define c∗ = cos(∗) and s∗ = sin(∗)
for simplicity. By using affine lateral force representation,
the front and rear axle force components in the model can
be expressed as
Fyf = βf (Cαfl + Cαfr ) + δf (Cαfl + Cαfr ) + df , (7)
Fyr = βr(Cαrl + Cαrr ) + dr, (8)

F̃yf = βf (Cαfl − Cαfr ) + δf (Cαfl − Cαfr ) + d̃f , (9)
where df = dfl + dfr, dr = drl + drr, d̃f = dfl − dfr.

For ease of notation, Cα(ũij) is replaced with Cαij .
In addition to the lateral kinetics, the wheel dynamics

is used in the model description. The relative longitudinal
acceleration at each corner is ˙̃uij = Rω̇ij − u̇tij , where
u̇tij and ω̇ij are the longitudinal acceleration in the tire
coordinates and wheel rotational acceleration. They can be
obtained from Inertial Measurement Unit (IMU) and wheel
speed data, respectively. By employing longitudinal forces
Fxij from (2) in the wheel dynamics and replacing ũij =
σijhij , the relative longitudinal velocity dynamics at each



vehicle corner yield

˙̃uij = −
R2Cσij
Iwhij

ũij +
R

Iw
τij + hwij , (10)

where τij is the total effective torque on each wheel; Iw is
the wheels moment of inertia; and the term hwij that includes
mapped acceleration to corners and affine components, is
provided in Appendix I. The tire model stiffness Cσ(αij) is
replaced by Cσij for ease of notation.

The state variable dynamics from (3) to (6) and longitu-
dinal relative acceleration in (10) are used to develop the
generalized system model description as

Hẋ(t) = Ax(t) +Bu(t) + Eh(t), (11)
with the output y = Cx where H,A,B,E, and C are pro-
vided in Appendix I. The inputs to the model are front steer-
ing by the automated driving system and the total torques
applied at each tire, i.e., u = [δf τfl τfr τrl τrr]

>. The state
variables for the prediction model are vehicle lateral speed,
yaw rate, modified corners’ slip angle, relative longitudinal
slip, and path following errors as x = [v θ̇ βf βr vr εθ εy]>,
in which ũ = [ũfl ũfr ũrl ũrr]

>. The h vector includes
h = [hv hr hwfl h

w
fr h

w
rl h

w
rr u]>, (12)

where hv, hr, and hwij are provided in Appendix I. The
outputs are the vehicle lateral speed, yaw rate, and path
following errors as y = [v θ̇ εθ εy]>. To deal with
computational complexities for real-time implementation of
this model and avoid conflicting inputs by different stabiliza-
tion/path following programs, a game-theoretic approach is
employed for designing a controller in the next section.

III. CONTROLLER FRAMEWORK

The automated driving control system in this paper in-
cludes i) a vehicle body control strategy to stabilize the
vehicle and minimize tracking errors, along with ii) wheel
dynamic stabilization at each vehicle corner. These two
types of controllers can be interpreted as two players in a
dynamical game, which have no information about another
player’s cost function.

A. Game-Theoretic Approach

The control action of player 1 (vehicle body control)
affects player 2 (thus, is an input to player 2 policy) and
vice versa. This is schematically represented in Fig. 1b. In
real vehicle stability control problem framework, player 2
includes 4 players (at each vehicle corner), which is realized
as components of player 2 in Fig. 1b. Player 1’s control
objective is the vehicle lateral dynamic stabilization and path
tracking described in (4) to (6); player 1 generates δf that
alters αij , thus changes Fxij and Cσij inside wheel dynamics
(10) and affects player(s) 2 system. The relative longitudinal
acceleration presented in (10) with the input τij is used
directly as the system for player 2. The control input τij ,
applied by the player(s) 2 at each corner, evolve the states
ũij in the wheel dynamics, thus will affect player 1’s system
dynamics (6) by changing the corner forces in (2).

The state variables and control inputs are rearranged for
the two types of players in order to formally present the
problem in a dynamical game framework. The state variables

for player 1 are lateral speed (realized as body sideslip), yaw
rate, front/rear axles’ sideslip, and path tracking errors:

x1 = [v θ̇ βf βr εθ εy]>, (13)
The control input from player 1 to the plant is the front
steering, i.e. u1 = δf . The outputs are the vehicle lateral
responses, i.e. y1 = [θ̇ v]>. The yaw rate θ̇ is a measured
value by the vehicle control system’s IMU. The lateral
speed v can be measured by GPS or estimated as in [18],
[19]. Player(s) 2 control actions are realized as corner brake
torques:

u1
2 = τfl, u

2
2 = τfr, u

3
2 = τrl, u

4
2 = τrr (14)

Remark 1. The objective for player(s) 2 is maintaining
the relative longitudinal speed ũij (consequently slip ratio
σij) within a certain range, i.e. |ũij | ≤ σbRωij for the
acceleration (ũij ≥ 0) cases and |ũij | ≤ σbutij for the brake
(ũij < 0) scenarios, where σb is a predefined bound.

B. Dynamical Game Method for Controller Design

The integrated controller design problem is turned into
a differential game problem in this part by assuming that
the system matrices are time-invariant in a given time span
(e.g., [0,T]). According to (11) and denoting Ā = H−1A,
B̄ = H−1B, Ē = H−1E, we have

ẋ(t) = Āx(t) + B̄u(t) + Ēh(t). (15)
Suppose xd is the constant desired state value, and x̃(t) =

x(t)−xd is the tracking error. Then we obtain the dynamics
of the tracking error x̃(t) in the following

˙̃x(t) = Āx̃(t) + B̄u(t) + f(t), (16)
where f(t) = Ēh(t) + Āxd.

Let B̄1 = H−1B1, B̄2 = H−1B2, where B1 and B2 are
given in Appendix. Then, we rewrite (16) with the following
form{

˙̃x(t) = Āx̃(t) + B̄1u1(t) + B̄2u2(t) + f(t)

x̃(0) = x0 − xd,
(17)

where u1(t) = δf is the control input by player 1, and
u2(t) = [τfl τfr τrl τrr]

> is the control input by player
2.

For player i, i ∈ {1, 2}, the following linear-quadratic
optimal control problem is considered

u∗i (·) = arg min
ui(·)

Ji, (18)

where
Ji =

1

2
x̃>(T )Six̃(T ) (19)

+
1

2

∫ T

0

{
x̃>(t)Qi(t)x̃(t) + ui

>(t)Ri(t)ui(t)
}
dt

subject to{
˙̃x(t) = Āx̃(t) + B̄iui(t) + B̄ju

∗
j (t) + f(t), j 6= i

x̃(0) = x0 − xd,

(20)
where Si, Qi(t) are positive semi-definite matrices, and
Ri(t) is a positive definite matrix, 0 ≤ t ≤ T . Here, T
is the terminal time.

According to [2], a 2-tuple of strategies {u∗i (t), i = 1, 2}
constitutes a Nash equilibrium solution if and only if for all



{ui(t), i = 1, 2},
J∗1 , J1(u∗1(t),u∗2(t)) ≤ J1(u1(t),u∗2(t))

J∗2 , J2(u∗1(t),u∗2(t)) ≤ J2(u∗1(t),u2(t)).
(21)

According to [3] and [2], we provide the following two
typical definitions on Nash equilibrium, namely, open-loop
and closed-loop Nash equilibria.

Definition 1. The 2-tuple (u∗1(·),u∗2(·)) is called an open-
loop (or a closed-loop) Nash equilibrium if for each i ∈
{1, 2}, an optimal control path u∗i (·) = φi(t) (or u∗i (·) =
ϕi(x̃(t), t)) of the problem in (18) exists, where φi is a
function of t (and ϕi(x̃(t), t) is a function of x̃(t) and t).

In the following, we study the problems of how to ob-
tain the open-loop Nash equilibrium and closed-loop Nash
equilibrium, respectively, for the developed control system
described by (17).

1) Open-loop Nash Equilibrium: For the differential game
(18) – (20), the open-loop Nash equilibrium solution is given
in the following theorem.

Theorem 1. Suppose there exists a unique solution set
{Pi(t)} to (22) and a unique solution set {Mi(t)} to (23)
for each i ∈ {1, 2}.

Ṗi(t) + Pi(t)Ā+ ĀTPi(t) +Qi(t)

−Pi(t)
∑2
j=1 B̄jR

−1
j (t)B̄Tj Pj(t) = 0

Pi(T ) = Si.

(22)

and
Ṁi(t) + ĀTMi(t) + Pi(t)f(t)

−Pi(t)
∑2
j=1 B̄jR

−1
j (t)B̄Tj Mj(t) = 0

Mi(T ) = 0.

(23)

Then, the differential game (18) – (20) admits a unique open-
loop Nash equilibrium solution given by

u∗i (t) = −R−1
i (t)B̄Ti (Pi(t)x̃

∗(t) +Mi(t)) , (24)
where x̃∗(t) is the associated state trajectory given in the
following

d

dt
x̃∗(t) =

Ā− 2∑
j=1

B̄jR
−1
j (t)B̄Tj Pj(t)

 x̃∗(t)

−
2∑
j=1

B̄jR
−1
j (t)B̄Tj Mj(t) + f(t)

x̃∗(0) = x0 − xd.

Proof: Define Hamiltonian function of players i ∈
{1, 2} in the following
Hi =x̃T(t)Qi(t)x̃(t) + uT

i (t)Ri(t)ui(t)

+ λTi (t)
(
Āx̃(t) + B̄1u1(t) + B̄2u2(t) + f(t)

)
.

According to the necessary condition for optimality [20], we
have

ui(t) = −R−1
i (t)B̄Ti λi (25)

λ̇i(t) = −Qi(t)x̃T(t)− ĀTλi(t), (26)
with the boundary condition λi(T ) = Six̃(T). Taking (25)

into (17) yields

˙̃x(t) = Āx̃(t)−
2∑
i=1

B̄iR
−1
i (t)B̄Ti λi(t) + f(t). (27)

Without losing generality, we suppose that λi(t) has the
form λi(t) = Pi(t)x̃(t) + Mi(t). Because this assumption
is trivially satisfied if Pi(t) = 0 and λi(t) = Mi(t) for all
t. Then taking the derivative of λi(t) with respect to t, we
have

λ̇i(t) = Ṗi(t)x̃(t) + Pi(t) ˙̃x(t) + Ṁi(t). (28)
Submitting (26) and (27) into (28), we obtain an equation
with the form W1(t)x̃(t) + W1(t) = 0. To guarantee this
equation always satisfied, for all t ∈ [0, T ], we let W1(t) = 0
and W2(t) = 0. Thus we have the equations in (22) and
(23), respectively. The boundary conditions are satisfied by
noting that λi(T ) = Six̃(T). The equation (24) is obtained
by taking λi(t) = Pi(t)x̃(t) +Mi(t) into (25) and (27).

2) Closed-loop Nash Equilibrium: For the differential
game, the closed-loop Nash equilibrium solution is given in
the following theorem.

Theorem 2. Suppose there exists a unique solution set
{Zi(t)} to (29) and there exists a unique solution set {Ni(t)}
to (30) for each i ∈ {1, 2}.
Żi(t) + Zi(t)Ā+ ĀTZi(t)−

∑2
j=1 Zi(t)B̄jR

−1
j (t)B̄Tj Zj(t)

−
∑2
j=1 Zj(t)B̄jR

−1
j (t)B̄Tj Zi(t)

+Zi(t)B̄iR
−1
i (t)B̄Ti Zi(t) +Qi(t) = 0,

Zi(T ) = Si,

(29)
and

Ṅi(t) + ĀTNi(t) + Zi(t)f(t)

+Zi(t)B̄iR
−1
i (t)B̄Ti Ni(t)

−
∑2
j=1 Zi(t)B̄jR

−1
j (t)B̄Tj Nj(t)

−
∑2
j=1 Zj(t)B̄jR

−1
j (t)B̄Tj Ni(t) = 0

Ni(T ) = 0.

(30)

Then, the differential game (18) – (20) admits a unique
closed-loop Nash equilibrium solution given by

u∗i (t) = −R−1
i (t)B̄Ti (Zi(t)x̃(t) +Ni(t)) . (31)

Proof: According to the Hamilton–Jacobi–Bellman
equation [20], we have
5t Vi(t, x)

=− min
ui(t)

{
5x Vi(t, x)

Āx̃(t) +

2∑
j=1

B̄juj(t) + f(t)


+

1

2
x̃T(t)Qi(t)x̃(t) +

1

2
uT
i (t)Ri(t)ui(t)

}
, (32)

where Vi(t, x) is the cost function of player i from time t
to the terminal time T , 5tVi(t, x) is the partial derivative
of Vi(t, x) with respect to t, and 5xVi(t, x) is the partial
derivative of Vi(t, x) with respect to x. By assuming that
Vi(t, x) = 1

2 x̃
T(t)Zi(t)x̃(t) + NT

i (t)x̃(t) + Φi(t), we can
obtain the control input

ui(t) = −R−1
i (t)B̄Ti (Zi(t)x̃(t) +Ni(t)) , (33)

such that the right-hand side of (32) is achieved. Taking (33)
and5tVi(t, x) = 1

2 x̃
T(t)Żi(t)x̃(t)+ṄT

i (t)x̃(t)+Φ̇i(t) into



(32), we obtain
x̃T(t)W3(t)x̃(t) + pT1 (t)(t)x̃(t) + p2(t) = 0, (34)

where W3(t), p1(t) and p2(t) are appropriate time-varying
matrices and vectors. (34) is satisfied if W3(t)+WT

3 (t) = 0,
p1(t) = 0 and p2(t) = 0. As a result, we obtain (29) and (30),
respectively. Due to Vi(T, x) = 1

2 x̃
T(T)Six̃(T), comparing

this with Vi(T, x) = 1
2 x̃

T(T)Zi(T )x̃(T) + NT
i (T )x̃(T) +

Φi(T ), we have Zi(T ) = Si, Ni(T ) = 0 and Φi(T ) = 0.

IV. SIMULATION RESULTS

The proposed game-theoretic control strategy for au-
tonomous vehicle path tracking and stability control is val-
idated through simulations with an accurate model, which
includes vehicle lateral dynamics and load transefr as well as
a bidirectional slip force model that is identified by nonlinear
least squares over the experimental tire force data form a
Sedan vehicle with the model parameters lf = 135 (cm),
lr = 136 (cm), Wf = 155 (cm), Wr = 147 (cm), Iz = 4240
(kg.m2), m = 1780 (kg), R = 33 (cm), and Iw = 1.4
(kg.m2). The simulations are performed based on the closed-
loop Nash equilibrium solutions. A combined-slip lane-
change maneuver (due to longitudinal slip by differential
braking during cornering) with initial speed of 15 (m/s) is
performed on a wet surface and the control actuation is
brake modulation at all corners and active front steering.
The steering control signals and vehicle lateral responses are
compared in Fig. 2 for the proposed dynamic game based
control strategy (DGC) and a model predictive controller
(Cont.1), which is developed on system (11) with the pre-
diction horizon of 8. Torque adjustments at each corner by
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the dynamical game based and predictive control strategies
are compared in Fig. 3. Both control strategies reduce lateral
forces negative longitudinal slip (due to braking) and apply
corrective yaw moment by brake and steering to track the
desired path and at the same time avoid over-steer. However,
the control actions for predictive strategy seem not cooper-
ative in terms of minimizing tracking error and stabilizing
the vehicle as can be seen from Fig. 2. This is due to the
fact that the body and corner modules are not compromising;
this leads to larger position and yaw tracking error as well

as reduced speed due to longer brake involvement in Cont.1.
Path tracking errors are also compared in Fig. 4, which shows
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Fig. 3: Brake torque adjustments for the lane-change

better tracking performance for the proposed DGC and at
the same time more stable lateral response (in Fig. 2) when
compared with Cont.1
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Fig. 4: Path tracking performance in LC on a slippery surface

V. CONCLUSION

This paper presented a new game theory-based control
strategy with an integrated stabilization and guidance control
framework for autonomous vehicles to resolve conflicts of
control inputs that may arise during simultaneous yaw and
path tracking as well as corner/wheel dynamic control. The
lateral dynamic stabilization and path tracking tasks were
formulated in a differential game, with braking at each corner
and active front steering as control actuation. The open-
loop and closed-loop Nash equilibrium control strategies
were investigated by solving a two-player linear-quadratic
differential game problem, respectively. This approach also
allows for collaborative (such as cooperative adaptive cruise)
control among various autonomous vehicles that may not
necessarily have access to the model description and cost
function of other vehicles in a shared driving environment.
Simulations have been carried out for lane change maneuvers



on a slippery surface and confirmed that the developed con-
troller improves tracking performance and enhances vehicle
lateral stability effectively by compromising between two
different control objectives in a dynamical game.

APPENDIX I
GENERALIZED MODEL COMPONENTS

The slip angle rate components in (3) are τ rij =
∂βij
∂r |r̄

and τvij =
∂βij
∂v |v̄ . These rates τ rfj =

−lf
uKf , τ

v
fj = −1

uKf for the
front axle and τ rrj = lr

uKr , τ
v
rj = −1

uKr for the rear axle, where
Kf = 1 + (

v̄+lf r̄
u )2 and Kr = 1 + ( v̄−lr r̄u )2. The operating

point’s (current) lateral and yaw speed are denoted by v̄ and
r̄. The state, input, and output matrices in the generalized
vehicle and wheel dynamics description (11) are

H =


m 0 0 0
0 Iz 0 0
−τvf −τ rf 1 0

−τvr −τ rr 0 1

04×6

06×4 I6×6

 , (A1)

A =


0 −mu
0 0

A1 02×2

06×2 A2 06×2

0 1
1 0

02×6
0 0
u 0

 , (A2)

B =



Cαf 0 0 0 0
lfCαf 0 0 0 0

02×5

0 R
Iw

0 0 0

0 0 R
Iw

0 0

0 0 0 R
Iw

0

0 0 0 0 R
Iw

02×5


, (A3)

E =


I2×2 02×5

02×7

04×2 I4×4 04×1

02×6
−κ(ρ)

0

 , C =

[
I2×2 02×8

02×8 I2×2

]
, (A4)

A1 =

[
Cαf Cαr a1

1 a2
1 0 0

lfCαf −lrCαr a3
1 a4

1 a5
1 a6

1

]
(A5)

A2 =

[
02×6

04×2
R
Iw

I4×4

]
, (A6)

where Cαf = Cαfl + Cαfr , Cαr = Cαrl + Cαrr , a1
1 =

Cσfl sδ̄
hfl

, a2
1 =

Cσfr sδ̄
hfr

, a3
1 =

lfCσfl sδ̄
hfl

+
WfCσfl

2hfl
, a4

1 =
lfCσfr sδ̄
hfr

− WrCσfr
2hfr

, a5
1 =

WrCσrl
2hrl

, a6
1 = −WrCσrr

2hrr
, and δ̄

is the measured steering angle in the previous time step.
The components of uncontrolled input matrix w are hv =
df +dr + d̄f sδ̄, hr = lfdf − lrdr + lf d̄f sδ̄+

Wf

2 d̃f + Wr

2 d̃r,
and hwij = −u̇tij − R2

Iw
d̄ij , where df = dfl + dfr, dr =

drl+drr, d̄f = d̄fl+d̄fr,
˜̄df = d̄fl−d̄fr, and ˜̄dr = d̄rl−d̄rr.

dij and d̄ij are the affine tire force components discussed in
Section II. The input matrices introduced in the system (17)

are:

B1 =

 Cαf
lfCαf
08×1

 , B2 =

 04×4
R
Iw

I4×4

02×4

 , (A8)
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