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Abstract—In this work we have analyzed the effects of
correlations between failures of power lines on the total
system load shed. The total system load shed is determined
by solving the optimal load shedding problem, which is
a TSOs best response to a network failure. We have
introduced a Monte Carlo framework for estimating the
statistics of the system load shed as a function of stochastic
network parameters, and provide explicit guarantees on
the sampling accuracy. This framework has been applied
to a 470 bus model of the Nordic power system and a
correlated Bernoulli failure model. It has been found that
increased correlations between Bernoulli failures of power
lines can dramatically increase the expected value as well
as the variance of the system load shed.

I. INTRODUCTION

Power systems are among the largest and most com-
plex dynamical systems created by mankind. Although
power systems are carefully designed by experts, the
dynamics of these systems is not yet fully understood
as a consequence of the complexity and scale of the
systems. Security and vulnerability of power grids is
a increasing concern raised by several researchers [1],
[2]. Since many vital functions in society, such as
transportation, health care and communications rely on
electricity supply, the security of the power grid is at
east as important as these vital functions. Core functions
of the power transmission system, such as the energy
management system (EMS), are controlled by SCADA
systems. SCADA systems in general are known to pos-
sess security flaws, making them vulnerable to deliber-
ate attacks [3], [4]. These security flaws are inherited
by any system which deploys SCADA, in particular
power transmission systems. To mention one particular
example, it has been discovered that stealthy deception
attacks can be performed against state estimators of
power systems [5]. While the consequences of such
deception attacks is not known yet, it clearly justifies
concerns about the security of power systems. Research
on characterizing optimal attack and defense strategies
has gained momentum over the past years. In [6], [7] the
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optimization problem of maximizing the power outage,
for a given number of power transmission lines that
an adversary is capable of disconnecting is considered.
The system operator is assumed to take the best action
to minimize the damage in form of compulsory load
shedding. The problem formulation naturally gives rise
to a minimax optimization problem. Because of the non-
convexity and the existence of integer variables, the
problem is inherently hard to solve for large systems.

Due to the unpredictable nature of power grids, many
events governing the reliability of these systems are by
nature stochastic, e.g. demands and generation. Various
stochastic and sampling based methods for evaluating the
reliability of power systems have been developed to deal
with the stochastic nature of modern power systems [8],
[9], [10], [11]. However, to our best knowledge, none
of these methods attempt to model correlated failures
of power system components, nor consider the security
aspects of such failure distributions.

This work aims at studying the effects of increasing
correlations between failures of power system compo-
nents. In particular, we consider a Bernoulli model of
correlated power line failures. We evaluate the impact of
correlations between failures by the covariances between
the failures. From a security perspective, our research is
motivated by the belief that deliberate attacks against
key components of power systems will typically target
multiple components simultaneously, thus causing cor-
relation among failures [12], [13], [14]. We measure
the impact of a system failure by the minimal system
load shed required to restore the system to a safe state.
This formulation naturally gives rise to an optimization
problem, which under some conditions can be made
linear. For different values of the correlations of the
failure distribution, we compute the sampled statistics of
the total system load shed by Monte Carlo techniques,
and provide guarantees on the convergence rate of these.
In particular, we use a weighted sum of the mean and
variance of the total system load shed as a risk measure
of the failure statistics. To obtain statistical data from a
realistic power system, we apply our concept to a full-
scale model of the Nordic power system, acquired from
publicly available sources. We have found that increasing



correlations between Bernoulli failures of power lines
lead to increased expected value and variance of the
system load shed.

The rest of the paper is organized as follows. In Sec-
tion II the optimal load shedding problem is presented
and the total system load shed is defined. In Section
III a Monte Carlo sampling technique is presented. A
novel model of the Nordic power system is presented
and evaluated in section IV. In Section V we analyze
the impact of correlated failure statistics on the Nordic
power system, followed by concluding remarks in Sec-
tion VI.

II. OPTIMAL LOAD SHEDDING

When a power system suffers a fault or any other con-
tingency, power flows have to be reallocated to withstand
the fault. If the fault is severe, some loads will have to be
reduced in order to safely operate the power system. The
procedure of reducing loads in a power grid is referred
to as load shedding, and used extensively in the control
of power systems [15], [16]. The related optimal load
shedding problem seeks to minimize the necessary load
shed, and is a well-studied problem [17].

In this section we derive the linear optimal load
shedding problem, which is a form of an optimal power
flow problem. For simplicity and for the sake of illustrat-
ing our methods, we consider only active power flows
without energy losses in the power lines. The real power
flow equations are [18]:

P line = V lineB sin (Aθ) (1)

where P line is a vector of active power flows in the
transmission lines, V line = diag

([
ViVj

])
where Vi is

the voltage of bus i, B = diag(bij) where bij is the
admittance of the power line from node i to node j, θ
is the vector of bus phase angles and A is the vertex-
edge incidence matrix of the graph of the power system,
defined as Aij = 1 iff ei = (vj , u) ∈ E, Aij = −1
iff ei = (u, vj) ∈ E and Aij = 0 otherwise. Here
sin(x) =

[
sin(xi), . . . , sin(xn)

]T
for a vector x. By only

considering sufficiently small phase angle differences,
i.e. ∆θmax = ‖Aθ‖∞ being sufficiently small, we may
linearize equation (1) around Aθ = 0;

P line = V lineBAθ (2)

By summing the power flows to each bus, we get the
linearized equation for the net power flows into the
buses;

P = ATV lineBAθ =: LBθ

where P is a vector of real power injections to the
buses. Note that LB can be interpreted as a weighted
Laplacian matrix of the graph associated with the power
system, with weights corresponding to the line admit-
tances times the bus voltages. We may assume, wlog,

that the buses of the power system are partitioned such
that P =

[
P g, P l

]T
, where P g are generation buses and

P l are load buses. We consider the optimization problem
of the transmission system operator (TSO) of minimizing
the total load shed of the system. The optimal load
shedding problem can, for the linearized power flow
equations, be formulated as a linear Program (LP);

min
θ

cT θ (3)

s.t. Cθ � d (4)

where

C =



V lineBA
−V lineBA

HgLB
−HgLB
HlLB
−HlLB

A
−A


d =



P linemax

P linemax

P gmax
0ng×1

0nl×1

−P ld
∆θmax · 1np×1

∆θmax · 1np×1


(5)

and
c =

[
01×ng 11×nl

]
LB (6)

Hg =
[
Ing×ng 0ng×nl

]
Hl =

[
0nl×ng Inl×nl

]
(7)

and where ng , nl and np denotes the number of generator
buses, load buses and power lines respectively, and
0 < ∆θmax ≤ π

2 is a sufficiently small real number for
which the linearized power flow equation (2) is a valid
approximation. The matrix inequality in equation (4)
combines line capacity constraints

(
|P line| � P linemax

)
,

power generation constraints (0 � P g � P gmax), power
load constraints

(
P ld � P l � 0

)
and phase angle con-

straints
(
|Aθ| � θmax · 1

)
. The objective function cT θ is

the sum of the power injections from the demand buses,
which is a linearly affine function of the total system
load shed. It is easily shown that the minimum total load
shed S∗(C, d), which is the difference between the total
power demand and total delivered power, is given by

S∗(C, d) = min
θ

{
cT θ|Cθ � d

}
− 11×nl · P ld (8)

III. STATISTICS OF POWER SYSTEM FAILURES

In this paper we will consider stochastic failures of
the power system, as in e.g. [8], [9]. To demonstrate
the generality of our methods, we will not yet make
any prior assumptions about these failures. Consider the
matrices C and d as random variables, endowed with a
probability measure µC × µd. Since both the topology
and load parameters of the power system are determined
by C and d, such a probability measure can represent
any type of failures of the power system. It can be seen
that for any probability measure µC ×µd, the minimum
total load shed S∗(C, d) is also a random variable. Since



the optimal load shedding is the best response to any
contingency, S∗(C, d) can be interpreted as a minimax
cost in the case of adversarial attacks. The total load
shed is a commonly used measure of the severeness of
a power system outage [10], [11].

Because 0 ≤ S∗(C, d) ≤ −
∑
P ld, as seen from

equation (4), the mean S̄∗ and variance σ2
S∗ of S∗(C, d)

always exist and are finite. We will use S̄∗ + α · σS∗ as
a risk measure for the distribution µC × µd. To see that
this risk measure makes sense, we will show that it is
closely related to the commonly used risk measure value
at risk (VaR), which for a random variable X is defined
as follows [19]:

VaRα(X) = inf{l ∈ R : Pr(X > l) ≤ 1− α}

The intuition of the expression VaRα(X) is that the
maximum loss, in our case system load shed, is bounded
by VaRα(X) with probability 1−α. One serious compu-
tational drawback with using VaR on sampled probabil-
ity distributions, is that it requires knowledge of the full
probability distribution of the random variable X . When
dealing with samples of random variables, estimating
VaR becomes hard since it requires estimation of the
tail of the distribution X . The following proposition
shows that one can always bound VaRα(X) with a linear
combination of the mean and the variance of X:

Proposition 1. The risk measure value at risk (VaRα)
satisfies

VaRα(X) ≤ X̄ +
1√
α
· σ

The proof is given in the appendix. Even though we
have showed the existence and finiteness of S̄∗ and
σ2
S∗ , obtaining analytical closed form expressions for

these quantities in terms of C and d is in general not
possible. We will therefore use Monte Carlo techniques
to estimate these quantities. By drawing N samples
from the distribution µC × µd, we obtain the following
approximations of S̄∗ and σ2

S∗ ;

S̄∗ ≈ Ŝ∗ =
1

N

N∑
i=1

S∗(Ci, di) (9)

σ2
S∗ ≈ σ̂2

S∗ =
1

N − 1

N∑
i=1

(
S∗(Ci, di)− Ŝ∗

)2

(10)

Due to S∗(C, d) being bounded, Ŝ∗ and σ̂S∗ are guar-
anteed to converge to S∗ and σS∗ respectively.

Proposition 2. Given ε > 0, δ > 0, the number of
samples N1 and N2 which assure that

Pr

[∣∣∣Ŝ∗,N1 − S̄∗
∣∣∣ ≥ ε] ≤ δ

Pr
[
|σ̂S∗,N2 − σS∗ | ≥ ε

]
≤ δ

are

N1 ≥

⌈
Ŝ2

4δε2

⌉
N2 ≥

⌈
Ŝ4

8δε4

⌉
Proof: Follows by lemma 3 and lemma 5 in the

appendix, and the fact that 0 ≤ S∗(C, d) ≤ −
∑
P ld.

With proposition 2 we have guaranteed bounds of the
estimation error of both the sampled expected value and
the sampled variance of the load shed. The proposition
can of course be used in the reverse direction. For given
numbers N1 and N2, we can obtain bounds on the
numbers δ and ε. With these explicit bounds on the error
of the estimated mean and variance of the load shed, the
number of samples can be chosen according to given
accuracy requirements, and trade-offs between accuracy
and the number of samples can be easily made a priory.
The above propositions are the main theoretical founda-
tion for the deployment of Monte Carlo techniques to
estimate the statistics of the load shed.

IV. MODEL OF THE NORDIC POWER SYSTEM

In this paper, we will construct a model of the
Nordic power transmission network to demonstrate our
techniques. While IEEE standard power systems offer
great transparency for research and can function as
benchmark systems, we believe that it is important to
demonstrate our concepts on real power systems. A
problem with real power systems however is that TSOs
in general are very restrictive with releasing information
about their systems, or their internal network models,
due to concerns that the data might be used for attack
synthesis. To overcome the unavailability of data from
the Nordic grid, we have built an approximate model of
the Nordic power system, using only publicly available
data. While there have been similar efforts to model
other interconnected power systems, such as the main
European power grid [20], there are no known complete
models of the Nordic power system that are publicly
available.

A. Collecting network data

The topology of the power system. i.e. the geograph-
ical positions of the main 400, 300, 220 and 132 kV
power lines and HVDC links in the Nordic countries
were obtained from the respective TSOs websites. The
data obtained included the coordinates of the power
buses, the connectivity of the buses through power lines,
the voltage of the power lines and the number of parallel
power lines, if applicable. The complete model has a
total of 470 buses and 717 power lines. Information
about all power generation facilities with capacity of at
least 100 MW were also acquired from public sources.
We have made the assumption that the remaining thermal
power generation of power plants with generation less
than 100 MW is located in populated areas, and hence
proportional to the population in the demand buses. For



the remaining wind power capacity we have assumed
that the wind power generation is uniformly distributed
over the land surface, and hence over the nodes.

B. Estimating power demand data

There is no available electricity demand data, other
than cumulative data for the Nordic countries. This data
is much to rough to be useful for our 470 node model.
Following [20] we have used population census data to
estimate the power demand. This methodology relies on
the basic assumptions that household power demand is
proportional to the population connected to a substation,
as well as Industry power demand, since the workforce
will settle relatively close to industries.

We collected population statistics from the Bureau of
Statistics of the respective countries. We have collected
population statistics for the major administrative regions
of each country, and assumed that the demands are dis-
tributed uniformly over the non-generator buses within
each region. The number of administrative regions in
each country was between 12 and 21. Using smaller
regions would introduce difficulties in assigning the right
population to each substation. To estimate the power
demands, both the yearly average and yearly maximum
of the daily maximum power consumption were used to
create two different load situations. The power lines and
buses of the Nordic power grid are illustrated in figure
1.

Production node

Demand node

400 kV power line

300 kV power line

220 kV power line

132 kV power line

Figure 1. Model of the Nordel high voltage power transmission
network. The circle area of the production and demand nodes are
proportional to the production and demand respectively.

Production node

Demand node

400 kV power line

300 kV power line

220 kV power line

132 kV power line

Figure 2. Model of the Nordel high voltage power transmission
network in Denmark.

C. Estimating power line parameters

The only known parameters of the power lines ob-
tained from public sources are the line voltages. To solve
the optimal load shedding problem, also the line admit-
tances as well as the maximum transmission capacities
of each line need to be known. Neither of these are
however in any form published by the TSOs. However,
the admittances of power lines can be estimated by
the length of the power line. Typically the reactance of
high voltage power transmission lines is approximately
0.20 Ω/km [21]. The lengths of a power line from a
bus with coordinates x to a bus with coordinates y is
estimated by the euclidean 2-norm as l = dist(x, y) =
‖x− y‖2 which is always an underestimate of the actual
line lengths. As for estimating transmission capacities,
only cross-border transmission line capacity constraints
are available from the Nordic TSOs. The transmission
capacity of each power line of equal voltage is assumed
to be the average capacity of the cross-border lines,
which are shown in the table below.

Voltage Capacity
400 kV 1030 MW
300 kV 650 MW
220 kV 415 MW
132 kV 143 MW

Figure 3. Estimated transmission line capacities.

D. Evaluating the model

The optimal load shedding problem was applied to the
above derived model of the Nordic power transmission
grid. By using the YALMIP [22] interface with the
GLPK [23] LP solver in MATLAB [24], the optimal
load shedding problem was solved. When solving the
linear optimal load shedding problem with the yearly
maximum loads, the total system load shed is found to



be only 2 % of the total power demand. All buses with
load shedding could be deduced to buses connected to
200 kV lines in the area of Stockholm, and to buses
in northern Norway connected to 132 kV lines. To
overcome these transmission bottlenecks, the capacity of
the two power lines in Norway, and five power lines in
Sweden, connected to the buses with load shedding were
increased. The capacity of the critical lines was increased
in steps of 5 MW equally for all the critical lines within
each region, until no load shedding was necessary. By
these adjustments, the capacity of the power lines in
northern Norway was increased from 143 MW to 300
MW and the capacity of the power lines in Stockholm
was increased from 415 MW to 600 MW. With these
measures taken, no load shedding was necessary. To
evaluate the model further, we examine if it satisfies the
N − 1 criterion, i.e. if the network is fully functional
after the disconnection of any single power line. For the
evaluation of the N − 1 criterion, we used the yearly
average of the daily maximum loads. For each N − 1
contingency, the optimal load shedding problem was
solved, and the resulting load shed was calculated. There
were 51 power line failures that resulted in system load
shed, but none which result in a total load shed of more
than 1.6 %. Most of these contingencies were dead-
end lines, who’s removal necessarily results in system
load shed of the end bus. Also, since no single line
contingency caused considerable damage to the system,
other than local, the N − 1 criterion was considered to
be essentially satisfied.

V. SIMULATIONS OF CORRELATED SYSTEM FAILURES

In this section we examine the effects of correlated
system faults on the statistics of the minimum total
system load shed. Our results are motivated by the
belief that adversarial faults in general have stronger
correlations than reliability faults [12], [13], [14]. Hence
we will examine the effects of increasing correlations
on the mean and variance of the system load shed. In
the following empirical study we will consider failures
in the form of power line disconnections. We model the
disconnection of power line i as a binary random variable
Xi ∈ {0, 1} where Xi = 0 represents to line i being
fully functional with all parameters set to default, and
Xi = 1 represents line i being disconnected, i.e. the
admittance of line i being 0. Thus, the failure statistics
of the whole power system are given by

P (X1 = Y1, . . . , Xnp = Ynp) ∀ Yi ∈ {0, 1}

Since parameterizing the full joint Bernoulli distribution
would require nnp ≈ 10216 variables, we will only
consider the joint Bernoulli distribution with the first two
central moments given explicitly, i.e.

X̄i = E[Xi] ∀i ∈ {1, . . . , np}
σij = E

[
(Xi − X̄i)(Xj − X̄j)

]
∀ (i, j) ∈ {1, . . . , np}2

which requires only n2
p + np = 519120 variables. To

consider the effects of increasing correlations X̄i = 0.02
is kept constant, while σij is increased. First we consider
the scenario where σij is increased equally for all
(i, j) ∈ {1, . . . , np}2. σij is increased from 0 to 0.016 in
steps of 0.004. For each step, 1000 Monte Carlo simula-
tions are performed with a Bernoulli sampling algorithm
described in [25] to acquire sampled approximations of
S̄∗ and σS∗ . By proposition 2 the relative error of Ŝ∗ is
guaranteed to be less than 7 % with certainty 95 %. The
result of the sampling are shown in figure 4. Clearly σX∗

is increasing in σij , but also S̄∗ is increasing in σij . We
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X
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Figure 4. Expected value and standard deviation (MW) of the total
load shed for different covariances for all power lines.

also consider the case where only the failure statistics of
incident power lines are correlated. Let σij be increased
from 0 to 0.016 in steps of 0.004 if and only if the power
lines i and j are connected to the same bus, otherwise
σij = 0. X̄i = 0.02 is again kept constant. The results of
the sampling are shown in figure 5. Clearly both S̄∗ and
σS∗ are increasing in σij , and the effect of increasing
correlations in X on S̄∗ is much higher than when
the correlation is increased for all power lines. Thus,
by the common belief that security failures are more
correlated than other failures, security induced failures
will typically have higher expected cost and higher
variance, even though the expected value of the failure
probabilities are constant. Nevertheless, it is easy to find
counterexamples where increased correlations between
power line failures decrease the expected load shed. The
simplest possible counterexample is a 3-node and 2-line
power network shown in figure 6. Let the demand node
have demand −d̄, and the generation node a capacity
ḡ ≥ d̄, and the line parameters such that the demand
is satisfied under normal operation. It can be shown
that the expected load shed of the system is 1 − σ12,
where σ12 is the covariance between the failures of node
1 and 2. The intuition behind this counterexample is
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Figure 5. Expected value and standard deviation (MW) of the total
load shed for different covariances for power lines connected to the
same bus.

that while the probability of both lines failing increases,
the probability of each failing individually decreases,
with the result that the total probability of any line
failing decreases. We here state sufficient conditions

g n dl1 l2

Figure 6. Topology of a 3-node, 2-line power network where increased
correlations between system failures result in decreased system load
shed. g is a generation bus, d a demand bus and n neither a demand
nor generation bus.

under which increased correlations of power line failures
imply increased expected load shed.

Proposition 3. Let the power system satisfy the n − k
criterion, i.e. the disconnection of any k power lines does
not induce any necessary load shedding. Furthermore,
assume that all contingencies with at least k + 1 line
failures induce a total system load shed c̄. Assume, wlog,
that the moment φ1,...,k+1 = E[X1 · . . . ·Xk+1] increases
by ∆φ, but all other moments E[Xi1 · . . . · Xil ] are
constant. Then

1) The central moment σ1,...,k+1 =
E
[
(X1 − X̄1) · . . . · (Xk+1 − X̄k+1)

]
also

increases by ∆φ.
2) All other central moments of order less than or

equal to k + 1 remain constant.
3) The expected load shed S̄∗ increases by c̄ ·∆φ.
4) If the probability of necessary load shedding al-

ways remains less than 1/2 when φ increases,
the variance of the load shed, σS∗ , increases by
ĉ2 ·∆φ, where 0 < ĉ ≤ c̄.

A proof is given in the appendix. The following
corollary follows directly from proposition 3.

Corollary 1. Assume that all conditions of proposition
3 still hold, except that all contingencies with at least
k+ 1 line failures induce a system load shed of at least
c̄. In this case the results of proposition 3 hold instead
for the lower bound S∗ ≤ S∗ of the system load shed,
which is the total system load shed assuming all line
failures result in the same system load shed c̄.

VI. CONCLUSIONS

In this work we have demonstrated that increased
correlations between power line failures can dramatically
increase the expected costs in terms of system load shed,
although the expected value of the failure probabilities
is kept constant. Furthermore we have demonstrated that
increased correlations between power line failures can
also increase the variance of the system load shed, thus
increasing the risk of large system load sheds. We have
demonstrated our results by simulating correlated power
line failures in a model of the Nordic high-voltage power
grid. We have furthermore provided sufficient conditions
under which the mean and the variance of the total
system load shed increase with increasing correlation
between line failures.

In many situations, cascading failures further aggra-
vate the state of a partially failing power system, leading
to even larger losses. In future work, it would be of
interest to consider the impact of correlated failures
under power system dynamics, to also capture possible
cascading failures. Also, it would be interesting to study
if the conditions under which the expected value and
the variance of the load shed are increasing in the
correlations, can be relaxed.
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APPENDIX

Proof: (of proposition 1) Note that

VaRα(X) ≤ X̄ +
1√
α
σ ⇔

Pr

(
X < X̄ +

1√
α
· σ
)
≥ 1− α

which is easily shown using Chebyshev’s inequality

Pr

(
X < X̄ +

1√
α
· σ
)
≥

Pr

(∣∣X − X̄∣∣ < 1√
α
· σ
)

=

1− Pr

(∣∣X − X̄∣∣ ≥ 1√
α
· σ
)
≥ 1− α

Lemma 2. The variance of a random variable X with
compact support [a, b] is bounded by:

Var[X] ≤ (b− a)2

4

Proof: Consider the random variable defined by
Y = X − a+b

2 . By basic probability theory we have

Var[X] = Var[Y ] = E[Y 2]−
(
E[Y ]

)2
≤
(
b− a

2

)2

=
(b− a)2

4

Lemma 3. Let X̂N = 1
N

∑N
i=1Xi be the sampled mean

of the RV X with N samples. Let X have compact
support on [a, b], then for any given ε > 0, δ > 0

Pr

[∣∣∣X̂N − X̄
∣∣∣ ≥ ε] ≤ δ

for

N ≥

⌈
(b− a)2

4δε2

⌉
Proof: Since the samples are iid, we have

Var[X̂N ] = Var

 1

N

N∑
i=1

Xi

 =
1

N2
Var

 N∑
i=1

Xi


=
Nσ2(X)

N2
≤ (b− a)2

4N

By Chebyshev’s inequality we have

Pr

{∣∣∣X̂N − X̄
∣∣∣ ≥ ε} ≤ Var[X̂N ]

ε2
≤ (b− a)2

4Nε2
≤ δ

Lemma 4. Let σ̂XN
= 1

N

∑N
i=1

(
Xi − X̂N

)2

be the
sampled variance of the RV X with N samples. Let X
have compact support on [a, b], then for any given ε >
0, δ > 0

Pr

[∣∣∣σ̂2
XN
− σ2

X

∣∣∣ ≥ ε] ≤ δ
for

N ≥

⌈
(b− a)4

8δε2

⌉
Proof: By e.g. [26], the variance of the sampled

variance is given by

Var
[
σ̂2
XN

]
=

2σ4
X

N

By lemma 2, the variance Var[X] = σ2
X is bounded by

σ2
X ≤

(b− a)2

4



Thus, by Chebyshev’s inequality

Pr

[∣∣∣σ̂2
XN
− σ2

X

∣∣∣ ≥ ε] ≤ Var[σ2
XN

]

ε2
≤ (b− a)4

8Nε2
≤ δ

Lemma 5. Given ε > 0, δ > 0, we have for a random
variable X with compact support on [a, b]

Pr
[∣∣σ̂XN

− σX
∣∣ ≥ ε] ≤ δ

for

N ≥

⌈
(b− a)4

8δε4

⌉
Proof: By concavity of

√
·, Chebyshev’s inequality

and lemma 4

Pr
[∣∣σ̂XN

− σX
∣∣ ≥ ε] ≤ Pr

[∣∣∣σ̂2
XN
− σ2

X

∣∣∣ ≥ ε2]
≤

Var[σ2
XN

]

ε4
=

2σ4
XN

Nε4
≤ (b− a)4

8Nε4
≤ δ

Proof: (of proposition 3) The first part follows
directly, since:

σ1,...,k+1 = E
[
(X1 − X̄1) · . . . · (Xk+1 − X̄k+1)

]
=

E [X1 · . . . ·Xk+1]− X̄1 · E [X2 · . . . ·Xk+1] +

. . .+ (−1)k+1 · X̄1 · . . . · X̄k+1

The second part also follows directly by calculation.
Wlog, consider

σ1,...,l = E
[
(X1 − X̄1) · . . . · (Xl − X̄l)

]
=

E [X1 · . . . ·Xl]− X̄1 · E [X2 · . . . ·Xl] +

. . .+ (−1)l · X̄1 · . . . · X̄l

which is constant for all l ≤ k by the assumption that
all other moments E[Xi1 · . . . ·Xil ] are constant.

As for the third part, let k = 1 and consider a network
with 3 power lines. The expected value of the system
load shed is:

c̄ · (Pr[X1 = 1, X2 = 1] + Pr[X1 = 1, X3 = 1] +

Pr[X2 = 1, X3 = 1]− Pr[X1 = 1, X2 = 1, X3 = 1]) =

c̄ · (E[X1X2] + E[X1X3] + Pr[X2X3]− Pr[X1X2X3])

which increases by c̄ ·∆φ as E[X1X2] increases by ∆φ.
One can generalize this and show that for arbitrary k and
network size, the expected system load shed will still be
proportional to c̄ ·E[X1 · . . . ·Xk+1]. By the assumption
that all other moments E[Xi1 · . . . ·Xil ] are constant.

To prove the last claim, we denote ps = Pr[S∗ = c̄],
and pn = 1− ps = Pr[S∗ = 0]. By assumption ps < 1

2 .
For this case, the variance of the load shed is simply:

σS∗ = pn(0− S̄∗)2 + ps(c̄− S̄∗)2 =

pn(psc̄)
2 + ps(c̄− psc̄)2 = psc̄

2(1− ps)

The latter expression is increasing since

∂

∂ps
psc̄

2(1− ps) = c̄2(1− 2ps) > 0

for ps < 1
2 . Since 0 < ∂σS∗

∂ps
≤ c̄2, S̄∗ = c̄ps, S̄∗ =

constant+ c̄∆φ and

∆σS∗ =

∫ φ0+∆Φ

φ0

dσS∗

dφ1,...,k+1
dφ1,...,k+1

=

∫ φ0+∆Φ

φ0

∂σS∗

∂ps

∂ps
∂φ1,...,k+1

dφ1,...,k+1

=

∫ φ0+∆Φ

φ0

∂σS∗

∂ps
dφ1,...,k+1

it holds that

∆σS∗ =

∫ φ0+∆Φ

φ0

∂σS∗

∂ps
dφ1,...,k+1 > 0

∆σS∗ =

∫ φ0+∆Φ

φ0

∂σS∗

∂ps
dφ1,...,k+1

≤
∫ φ0+∆Φ

φ0

c̄2 dφ1,...,k+1 = c̄2∆φ
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