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Abstract: We consider a hub-based platoon coordination problem in which vehicles arrive at
a hub according to an independent and identically distributed stochastic arrival process. The
vehicles wait at the hub, and a platoon coordinator, at each time-step, decides whether to
release the vehicles from the hub in the form of a platoon or wait for more vehicles to arrive.
The platoon release time problem is modeled as a stopping rule problem wherein the objective
is to maximize the average platooning benefit of the vehicles located at the hub and there is a
cost of having vehicles waiting at the hub. We show that the stopping rule problem is monotone
and the optimal platoon release time policy will therefore be in the form of a one time-step
look-ahead rule. The performance of the optimal release rule is numerically compared with (i)
a periodic release time rule and (ii) a non-causal release time rule where the coordinator knows
all the future realizations of the arrival process. Our numerical results show that the optimal
release time rule achieves a close performance to that of the non-causal rule and outperforms

the periodic rule, especially when the arrival rate is low.

Keywords: Platooning, Coordination, Optimization, Stopping rule problems, Freight
transportation, Real-time operations, Intelligent transportation systems, Simulation.

1. INTRODUCTION

A platoon is a formation of connected vehicles driving
on the road with small inter-vehicular distances. A high
degree of automation ensures safety and fuel efficiency
of vehicles in a platoon. The lead vehicle in a platoon
is typically maneuvered by a human driver, while the
follower vehicles automatically follow their respective in-
front driving vehicles.

Platooning is expected to be an important element of the
future intelligent transport systems thanks to the following
main benefits: First, the workload of drivers of the follower
vehicles in the platoon decreases due to automation. The
monetary savings of platooning can be substantial if the
drivers can utilize their time for other tasks, e.g., adminis-
trative duties, rest, etc. Second, the energy consumption of
vehicles in platoons decreases thanks to reduced air drag.
The reduced energy consumption has been validated by
field experiments in Alam et al. (2015), Browand et al.
(2004) and Tsugawa et al. (2016), where potential energy
savings of around 10% were reported. Third, the traffic
capacity of roads increases when vehicles drive in a syn-
chronized manner and by the small inter-vehicular dis-
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Fig. 1. The platoon coordinator decides whether to release
the vehicles at the hub as a platoon, or wait for more
vehicles to arrive.

tances. Forth, the safety increases due to communication
and automation in platoons.

Platoon coordination is needed in order for vehicles to
form platoons. In general, platoon coordination includes
deciding which vehicles will form platoons and how each
platoon will be formed. In this work, we consider the truck
platooning scenario illustrated in Figure 1, where some
vehicles have to wait at a location along a highway, called
hub, in order for other vehicles to catch up so that platoons
can be formed at the hub. The platoon coordination is then
to decide when to release vehicles from the hub in form of
platoons. In today’s transportation infrastructure, there
are many examples of locations which could function as
hubs, e.g., freight terminals, gas stations, parking areas,
tolling stations, harbors, etc.

Coordination for vehicle platooning has been studied in
the literature. Boysen et al. (2018), Larsen et al. (2019),
Farokhi and Johansson (2013), and Johansson et al. (2018)
study variations of hub-based platoon coordination prob-



lems. In the aforementioned works it is assumed that the
incoming vehicles’ arrival times to the hub are known
to the coordinator. This assumption is valid if transport
companies are willing to share the trip information and
locations of their vehicles.

Zhang et al. (2017) study platoon coordination of two
vehicles under stochastic traveling times. The vehicles have
a common meeting point in a three-way network. The
authors showed that it is motivated to form the two-vehicle
platoon if the vehicles’ scheduled arrival times at the
meeting point differ less than a certain threshold. Different
from Zhang et al. (2017), in this paper we consider (more
than two) vehicles that arrive to a hub according to a
stochastic arrival process.

Adler et al. (2016) study platoon coordination at a hub
when vehicles arrive according to a stochastic arrival pro-
cess. The authors showed the optimality of a threshold
policy for releasing vehicles from the hub under the as-
sumption that the arrival process is Poisson distributed.
Different from Adler et al. (2016), in this paper we show
the optimality of a threshold policy for releasing vehicles
at a hub without assuming a Poisson arrival process.

Liang et al. (2016), Larsson et al. (2015), van de Hoef et al.
(2018), Xiong et al. (2020) study the platoon coordination
problem where platoons are formed on the road without
stopping at hubs. The main drawback of such approach is
that during the formation phase, some vehicles speed up or
slow down in order to merge. This may lead to traffic flow
reduction and speed limit violation. For a review of platoon

coordination strategies, we refer the reader to Bhoopalam
et al. (2018).

In this work, we consider a hub-based platoon coordination
problem, where a coordinator decides, at each time-step,
if vehicles will be released from the hub as a platoon or
they stay at the hub. The coordinator does not know
the realization of the arrival process a priori. Instead, the
coordinator knows the statistical distribution of the vehicle
arrival process. We assume that arrivals are independent
and identically distributed. The contributions of this paper
are threefold:

(i) We formulate the platoon release time problem as an
optimal stopping rule problem.

(ii) We derive the optimal release rule, under the as-
sumption that arrivals are independent and identi-
cally distributed. We show that the optimal rule is
in the form of the one time-step look-ahead policy.
The optimality follows by showing that the platoon
release time problem is monotone.

(iii) We simulate a hub located along with a highway in
Sweden, where the historical traffic data is used to set
realistic values of the vehicle arrival rates to the hub.

This paper is structured as follows. In Section 2, we
present the system model, including the vehicle arrival
process, the decision variables, the reward function and
the optimization problem of the coordinator. The solutions
of the optimal release time problem are presented in
Section 3. In Section 4, the optimal release rule is evaluated
in a simulation of a hub in Sweden. Finally, conclusions are
provided in Section 5.

2. SYSTEM MODEL

In this section, we formulate the hub-based platoon co-
ordination problem that is illustrated in Figure 1. First,
the vehicle arrival process is defined. Then, we define the
coordinator’s decision variables and reward function. Last,
the optimal release time problem is formulated.

2.1 Arrival process to the hub

The number of vehicles that arrive to the hub at time-
step k£ > 0 is denoted by the random variable Xj. The
realization of X} is denoted by z, € Zx>(, which takes
non-negative integer-values. At the initial time-step k = 0,
there are ng € Zso vehicles located at the hub. We
assume ng > 0, since if there are zero vehicles located
at the hub, there is no decision to make at £k = 0. The
number of vehicles located at the hub at time-step k > 0
is denoted by the random variable Ny and its realization
is denoted by nj, which is defined by ny = ng_1 +xx. The
realizations x1, ..., £} are known at time-step k. Hence, ny
is known to the coordinator at time-step k. Moreover, we
assume the random variables X1, X5, ... to be independent
and identically distributed (i.i.d) and their distribution is
known to the platoon coordinator. The probability mass
function of the arrivals is denoted by P(x) = Pr(X} = z).

Remark 1. In real traffic situation, the arrival rate of ve-
hicles to the hub is expected to be higher at peak periods
than during off-peak periods. This is observed in Figure 3.
However, the i.i.d. assumption of X1, Xo, ... is justified if
the traffic conditions change slowly in comparison to the
time that vehicles stay at hubs. Then, different distribu-
tions can be used for the peak and off-peak periods, and
the distributions can be estimated by historical data.

2.2 Decision variables

The coordinator’s decision variable, at time-step k, is
denoted by uy € {0,1}. If uy, = 1, the vehicles at the hub
are released as a platoon and the coordinator receives a
reward (that is introduced later), and u; = 0 corresponds
to not releasing the vehicles at time-step k. Exactly one
release time is allowed and when the decision to release is
taken, the problem terminates (and possibly starts over).
The coordinator has to release the vehicles at latest at
time-step J, which can be selected arbitrary large, i.e.,
ug+...+uy = 1. The release time is not known a priori and
the decision to release at time-step k is a causal function
of all the information up to time k. Therefore, uy is a
realization of a random variable, which we denote by Uyk.

The feasible set of decisions, which the coordinator can
take at time-step k, depends on if the problem already has
been terminated. Let hy = ug + ... + ux_1, where hy =1
if the problem has been terminated before time-step k
and hyp = 0 otherwise. The variable h; is a realization
of a random variable denoted by Hy. Given Hy = hy, the
feasible set of decisions at time-step k, is defined as

{0,1}, ifhxy=0and k < J,
{0}, if hy =1,
{1}, ifhy=0and k = J.

Ui (hi) =



2.8 Reward function

If a group of vehicles are released from the hub at the
same time-step, they will form a platoon, as shown in
Figure 1. In order to define the reward function of the
platoon coordinator, we make two assumptions on vehicles’
benefit from platooning. First, the lead vehicle in each
platoon has zero benefit. Second, the follower vehicles have
equal benefits R > 0. Then, the average platooning benefit
in a platoon of n vehicles is R(n — 1)/n. The reward of the
platoon coordinator if it releases the vehicles at time-step
k (up=1)is

ng — 1

yr(ng) = R — ¢k,

ng
where the first term is the average platooning benefit of
the n; vehicles that are released, and the second term is
the cost associated with vehicles waiting at the hub.

Remark 2. Note that in general, we might consider the
reward function of the form yix(ng) = f(ng) — A(k),
where f(ny) represents the platooning benefit and A(k)
represents the cost of waiting at the hub. The results
presented later will hold as long as the reward function
fulfills the monotonic property that will be introduced
later.

2.4 The optimal release time problem

The platoon coordinator aims to maximize its expected

reward with respect to its decision variables Uy, ..., U;. The
optimization problem of the coordinator is
J
max E N)U, 1
pmax ;yk( K)Uk | (1)

where the event Up = 1 corresponds to releasing the
vehicles at time-step k. In the next section, the solution of
the optimization problem is presented.

Remark 3. The optimal release time problem (1) is an
optimal stopping rule problem, where releasing the vehi-
cles from the hub corresponds to stopping. In the next
section, two approaches for solving the optimal release
time problem are discussed.

3. SOLUTIONS TO THE OPTIMAL PLATOON
RELEASE TIME PROBLEM

In this section, we give two solutions of the optimal release
time problem. The first solution is to calculate the optimal
decision in the form of a state feedback policy by means
of stochastic dynamic programming. This solution is not
limited to the i.i.d assumption of the vehicle arrival process
which was made in the previous section. The second
solution is a release time rule that looks one time-step
ahead. The optimality of the release time rule is shown
under the i.i.d assumption of the arrival process.

8.1 Stochastic dynamic programming

The optimal release time problem (1) can be solved by
stochastic dynamic programming. Let the random variable
Sk = (N, Hg) denote the state of the system at time-
step k and its realization is denoted by s = (ng,hi).
Given the state s, the maximal expected reward received

from time-step k to J is denoted by Vi (sy) and is defined
by

Vk(sk) =

max

{yr(ni)ur + E [V (Sk41)|Sk = sk, Up = ugl},
wy €U (hi)

where the maximal expected reward is Vi(sx) = yr(n
if the optimal decision is up = 1. Note, Vi(sg) = 0
we have hy = 1, since then U (h;) = {0} for I > k. An
optimal state feedback policy uy = uj(sg) for k =0,...,J
is calculated by setting Vyii(sj+1) = 0 and calculating
Vi(sg), ..., Vo(so) backwards (from J to 0) as functions of
the states sq, ..., sz, respectively. However, the stochastic
dynamic programming becomes intractable when J is large
and the possible realizations of X7, ..., X; are many.

k)
if

3.2 Optimal one-step look-ahead policy

The main result of this section is an optimal release rule
where the platoon coordinator looks one time-step ahead,
instead of (initially) looking J time-steps ahead, as in the
stochastic dynamic programming solution. Before stating
the optimal release time rule, we define the notions of
the one time-step look-ahead release rule and monotone
release time problems.

Definition 1. The one time-step look-ahead release rule
calls for releasing at time-step k if

Ye(nk) > B yr1 (Ngg1)| Ni = ni] (2)
that is, the reward of releasing vehicles at time-step k is
greater than the expected reward of releasing at time-step
kE+1.

Definition 2. (Monotone release time problem). The re-
lease time problem is called monotone if the event that
inequality (2) is satisfied at time-step k implies that it
will also be satisfied at time-step k + 1, for all possible
realizations of Xj1.

Theorem 1. Consider the platoon release time problem
(1). Then, the following statements hold:

(i) The release time problem is monotone in sense of
Definition 2.

(ii) The one time-step look-ahead release rule is optimal
and releasing is optimal at the first time-step k£ such
that ng > n*, where

* . c
n* = min{n > 0] 7 > ;

——_P(a)}.

n? + nx

where P(z) denotes the probability of z vehicles
arriving to the hub at one time-step.

Proof. See appendix A.

Remark 4. The threshold n* is a function of the cost-
benefit ratio ¢/R and the distribution of random arrivals
X, .., Xy

Remark 5. The optimal state feedback policy of the coor-

dinator is uy = uj(s), where
N lifng>n*ork=2J andif hy =0
u(sp) =
0 else,
where the criteria hy = 0 imposes that releasing the

vehicles at time-step k requires that the coordinator has
not released the vehicles before time-step k.
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Fig. 2. Map of a region in Sweden. The location of the hub
is denoted by the letter A (near Gothenburg) and the
vehicles at the hub can platoon on the highway to the
point that is denoted by B (near Halmstad). The map
is copied from Google maps.
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Fig. 3. Average number of trucks that pass by the hub
(point A in Figure 2) during each hour of the day.

4. NUMERICAL RESULTS

In this section, we simulate the optimal one time-step look-
ahead release rule to study the average utility of vehicles,
the average platoon length and the average waiting times
under different arrival rates for a potential hub in Sweden.
We start by describing the simulation setup.

4.1 Setup of simulation

We consider a hub located near the city of Gothenburg,
in Sweden. In Figure 2, the position of the hub is denoted
by A and the vehicles at hub A can platoon to the point
denoted by B. The distance between hub A and point B
is approximately 120 km.

In the simulations, we set the time-step length to 5
seconds. At each time-step k, the number of arriving

Number of released vehicles
S

10:20 10:30 10:40
Time of the day

0 \
10:00 10:10 10:50 11:00

Fig. 4. The number of released vehicles from the hub A in
the period 10:00-11:00 a.m. under the optimal release
rule and the arrival rate A = 1/6.

vehicles X ~ Po(\) is Poisson distributed with mean .
The initial number of vehicles at the hub, ng > 0, is drawn
according to the zero-truncated Poisson distribution.

Figure 3 shows the average number of vehicles that passed
by the hub (point A in Figure 2) during each hour of the
day over a period of ten weekdays. The data was collected
by the Swedish Transport Administration. The data in
Figure 3 is used to compute realistic values of the arrival
rate \. For example, in average 330 vehicles pass by the
hub during the peak period 10:00-11:00 a.m. If 120 of
those vehicles stop at the hub in order to platoon and
if vehicles arrive to the hub according to a Poisson process
then the expected number of arrivals at each time-step
(per 5 seconds) is A = 1/6. In the simulations, A is varied
between 0 and 1/6.

Figure 4 shows the number of vehicles released from hub
A by the coordinator under the optimal release rule for
a realization of the arrival process between 10:00-11:00
a.m. In this figure, the arrival rate to the hub is A = 1/6
and the cost-benefit ratio is ¢/ R = 0.005. The cost-benefit
ratio captures the trade-off between the waiting cost of
vehicles and their monetized benefits from platooning. The
figure shows that vehicles are released in platoons of 6 or 7
vehicles. This is consistent with the fact that the optimal
release rule, for A = 1/6 and ¢/R = 0.005, is to release the
vehicles when the number of vehicles at the hub is more
or equal to the threshold n* = 6. In the next section, the
threshold n* is computed when the arrival rate A and the
cost-benefit ratio ¢/R are varied.

4.2 Computing the threshold n*

The optimal release rule in Theorem 1 is to release the
vehicles in a platoon when the number of vehicles exceeds
the threshold n*. Figure 5 shows the threshold n* as a
function of the arrival rate A, for different values of the
cost-benefit ratio ¢/R. Figure 5 shows that the threshold
increases when A increases. This is intuitive since the
incentive to wait for more vehicles to arrive is higher



10

—0.002

_._%
9t £ = 0.005 1
g ||=e— % = 0.008 ]
—o—% = 0.011
7’—0—%:0.014 1
6 >
IS
5, 4

;‘ Y ANy AN |
LT |
/s | |

0 0.05 0.1 0.15
A

Fig. 5. The threshold n* as a function of A for different
values of the cost-benefit ratio ¢/R.

when more vehicle are expected to arrive. Moreover, the
figure also shows that the threshold increases when ¢/R
decreases. This is intuitive since the incentive to stay at
the hub is high when the cost of waiting is low and the
platooning reward is high.

4.8 Studying the utility, platoon length and waiting times

The results presented in this subsection are obtained by
1000 Monte-Carlo samples. For each sample, the arrivals
r1,...,27 and the initial number of vehicles ng > 0 are
re-drawn. The cost-benefit ratio is assumed to be ¢/R =
0.005. We compare the performance of the optimal release
time rule in Theorem 1 against a periodic policy, a sponta-
neous platooning policy and a policy with the non-causal
knowledge of the arrival process. Under the periodic policy,
the vehicles that arrive to the hub within each 5-minute
(60 time-step) interval are grouped into a platoon. In the
non-causal policy, the platoon coordinator has the non-
causal knowledge of future arrivals and releases at the
time-step which maximizes its reward. In the spontaneous
policy, the vehicles are released at the same time-step as
they arrive and vehicles platoon spontaneously.

Figure 6 shows the average utility per vehicle, for different
release time policies, as a function of the arrival rate A
which is varied from 0 to 1/6. For each releasing policy,
the average utility increases when A increases. According
to Figure 6, the highest average utility per vehicle is
obtained when the coordinator has the knowledge of
future arrivals to the hub. This is expected due to the
fact that the coordinator has the non-causal knowledge
of the future arrivals and always picks the departure
time that corresponds to the highest reward. Note that
the availability of future arrivals may not always be
possible but the non-causal policy provides an upper
bound on the performance of the optimal one time-step
look-ahead policy. Figure 6 shows that the performance
of the optimal one time-step look-ahead rule is close to
that of the non-causal release rule. It also shows that the
optimal one time-step look-ahead rule outperforms the
spontaneous platooning and the periodic release policies.
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Based on Figure 6, the spontaneous platooning policy
results in a very low average utility. This suggests that
coordination is needed in order to obtain substantial
benefit from platooning. Another observation is that when
A is low, the average utility of the periodic release policy
is negative. This is due to the fact that the cost of waiting
overtakes the average platooning benefit when the arrival
rate is low.

Figure 7 shows the average platoon length, for different
release policies, as a function of A. The vehicles that depart
alone are counted as one-vehicle platoons. The figure shows
that the average platoon length increases when A increases,
for all release policies. This is expected since, in average,
more vehicles arrive to the hub at each time-step. Figure 7
shows that when the optimal release rule is employed, the
trajectory of the platoon length is step-shaped. A jump
occurs every time A reaches a point where the threshold
n* is increased by one.

Figure 8 shows the average waiting time per vehicle for
different release policies as a function of A. The average
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waiting time of the optimal release rule is saw-tooth
shaped. This is because at each point that A reaches a
value where the threshold n* increases by one, the average
waiting time jumps to a new value. In the regions in-
between the jumps, the average waiting decreases, since
when more vehicles arrive to the hub, it takes shorter time
to reach the threshold. Moreover, it is worth pointing out
that when A is low, the optimal release policy has zero
waiting time, similar to the spontaneous policy.

5. CONCLUSIONS

We have considered the platoon coordination problem
where vehicle form platoons at a hub to which vehicles
arrive according to a stochastic arrival process. The coor-
dinator has the knowledge of the statistical distribution of
the vehicle arrival process and decides at each time-step if
the vehicles at the hub will be released in a platoon. We
model the release time problem as a stopping rule problem,

where stopping corresponds to releasing vehicles from the
hub.

Under an i.i.d assumption of the vehicle arrival process,
we showed that it is optimal for the coordinator to only
look one time-step ahead when deciding whether to release
the vehicles from the hub or not. This was shown by first
proving that the release time problem is monotone. We
showed that the optimal release rule is in the form of a
threshold-based policy in which the coordinator decides to
release the vehicles if the number of vehicles located at the
hub exceeds a certain threshold. The threshold depends on
the cost of waiting, the benefits from platooning and the
statistical distribution of the vehicle arrival process.

The performance of the optimal release time rule was
evaluated in a simulation of a potential hub in Sweden.
Historical traffic data was used to obtain realistic values
of the arrival rates to the hub. In the simulation, it was
shown that the optimal release rule performed nearly as
good as a non-causal policy where the coordinator has full
information about future arriving vehicles. Moreover, the
simulation showed that the optimal release rule outper-
formed a periodic release rule.

Appendix A

Proof. [Theorem 1] We show that the condition in Defini-
tion 2 holds for the considered release time problem. The
one time-step look-ahead release rule calls for releasing at
time- step k if

ng — 1 ng+ax—1
—ck >
h2) e

RP(z) —c(k+1). (A1)

Nk

Since > P(z) = 1, we have that (A.1) is equivalent to
c ng+rx—1 np—1
= _ P
R~ £( ng+x ng JP(),

which can be written as

- > —— P A2
R~ g n? + nyx . (A-2)
Similarly, it can be shown that, the one time-step look-
ahead release rule calls for releasing at time-step k + 1
if

ESNT T p).

A3
R ™ Sy + ke (A9)

Note that nj and ng41 appear in the right-hand-side of the
inequalities (A.2) and (A.3), respectively, and this is the
only difference between these inequalities. Moreover, the
right-hand-side of (A.2) and (A.3) are decreasing in nj and
ng+1, respectively. Therefore, if inequality (A.2) is satisfied
it implies that inequality (A.3) is satisfied if ngi1 > ng.
The release time problem is therefore monotone by the fact
that ng4+1 = ng + 2 > ng.

Ferguson (2007) showed that it is optimal to look one
time-step ahead in finite horizon monotone stopping rule
problems. By this fact and by that the considered release
time problem is monotone, it follows that the one time-
step look-ahead release rule is optimal. Moreover, the one
time-step look-ahead release rule calls for releasing at time-
step k if the inequality (A.2) is satisfied, which it is if and
only if ni > n*. The same policy is optimal in the case of
infinite horizon, as Chow and Robbins (1963) showed the
optimality of the one time-step look-ahead rule of infinite
horizon monotone stopping problems.
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