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Abstract: Heavy-duty vehicle platooning has been an important research topic in recent years.
By driving closely together, the vehicles save fuel by reducing total air drag and utilize the road
more efficiently. Often the heavy-duty vehicles will catch-up in order to platoon while driving on
the common stretch of road, and in this case, a good prediction of when the platoon merging will
take place is required in order to make predictions on overall fuel savings and to automatically
control the velocity prior to the merge. The vehicle speed prior to platoon merging is mostly
influenced by the road grade and by the local traffic condition. In this paper, we examine the
influence of road grade and propose a method for predicting platoon merge distance using vehicle
speed prediction based on road grade. The proposed method is evaluated using experimental
data from platoon merging test runs done on a highway with varying level of traffic. It is shown
that under reasonable conditions, the error in the merge distance prediction is smaller than 8%.

Keywords: Platooning, Intelligent Transport Systems, Neural Networks, Road Transportation,
Platoon Merging Distance, Road Grade

1. INTRODUCTION

Road freight transport is responsible for the majority of
today’s land based transportation, and its importance is
only expected to increase in the future. As it is also a
significant contributor to CO2 emission, developing more
intelligent transportation systems, that would increase
efficiency, reduce fuel consumption, and also ease the strain
on the road infrastructure, is crucial.

Heavy-duty vehicle (HDV) platooning, where the vehicles
drive together as a single unit with low intervehicular
distances, is well known as a method of reducing fuel
consumption. When platooned, each HDV experiences re-
duced air drag, with small reductions for the leader vehicle
and reductions up to 70% for the follower vehicles. Since
air drag at high speeds contributes significantly to the
resistive force, by reducing it through use of platooning the
fuel consumption can be reduced up to 20% (Humphreys
et al. [2016]). This reduces operating costs of HDV fleets,
while also reducing their ecological impact.

Although platooning is also possible with human drivers,
introducing automatic control of vehicle speed allows the
HDVs to drive safely with smaller intervehicular distances,
which leads to more fuel savings and more efficient util-
isation of the road infrastructure. There has been a lot
of research on HDV platooning (Bergenhem et al. [2012]),
? The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No 674875.,
VINNOVA within the FFI program under contract 2014-06200, the
Swedish Research Council, Knut and Alice Wallenberg Foundation
and the Swedish Foundation for Strategic Research.

mostly on already formed platoons, regarding platoon sta-
bility (Yanakiev and Kanellakopoulos [1995], Ploeg et al.
[2014]), safety (Alam et al. [2014]), control (Horowitz and
Varaiya [2000], Turri et al. [2014]) etc. However, as vehi-
cles often have different starting points, destinations and
time constraints, platoons will need to be formed, merged
and split while driving on the road in a realistic large-
scale implementation of HDV platooning. This means that
HDVs will often have to deviate from their own optimal
(with regard to fuel consumption) speeds and routes in
order to meet with other HDVs and form a platoon. Once
the HDVs successfully catch up and form a platoon, the
follower vehicle will experience reduced air drag and con-
sume significantly less fuel. Finally, the vehicles split and
go their separate ways in order to arrive at their respective
destinations according to their time constraints. The hope
is that fuel savings during the time the vehicles drive in
a platoon will offset higher fuel consumption during the
catch-up phase (Liang et al. [2013]). If platoon formation is
delayed due to the influence of traffic (Liang et al. [2015]),
or some other effects, the fuel savings are diminished,
which can lead to more fuel being spent overall. It is
therefore important to have a good prediction of where the
two vehicles would meet, in order to be able to calculate
predicted fuel savings and make a better informed decision
on whether to attempt to form a platoon at all.

The problem considered in this paper is predicting how
long it will take two HDVs to form a platoon while driving
on a highway at set cruise speeds. This problem was first
studied by Liang [2016], Liang et al. [2016], and we will
use the data obtained there. The focus of previous work on
platoon merging distance prediction was on investigating

Preprints of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright by the
International Federation of Automatic Control (IFAC)

3783



the influence of traffic conditions, not explicitly looking
at the influence of the road topography, which we will
investigate here. After modelling the influence of road
grade, a more in-depth look into the influence of traffic
condition will become possible. Our problem is related to
the well known problem of travel time prediction. Many
prediction models were used for this (Chien and Kuchipudi
[2003]), usually for passenger cars, and much of the work
is done using traffic models and statistical and machine
learning techniques (van Lint [2004]). The behaviour of
HDVs differs, however, significantly from the behaviour of
cars, due to their large mass and size, speed constraints
and the different way they interact with the surrounding
traffic. Therefore, different algorithms might be better
suited for predicting their behaviour.

The additional benefit of our approach is that it facilitates
following the progress of the platoon catch-up phase. Since
in our algorithm, platoon merge distance prediction is done
by integrating the predicted vehicle speed profiles, we can
compare the current vehicle position, acquired from the
GPS system, with its predicted value. This way, we can
know in advance when a platoon merge will be delayed
and can adapt our strategy accordingly.

The outline of this paper is as follows. In Section 2 a
brief overview of the experiment from which the data
were obtained is given. Next, in Section 3, a simplified
longitudinal dynamic model of the vehicle is derived.
A new platoon merging distance prediction algorithm is
proposed in Section 4, and evaluated using the experiment
test data in Section 5. Lastly, we conclude our work in
Section 6.

2. EXPERIMENT DATA

Here we consider the simplest case of platoon merger.
In the experiments (Liang et al. [2016]) two HDVs were
driving on an 11 km long stretch of public highway between
Stockholm and Södertälje, namely between the Hallunda
and Moraberg interchanges. Two standard Scania tractor
trucks were used. The lead vehicle had a 480 hp engine
and its total weight, including its trailer, was 37.5 tonnes.
The follower vehicle had a 450 hp engine, had no trailer
and weighed 15 tonnes. The road is fairly hilly, with road
grades as high as ±5%. The HDVs, initially apart, at-
tempted to form a two-vehicle platoon by driving with
different desired speed adaptive cruise control (ACC) set-
tings. Three different desired speed pairs were considered,
(𝑣1, 𝑣2) = (75, 85), (75, 89) and (80, 89) km/h, where 𝑣1 is
the reference speed of the leader vehicle and 𝑣2 of the
follower. Downhill speed control was also active, with the
offset of 5 km/h, allowing the vehicles to accelerate on
downhill slopes and gain speed up to the set limit. The
initial distance between the vehicles ranged from 400 m
to 1300m. The part of the experiment data that we used
consist of periodical vehicle speed measurements and cal-
culated distance between the vehicles, together with the
information about road topography. Since we are primarily
interested in the catch-up phase, we will consider the
platoon merging completed when the distance between
the vehicles is less than 80 m, ignoring phenomena such
as persistent drivers (Liang et al. [2016]).
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Fig. 1. Speed deviation from the desired speed due to vary-
ing road grade for two HDVs with different masses.

3. ROAD AND VEHICLE MODEL

A simplified longitudinal HDV model is considered; a more
detailed vehicle model can be found in Gillespie [1992]. By
applying Newton’s second law of motion, the dynamics of
an HDV can be expressed as

�̇� = 𝑣
𝑚�̇� = 𝐹t − 𝐹b − 𝐹a − 𝐹r − 𝐹g,

where 𝑥 is the vehicle’s longitudinal position, 𝑣 the vehicle
speed, 𝑚 the vehicle mass, 𝐹t the traction force, 𝐹b the
braking force, 𝐹a and 𝐹r the air drag and roll resistance,
respectively and 𝐹g the influence of gravitational force.
Due to their large mass, the gravitational force affects
HDVs much more than it affects passenger cars. HDVs
often need to reduce their speed in order to tackle even
small uphill slopes, even when driving at full power, and
they need to brake or coast on downhill slopes in order
to keep speed within safe bounds. A comparison of speed
deviation from the nominal for the two HDVs considered
in the experiment is shown on Fig. 1. The data shown are
from one of the experiment test-runs. The vehicle speed is
shown as a function of position, and negative road grade
is shown in the same figure to highlight the dependency.

Since HDVs normally do not drive close to full power, they
will be able to tackle smaller uphill slopes without signif-
icant loss of speed. In contrast, the ACC with downhill
speed control will allow the vehicle speed to increase even
on short downhill slopes, in order to save fuel. Therefore,
in case there are no long steep uphill slopes, the mean
speed of the vehicle will increase, with the heavier vehicle
experiencing a larger increase than the lighter ones. This
effect cannot be ignored when estimating the platoon
merging distance, especially if the weight of the leader and
the follower HDV differ significantly as in our experiments.

In order to model the influence of varying road grade
on the vehicle speed, we can either use a cruise control
model, if available, or identify the dependence from data. If
we group all resistive forces, excluding gravitational force,
with the traction force and braking force into 𝐹p = 𝐹t −
𝐹b − 𝐹a − 𝐹r, this propulsive force can be treated as
the control output of the cruise controller, applied to
overcome the resistive forces and keep the vehicle speed
close to its reference value. The cruise controller can adjust
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the propulsive force, within the constraints imposed by
maximum engine torque. Then, the speed dynamics of a
vehicle can be expressed as

𝑚�̇� = 𝐹p −𝑚𝑔 sin𝛼. (1)
We assume that 𝐹p will be a non-linear function of vehicle
speed deviation from its reference speed, and of road grade,
i.e. 𝐹p = 𝐹p(𝑣 − 𝑣ref , 𝛼). The road grade, of course, does
not depend on time, and only changes with position. We
obtain the speed measurements for both vehicles, as well
as the distance between them, translate them to spatial
domain and consider vehicle speed as a function of vehicle
position. We consider equally spaced points along the road,
𝑠k = 𝑘 · Δ𝑠, where the road segment length Δ𝑠 is small
enough to capture the dynamics of the system, but large
enough so that Δ𝑠 > 𝑇s𝑣max, i.e., vehicles do not pass
through segments of length Δ𝑠 in less than 𝑇s. Then, to
each 𝑠k along the vehicle trajectory, for all vehicles 𝑖, we
assign

𝑡i,k = min {𝜏 : 𝑥i(𝜏) > 𝑠k} ,

𝑣i,k =

ti,k+1∫︀
ti,k

𝑣i(𝜏)d𝜏

𝑡i,k+1 − 𝑡i,k
,

where 𝑡i,k is the time vehicle 𝑖 enters segment [𝑠k, 𝑠k+1],
and 𝑣i,k its average speed while in the segment.

Lastly, the road grade 𝛼k is taken as average road grade
over the road segment [𝑠k, 𝑠k+1).

Using
d𝑣

d𝑡
=

d𝑠

d𝑡

d𝑣

d𝑠
= 𝑣

d𝑣

d𝑠
we rewrite (1) into

𝑣
d𝑣

d𝑠
=

𝐹p
𝑚

− 𝑔 sin𝛼

which we can integrate and approximate by taking
sin(𝛼) ≈ 𝛼 for small 𝛼, since road slopes will typically
be less than 5%, giving us

𝑚

2Δ𝑠

(︀
𝑣2i,k − 𝑣2i,k−1

)︀
= 𝐹p,i(𝑣i,k−1−𝑣i,ref , 𝛼k−1)−𝑚𝑔𝛼k.

Now, function
𝐹p,i
𝑚

=
𝐹p,i(𝑣i,k−1 − 𝑣ref , 𝛼k−1)

𝑚
=

𝑣2i,k − 𝑣2i,k−1
2Δ𝑠

+ 𝑔𝛼k

(2)
can be learned from data, and using this model, we can
predict vehicle speed for the whole length of the road of
interest, as

𝑣i,k = 2Δ𝑠

√︂
𝑣2i,k−1 +

𝐹p,i(𝑣i,k−1 − 𝑣ref , 𝛼k−1)

𝑚
− 𝑔𝛼k,

(3)
initializing 𝑣i,0 to the last available speed measurement, or
to 𝑣i,ref . It turns out that (2) can be approximated using a
simple feedforward neural network. A comparison between
the measured speeds and the speed prediction acquired
this way, for a part of a test run, is shown on Fig. 2.

4. PLATOON MERGE DISTANCE PREDICTION

In this section, we introduce our new prediction algorithm
for the platoon merge distance. As the algorithm requires
vehicle speed prediction, we first discuss some simpler
speed models, and then give the neural network speed
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Fig. 2. Predicted (𝑣) and measured (𝑣) speed for the leader
and the follower vehicle and negative road grade.

model in more detail. Finally, we comment on how the
the proposed models were trained from data.

4.1 Prediction Model

Platoon merge distance prediction is based on predicting
future vehicle speeds based on varying road grade. A
significant advantage of speed prediction based merge
distance prediction is that it gives us a prediction of the
inter-vehicle distance profile during the whole catch-up
phase. This means that a disturbance that will change
the platoon merging time can be detected immediately,
and when it happens, the prediction can be recalculated
taking into account the updated information. Additionally,
the new information can be used to re-plan desired vehicle
speed profiles in order to compensate for the disturbance.

We define the platoon merge distance prediction �̂�m at
some time 𝑡0, with initial intervehicular distance 𝑑(𝑡0),
as the distance the follower vehicle will have travelled
from that time until the the time when the predicted
intervehicular distance 𝑑 first becomes smaller than the
predefined value 𝑑PL (in this paper we set 𝑑PL = 80m),

�̂�m(𝑡0) = �̂�2(𝑡m)− 𝑥2(𝑡0),

𝑡m(𝑡0) = min
{︁
𝑡 ≥ 𝑡0 : 𝑑(𝑡|𝑡0) ≤ 𝑑PL

}︁
.

We predict the follower vehicle position �̂�2(𝑡|𝑡0) and in-
tervehicular distance 𝑑(𝑡|𝑡0) by integrating the obtained
vehicle speed predictions

�̂�2(𝑡|𝑡0) = 𝑥2(𝑡0) +

t∫︁
t0

𝑣2(𝜏 |𝑡0)𝑑𝜏,

𝑑(𝑡|𝑡0) = 𝑑(𝑡0) +

t∫︁
t0

[𝑣1(𝜏 |𝑡0)− 𝑣2(𝜏 |𝑡0)] 𝑑𝜏.

The simplest vehicle speed prediction model assumes that
both vehicles perfectly follow their desired speed set by
the ACC. In that case, vehicle speed predictions are taken
to be constant and platoon merging time and distance
predictions are simply

𝑡m(𝑡0) =
𝑑(𝑡0)− 𝑑PL
𝑣2 − 𝑣1

,

�̂�m(𝑡0) = (𝑑(𝑡0)− 𝑑PL)
𝑣2

𝑣2 − 𝑣1
,

(4)
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where 𝑣1 = 𝑣1 = 𝑣1,ref , 𝑣2 = 𝑣2 = 𝑣2,ref .

However, due to the changing road grade, traffic conditions
and other exogenous effects, vehicle speeds will change. It
has already been shown that even if there is no influence of
traffic, even the mean speed deviation will be different for
different vehicles (Fig. 1). Therefore, the prediction can be
improved by incorporating 𝑣1 and 𝑣2 in (4) as mean speeds
during the catch-up phase for the training set of the given
experiment scenario.

Somewhat better results can be obtained by modelling
the vehicle speed deviation from its nominal value as a
piecewise linear function of the moving average of road
grade �̄�k,

𝑣i,k = 𝑣i,ref + 𝑣i,ref ·
{︂
𝑘i,α+

�̄�k �̄�k ≥ 0

𝑘i,α− �̄�k �̄�k < 0,
(5)

where 𝑘i,α+ and 𝑘i,α− are parameters that multiply posi-
tive and negative �̄�k respectively. We use different coeffi-
cients for positive and negative grades because the vehicles
are affected differently by uphill and downhill slopes, and
the distance over which we average road grade is deter-
mined empirically. It should be noted that this model
only works when vehicle speed stays close to the reference
speed, i.e. when there are no long uphill slopes.

Finally, we obtain vehicle speed predictions 𝑣k = 𝑣(𝑠k) as
a function of vehicle positions by using a neural network
model of the propulsive force (2) in (3). The current
position of the follower vehicle, 𝑥2(𝑡0) is taken as the
starting point and 𝑣i,0 = 𝑣i(𝑡0).

Assuming vehicle speed is constant on a road segment
[𝑠k, 𝑠k+1), vehicle speed predictions in time domain are

𝑣i(𝑡|𝑡0) = 𝑣i,k, 𝑡i,k ≤ 𝑡 < 𝑡i,k+1,

where 𝑡i,k are times at which the vehicle 𝑖 reaches
𝑥 = 𝑘 ·Δ𝑠,

𝑡i,k =

k∑︁
j=1

Δ𝑠

𝑣i,j
.

Another prediction algorithm was proposed in Liang
[2016]. There, platoon merge distance estimates are ob-
tained from a linear regression model

�̂�m(𝑡0) = 𝑝1 + 𝑝2𝜌+ 𝑝3 (𝑑(𝑡0)− 𝑑PL)
𝑣2

𝑣2 − 𝑣1
, (6)

where 𝜌 is the average traffic density, 𝑝1, 𝑝2 and 𝑝3 are
regression parameters, 𝑝3 is multiplied by the nominal
platoon merging distance. In this model, only the influence
of traffic density is considered.

4.2 Speed Prediction Model Training

We used the vehicle speed data from the experiments to
train the two proposed vehicle speed prediction models,
the neural network approximation model (2)–(3) and the
simple road grade moving average piecewise linear model
(5). Roughly half of the experiment data was used for
training and the rest was used for testing, and only the
test runs which resulted in successful platoon formation
were considered. Models for the leader and the follower
vehicle speed prediction were trained independently.

Several neural network structures were tested, and best
results were acquired using a neural network with two

hidden layers with five and three nodes and hyperbolic
tangent sigmoid activation functions. The output of the 𝑙-
th hidden layer of neurons is given by an 𝑛(l)-dimensional
column vector

𝑥(l) = 𝜎(l)

(︂
𝑊 (l)

[︂
1

𝑥(l−1)

]︂)︂
,

where 𝜎(𝑠) is the activation function that is applied
elementwise and 𝑊 (l) is the 𝑛(l) × (𝑛(l−1) + 1) weights
matrix. The output of the neural network is

𝑦 = 𝑊 (L)

[︂
1

𝑥(L−1)

]︂
.

The output of the neural network is thus a nonlinear
function of its inputs, 𝑦 = 𝑓w(𝑥

(0)), parametrized by its
weight matrices 𝑊 (l), 𝑙 = 1, 2, 3, which are trained using
a back-propagation algorithm.

Input and target data for both neural networks are

𝑥
(0)
k = [𝑣k − 𝑣ref 𝛼k]

>
,

𝑦k =
𝑣2k − 𝑣2k−1

2𝑑𝑠
+ 𝑔𝛼k.

By adopting this simple model, we assume that the be-
haviour of the vehicles only depends on local road to-
pography. This allows us to use this model on any road
segment whose topography is represented in the training
data. Since highways in general follow similar topographic
guidelines, most highways should be covered, except for
road segments with long uphill or downhill slopes, which
were not present in the training data. To enable generaliza-
tion to these road segments, more data would need to be
collected by running more experiments on different roads.
Most often, however, the deviations in behaviour are due
to the influence of traffic conditions, which are not covered
by this model and must be addressed separately.

The training data from all three scenarios was considered
together, excluding data points if the distance between the
vehicles is smaller than 200 m, vehicle speed differs from
the goal speed by more than 10 km/h or the distance from
the start is less than 200m. These data points are excluded
in order to avoid speed changes that occur during the final
platoon merging maneuver or if the vehicle is forced to
brake, and to give the follower vehicle enough time to reach
its goal speed. Finally, to reduce computational effort,
the trained neural networks are implemented as look-up
tables. Values of 𝐹p/𝑚 are shown in Fig. 3. We can see
that in general, applied propulsive force will increase with
road grade and vehicle speed deviation. This increase is
faster around the origin (𝑣 ≈ 𝑣ref , 𝛼 ≈ 0) and it gets slower
for larger speed discrepancies and road grades because the
engine power is limited.

For the road grade moving average piecewise linear model
we have four linear regression equations of the form

𝑣k − 𝑣ref
𝑣ref

= 𝑘m,α± �̄�k,

one for uphill (𝛼+) and one for downhill (𝛼−) slopes
for each vehicle. Here, road grade is averaged over
400 meters and the values of the regression parame-
ters are 𝑘1,α+ = −1.28, 𝑘1,α− = −1.81 for the leader and
𝑘2,α+ = −0.32, 𝑘2,α− = −0.73 for the follower vehicle. We
can see that the speed of both vehicles is more affected
by downhill slopes than uphill slopes. The effect is more

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3786



Table 1. Comparison between the predicted merge distance errors for different models.

Constant vref Constant mean v Linear regression Grade moving average Neural network
Test-scenario RMSE STD RMSE STD RMSE STD RMSE STD RMSE STD
(75,85)km/h 1492.65 704.58 1275.65 700.42 1062.09 663.22 814.51 700.49 678.65 579.22
(75,89)km/h 1386.28 948.91 1289.35 952.21 1077.51 937.26 1060.23 956.22 865.83 829.03
(80,89)km/h 1658.93 837.86 1287.53 870.10 1231.15 832.36 975.07 861.52 835.46 786.28
Total 1516.22 855.45 1284.41 851.30 1127.10 835.14 959.11 846.51 800.49 741.33

(a) Leader

(b) Follower

Fig. 3. 𝐹p/𝑚 as a function of 𝑣− 𝑣ref and 𝛼 for the leader
and the follower vehicle.

pronounced on the leader vehicle, since it is significantly
heavier than the follower vehicle.

5. EXPERIMENTAL RESULTS

Platoon merging distance prediction based on the two
proposed vehicle speed prediction methods is evaluated
using the test data set, and compared with the results
obtained using the linear regression model (6) from Liang
[2016]. The comparison is summed up in Table 1 and
box plots of relative errors are shown in Fig. 4. The
relative error is defined as the ratio between the distance
prediction error and the actual platoon merging distance.
Also shown are naive estimates according to (4), assuming
vehicle speed is constant. We can see that the neural
network based approach shows consistently better results,
with the smallest root mean square error and standard
deviation. The grade moving average method achieves
results comparable to those given by linear regression (6).

Once the future speed profile is predicted, it is easy to
adopt some empirical criterion for recalculating the pla-
toon merge distance predictions. This enables us to only
recalculate speed profile predictions when the measured
speed deviates from its predicted value due to some distur-
bances or model mismatch, instead of recalculating them
periodically. The results of applying one such recalculation
criterion for one test run are shown on Fig. 5. Here,
recalculations were done at most once per 400m, when
speed deviations are more than 3 km/h. The speed of
the follower vehicle will be recalculated twice, once at
𝑥2 = 600m and another time at 𝑥2 = 1020m. We can
see that recalculating the speeds improves the platoon
merging distance prediction, from approximately 393 m
(4.12% of the current remaining distance) at the start of
the test run to 170 m (1.9%) after 600m, and down to 70m
(0.8%) after another 420m.

The neural network model predicts nominal vehicle speeds
reasonably well in nominal conditions (Fig. 2). However,
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Fig. 4. Box plots of relative platoon merge distance pre-
diction errors.
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Fig. 5. Recalculated merge distance predictions.
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the vehicles will often deviate from their nominal be-
haviour, resulting in larger discrepancies between the pre-
dicted and actual speed and causing outliers in merging
distance prediction. Most often, we cannot be sure what
caused the deviation. In a number of test runs, the cruise
control goal speeds were set wrong, and a vehicle drove
slower or faster than intended. The nominal downhill speed
control offset, set to 5 km/h, was exceeded in some test
runs (clearly visible on Fig. 2), and in some other test
runs, the offset was reduced to 3 km/h. Apart from these
situations, the traffic conditions are the most likely cause
of larger deviations from nominal vehicle behaviour, espe-
cially when the nominal speed of the vehicles was close to
the speed limit. Additionally, there is an on and off-ramp
approximately in the middle of the road stretch, which will
often cause a drop in the follower vehicle speed even for
medium traffic densities. This effect is especially noticeable
if the lead vehicle has just passed the ramp at the time the
follower vehicle approaches it.

The box plots (Fig. 4) show that the mean error for all
methods is negative, i.e., all methods on average predict
that the platoon will merge sooner than it actually does.
The neural network speed model gives the smallest median
and mean relative errors, −3% and −4%, respectively. This
bias effect can be explained by the influence of traffic
conditions. In general, the influence of the surrounding
traffic conditions on HDVs is hard to see when the speed
of the vehicles is much lower than the average speed on
the road. In the first test-scenario, the follower vehicle was
driving with nominal speed of 85 km/h, while the speed
limit on the road was 100 km/h, and the road grade was the
main cause of its speed deviation. In two other scenarios,
the influence of traffic conditions was much more apparent,
resulting in larger root mean square errors (835.46 and
865.83 versus 678.65).

6. CONCLUSION

In this paper, we have examined how the changing road
grade affects the catch-up phase of two HDVs attempting
to form a platoon while driving on a highway. The vehicles
were driving with cruise control and downhill coasting
control, and with different desired speeds. A method for
predicting the platoon merging distance based on vehicle
speed predictions taking into account road topography was
proposed. The speed prediction was done using a neural
network model of net propulsive force, which was trained
on experiment training data set. The proposed method
was tested on experimental data, showing a reduction in
prediction errors when compared to other methods. We
did not consider the influence of traffic conditions, and we
see better results when the traffic on the road is less dense.
The prediction works better when the desired vehicle speed
is lower, since then the vehicle is less susceptible to the
influence of traffic around it.

It is clear that traffic conditions play a major role in the
platoon merging phase, and that they cannot be ignored
if we want to make a good merging distance prediction.
The algorithm given in this paper can be used to isolate
the influence of road grade, in order to make it easier to
investigate the influence of traffic conditions. The driver
behaviour also influence the HDVs, and phenomena such as

persistent drivers need to be considered when attempting
to form a platoon in traffic. We did not consider look-
ahead cruise control, which would lead to a different,
net propulsive force model. Investigating these, and other
effects is left for future work.
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