
IFAC PapersOnLine 55-13 (2022) 43–48

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.07.233

10.1016/j.ifacol.2022.07.233 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Private Stochastic Dual Averaging for
Decentralized Empirical Risk Minimization

Changxin Liu ∗ Karl H. Johansson ∗ Yang Shi ∗∗

∗ School of Electrical Engineering and Computer Science, KTH Royal
Institute of Technology, and Digital Futures, 100 44 Stockholm, Sweden

(e-mail: {changxin, kallej}@kth.se).
∗∗ Department of Mechanical Engineering, University of Victoria,

Victoria, B.C. V8W 3P6, Canada (e-mail: yshi@uvic.ca)

Abstract:
In this work, we study the decentralized empirical risk minimization problem under the
constraint of differential privacy (DP). Based on the algorithmic framework of dual averaging,
we develop a novel decentralized stochastic optimization algorithm to solve the problem. The
proposed algorithm features the following: i) it perturbs the stochastic subgradient evaluated
over individual data samples, with which the information about the dataset can be released
in a differentially private manner; ii) it employs hyperparameters that are more aggressive
than conventional decentralized dual averaging algorithms to speed up convergence. The upper
bound for the utility loss of the proposed algorithm is proven to be smaller than that of existing
methods to achieve the same level of DP. As a by-product, when removing the perturbation, the
non-private version of the proposed algorithm attains the optimal O(1/t) convergence rate for
non-smooth stochastic optimization. Finally, experimental results are presented to demonstrate
the effectiveness of the algorithm.

Keywords: Dual averaging, differential privacy, distributed optimization, convex optimization,
large scale optimization problems.

1. INTRODUCTION

In decentralized learning, multiple parties aim at training
machine learning models collaboratively. Compared to its
centralized counterpart, it potentially improves training
speed, scalability and robustness. Particularly, efficient op-
timization algorithms with local computation and peer-to-
peer message-passing lie at the core of such decentralized
frameworks. Existing approaches consist of decentralized
primal-dual algorithms (Jakovetic et al., 2011), consensus-
based gradient descent (GD) (Nedic et al., 2010), and
consensus-based dual averaging (DA) (Duchi et al., 2011;
Colin et al., 2016; Liu et al., 2021). The latter has demon-
strated its advantages in promoting sparsity (Xiao, 2009),
i.e., explicit feature selection, and handling time-varying
networks (Duchi et al., 2011). We focus on DA-based
methods in this work.

While the vast amounts of data in the modern society
have contributed to the development of high-performance
machine learning, they give rise to serious privacy concerns
(Fredrikson et al., 2015; Zhu and Han, 2020). For example,
it has been verified that the gradients used for training
disclose essential properties of the dataset (Bassily et al.,
2014), which may result in a reluctance to share useful
information. To this end, differential privacy (DP) has
been proposed to quantify to what extent the individual
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privacy in a dataset can be preserved while releasing useful
aggregate information about the dataset. Specifically, DP
provides rigorous statistical guarantees that the inclusion
of an individual in the dataset is almost indistinguishable.
Thanks to its powerful features, differentially private data-
releasing mechanisms, e.g., noise-adding, have been incor-
porated in some machine learning algorithms to preserve
privacy, e.g., empirical risk minimization (ERM) (Bassily
et al., 2014), principal component analysis (Chaudhuri
et al., 2012), federated learning (Agarwal et al., 2021), and
decentralized learning (Hale and Egerstedt, 2015; Huang
et al., 2015).

The DP constraint induces a tradeoff between privacy and
utility in learning algorithms. While a number of attempts
have been made to establish such a tradeoff in decentral-
ized learning, the obtained upper bounds are arguably not
tight enough. For example, Huang et al. (2015) developed
a differentially private decentralized GD algorithm by per-
turbing the local output with Laplace noise. Notably, the
learning rate is set exponentially diminishing such that
the sensitivity of the algorithm also decreases linearly. By
doing so, a summable sequence of privacy budgets can
be assigned to individual iterations, making the whole
iterative process ϵ-DP. However, such choice of learning
rate slows down the convergence dramatically and results
in a utility loss in the order of O(m/ϵ2), where m denotes
the dimension of the decision variable. Under the more rea-
sonable learning rate Θ(1/

√
t), the utility loss can be im-
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proved to O
(

4

√
mn2

ϵ

)
(Han et al., 2016), where n denotes

the number of nodes. Along this line of research, Zhu et al.
(2018); Xiong et al. (2020); Han et al. (2021) extended the
algorithm to time-varying objective functions, and Ding
et al. (2021) advanced the convergence to linear based on
an additional gradient-tracking scheme. In these works,
however, ϵ-DP is proven only for each iteration, leading to
a cumulative privacy loss of tϵ after t rounds of execution.
To tackle regularized learning problems, the alternating
direction method of multipliers (ADMM) has been used to
design decentralized algorithms with DP (Zhang and Zhu,
2016; Zhang et al., 2018a). However, an explicit tradeoff
analysis between privacy and utility was missing. Recently,
Xiao and Devadas (2021) investigated the privacy guar-
antee produced not only by random noise injection but
also by mixup (Zhang et al., 2018b), i.e., a random con-
vex combination of inputs. The utility-privacy tradeoff in
linearized ADMM and GD-based decentralized algorithms

were captured by the bound O
(

m√
nϵ

)
. However, there

still exists a substantial gap between the available bounds
for the decentralized and centralized algorithms (Bassily
et al., 2014). For example, a mini-batch version (a fixed
number n of training samples) of the results in (Bassily
et al., 2014), which corresponds to decentralized learning
over complete graphs, gives the much tighter utility bound

O
(

m log2(q/δ) log(1/δ)
q2ϵ2

)
to achieve (ϵ, δ)-DP, where q ≫ 1/ϵ

represents the quotient of total number of samples and
n. This observation naturally motivates an interesting
question. Is a comparable utility bound achievable for the
general decentralized setup? The main theme of the current
paper is to answer this question.

In this work, we consider the decentralized regularized
ERM problem, where each node has a convex, possibly
non-smooth, loss function defined by its own dataset and
shares the same strongly convex regularization term. Dif-
ferent from existing approaches, we perturb the stochas-
tic subgradient evaluated over a single data sample with
proper noise, based on which a private decentralized DA
(DDA) algorithm is developed. To obey (ϵ, δ)-DP, the
proposed algorithm bears utility loss in the order of

O(m log(1/δ)
q2ϵ2 ), which is significantly smaller than existing

decentralized algorithms with DP. We remark that, when
removing subgradient perturbation, the non-private ver-
sion of our algorithm improves the standard convergence
rate O(1/

√
t) of DDA (Duchi et al., 2011) to the optimal

rate O(1/t) for non-smooth strongly convex problems.

The rest of the paper is organized as follows. Section 2
formulates the problem and introduces some preliminaries.
Section 3 presents our algorithm and its theoretical prop-
erties. Finally, some experimental results are provided in
Section 4.

2. PRELIMINARIES

2.1 Basic Setup

Consider a decentralized network captured by an undi-
rected graph with weights: (N,W ). N = {1, . . . , n} de-
notes the set of n nodes. W ∈ [0, 1]n×n is a symmetric
doubly stochastic matrix, where the (i, j)-th entry wij

denotes the weight used by i when counting the message
from j. When wij = 0, nodes i and j are disconnected.
We denote the set of i’s neighbors by Ni := {j|j ∈ N \
{i}, wij > 0}.

Each node i possesses a local dataset Di = {ξ(1)i , . . . , ξ
(qi)
i }

that contains a finite number qi of data samples. The nodes
aim to cooperatively solve the following regularized ERM
problem

min
x∈Rm

{
F (x) :=

1

n

n∑
i=1

fi(x) + h(x)

}
, (1)

where

fi(x) =
1

qi

qi∑
j=1

li(x, ξ
(j)
i )

with the loss function li(x, ξi) measuring the accuracy of
the learned model (characterized by x) over each data

sample (denoted by ξ
(j)
i ). h(x) is a regularization term

with domain dom(h) := {x ∈ Rm|h(x) < +∞}.
Our goal is to solve Problem (1) in a fully decentralized
manner, while providing rigorous privacy guarantee for
each data sample in D := ∪i∈NDi.

2.2 Conventional DDA Algorithm

The non-private DDAmethod originally proposed by Duchi
et al. (2011) can be applied to solve Problem (1). In par-
ticular, let d be a strongly convex function with modulus 1
on dom(h). Each node, starting with zi(1) = 0, iteratively
generates {zi(t), xi(t)}t≥1 according to

xi(t) = argmin
x∈Rm

{⟨zi(t), x⟩+ t(h(x)) + γ(t)d(x)} (2)

and

zi(t+ 1) =

n∑
j=1

wij (zj(t) + ĝj(t)) (3)

where ĝj(t) ∈ ∂lj(xj(t), ξj(t)) with ξj(t) ∼u Dj , {γ(t)}t≥1

is a non-decreasing sequence of parameters, and wij is the
(i, j)-th entry of the mixing matrix W . Throughout the
process, each node passes zi to its immediate neighbors
and updates xi according to (2). For non-smooth convex
functions, the conventional DDA converges at O(1/

√
t)

(Duchi et al., 2011; Colin et al., 2016).

2.3 Differential Privacy

DP has been recognized as the gold standard in quanti-
fying the individual privacy preservation for randomized
algorithms. It refers to the property of a randomized algo-
rithm that the presence or absence of an individual cannot
be distinguished based on the output of the algorithm.
Formally, DP is defined as follows.

Definition 1. ((ε, δ)-DP). A randomized algorithm A :
D → R with domain D and range R satisfies (ε, δ)-DP
if for every pair of neighboring datasets D, D′ ∈ D, i.e.,
datasets that exactly differ in one entry, and for any subset
O ⊆ R we have

Pr[A(D) ∈ O] ≤ eεPr[A(D′) ∈ O] + δ.

If δ = 0, the mechanism is called ϵ-DP.
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proved to O
(

4

√
mn2

ϵ

)
(Han et al., 2016), where n denotes

the number of nodes. Along this line of research, Zhu et al.
(2018); Xiong et al. (2020); Han et al. (2021) extended the
algorithm to time-varying objective functions, and Ding
et al. (2021) advanced the convergence to linear based on
an additional gradient-tracking scheme. In these works,
however, ϵ-DP is proven only for each iteration, leading to
a cumulative privacy loss of tϵ after t rounds of execution.
To tackle regularized learning problems, the alternating
direction method of multipliers (ADMM) has been used to
design decentralized algorithms with DP (Zhang and Zhu,
2016; Zhang et al., 2018a). However, an explicit tradeoff
analysis between privacy and utility was missing. Recently,
Xiao and Devadas (2021) investigated the privacy guar-
antee produced not only by random noise injection but
also by mixup (Zhang et al., 2018b), i.e., a random con-
vex combination of inputs. The utility-privacy tradeoff in
linearized ADMM and GD-based decentralized algorithms

were captured by the bound O
(

m√
nϵ

)
. However, there

still exists a substantial gap between the available bounds
for the decentralized and centralized algorithms (Bassily
et al., 2014). For example, a mini-batch version (a fixed
number n of training samples) of the results in (Bassily
et al., 2014), which corresponds to decentralized learning
over complete graphs, gives the much tighter utility bound

O
(

m log2(q/δ) log(1/δ)
q2ϵ2

)
to achieve (ϵ, δ)-DP, where q ≫ 1/ϵ

represents the quotient of total number of samples and
n. This observation naturally motivates an interesting
question. Is a comparable utility bound achievable for the
general decentralized setup? The main theme of the current
paper is to answer this question.

In this work, we consider the decentralized regularized
ERM problem, where each node has a convex, possibly
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O(m log(1/δ)
q2ϵ2 ), which is significantly smaller than existing
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rate O(1/

√
t) of DDA (Duchi et al., 2011) to the optimal

rate O(1/t) for non-smooth strongly convex problems.
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Section 3 presents our algorithm and its theoretical prop-
erties. Finally, some experimental results are provided in
Section 4.

2. PRELIMINARIES
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(qi)
i }

that contains a finite number qi of data samples. The nodes
aim to cooperatively solve the following regularized ERM
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min
x∈Rm

{
F (x) :=

1

n

n∑
i=1

fi(x) + h(x)

}
, (1)

where

fi(x) =
1

qi

qi∑
j=1

li(x, ξ
(j)
i )

with the loss function li(x, ξi) measuring the accuracy of
the learned model (characterized by x) over each data

sample (denoted by ξ
(j)
i ). h(x) is a regularization term

with domain dom(h) := {x ∈ Rm|h(x) < +∞}.
Our goal is to solve Problem (1) in a fully decentralized
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each data sample in D := ∪i∈NDi.

2.2 Conventional DDA Algorithm
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√
t)
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2.3 Differential Privacy

DP has been recognized as the gold standard in quanti-
fying the individual privacy preservation for randomized
algorithms. It refers to the property of a randomized algo-
rithm that the presence or absence of an individual cannot
be distinguished based on the output of the algorithm.
Formally, DP is defined as follows.

Definition 1. ((ε, δ)-DP). A randomized algorithm A :
D → R with domain D and range R satisfies (ε, δ)-DP
if for every pair of neighboring datasets D, D′ ∈ D, i.e.,
datasets that exactly differ in one entry, and for any subset
O ⊆ R we have

Pr[A(D) ∈ O] ≤ eεPr[A(D′) ∈ O] + δ.

If δ = 0, the mechanism is called ϵ-DP.

In a decentralized optimization algorithm such as (2) and
(3), new messages bearing information about the local
training data are exchanged among the nodes, which gives
privacy concerns. Thus, when evaluating the privacy loss
in a decentralized and iterative algorithm, the messages
broadcast up to time t should be taken as the output of
the algorithm. Formally, the DP definition is tailored for
decentralized and iterative algorithms as follows.

Definition 2. Consider a decentralized network described
by (N,W ), where each node has its own dataset Di. Let
{zi(t), i ∈ N} denote the set of messages exchanged among
the nodes at iteration t. A decentralized and iterative
algorithm satisfies (ϵ, δ)-DP during T iterations if for every
pair of neighboring datasets D = ∪i∈NDi and D′ =
∪i∈ND′

i, and for any set of possible outputs O during T
iterations we have

Pr[{zi(t), i ∈ N}Tt=1 ∈ O|D]

≤ eεPr[{zi(t), i ∈ N}Tt=1 ∈ O|D′] + δ.

3. DIFFERENTIALLY PRIVATE DDA

3.1 Private DDA with Subgradient Perturbation

In the literature, there are two main types of approaches
to achieve DP. The first type of approaches disturbs the
output of a non-private algorithm (Zhang et al., 2017).
However, they cannot be generalized to the setting with
non-smooth regularization. The second type perturbs the
(sub)gradient used in the optimization algorithm (Bassily
et al., 2014). To support non-smooth regularization, we
perturb the stochastic subgradient ĝi with a Gaussian
noise vector νi(t) ∼ N (0, σ2I). The scale of the noise,
i.e., σ2, shall be calibrated according to the sensitivity
of the Gaussian mechanism to fulfill a prescribed privacy
budget. Based on this strategy and partially motivated
by the conventional DDA method in (3), we develop the
following update rule

zi(t+ 1) =
n∑

j=1

wij (zj(t) + a(t) (ĝj(t) + νj(t))) . (4)

where ĝj(t) ∈ ∂lj(xj(t), ξj(t)) with ξj(t) ∼u Dj , wij is the
(i, j)-th element in the mixing matrix W , and {a(t)}t≥1

is a sequence of non-decreasing parameters. By setting
a(t) = 1 and νi(t) = 0, i = 1, . . . , n, (4) reduces to
the conventional update in (3). We will show that, when
Problem (1) is strongly convex, faster convergence can
be attained with proper choices of {a(t)}t≥1. Accordingly,
each nodes solves
xi(t+ 1)

= argmin
x∈Rm

{⟨zi(t+ 1), x⟩+A(t+ 1)h(x) + γ(t+ 1)d(x)}

(5)

to generate its local estimate about the global opti-
mum, where A(t) =

∑t
τ=1 a(τ) and {γ(t)}t≥1

1 is a non-
decreasing sequence of positive parameters. By convention,
we let A(0) = a(0) = 0 and γ(0) = 0. The overall
procedure is summarized in Algorithm 1.

1 We will show that the parameter {γ(t)}t≥1 can be set constant
(including 0) for non-smooth strongly convex problems. However,
we keep it in (5) to be consistent with the conventional DDA update
in (2).

Algorithm 1 Differentially Private DDA

Input: µ ≥ 0, a > 0, a strongly convex function d with
modulus 1 on dom(h), and T > 0

Output: x̃i(T ) = A(T )−1
∑T

τ=1 a(τ)xi(τ)
Initialize: set zi(1) = 0 and identify xi(1) according to
(5) for all i ∈ N
for t = 1, 2, . . . , T do

In parallel for agents i ∈ N :
randomly sample ξi(t) ∼u Di

generate noise νi(t) ∼ N (0, σ2I)
collect zj(t)+a(t)(ĝj(t)+νj(t)) from all agents j ∈ Ni

update zi(t+ 1) by (4)
compute xi(t+ 1) by (5)

end for

3.2 Privacy Guarantee

Before proceeding to the privacy guarantee, we make the
following assumption.

Assumption 1. (L-Lipschitz). Each li(·, ξi) is L-Lipschitz,
that is, ∀x, y ∈ dom(h)

|li(x, ξi)− li(y, ξi)| ≤ L∥x− y∥.

Next, we state the privacy-preserving property of Algo-
rithm 1 in Theorem 1, whose proof can be found in Ap-
pendix A.

Theorem 1. (Privacy Guarantee). Given 0 < ϵ ≤ 1 and
0 < δ ≤ 1/3. If

σ2 ≥ 12L2T log(1/δ)

q2ϵ2

where q = mini∈N qi, then Algorithm 1 is (ϵ, δ)-DP.

Theorem 1 emphasizes that, to achieve a prescribed pri-
vacy budget during T iterations, the noise variance σ2 de-
pends on the DP parameters (ϵ, δ), the Lipschitz constant
L of the loss, and the number of samples per local dataset.

3.3 Privacy-Utility Tradeoff

For the convergence of the algorithm, we make the follow-
ing technical assumptions.

Assumption 2. (Spectral Gap). For the symmetric doubly
stochastic matrix W , we have its second largest singular
value, denoted by β = σ2(W ), smaller than 1.

Assumption 3. (Convexity). i) h(·) is a proper closed
strongly convex function with modulus µ > 0, i.e., for any
x, y ∈ dom(h),

h(αx+(1−α)y) ≤ αh(x)+(1−α)h(y)−µα(1− α)

2
∥x−y∥2;

ii) each li(·, ξi) is convex on dom(h).

Motivated by some existing works (Duchi et al., 2011),
we first present the convergence property of an auxiliary
sequence {y(t)}t≥0, which then immediately suggests the
convergence of the sequence {xi(t) : i ∈ N}t≥1 generated
by Algorithm 1. In particular, we define

y(t) = argmin
x∈Rm

{⟨z(t), x⟩+A(t)h(x) + γ(t)d(x)} , (6)

where z(t) = 1
n

∑n
i=1 zi(t) and {zi(t) : i ∈ N}t≥1 are

generated by Algorithm 1. To streamline the analysis, we



46 Changxin Liu  et al. / IFAC PapersOnLine 55-13 (2022) 43–48

also introduce the following notation: ζi(t) = ĝi(t) + νi(t),
ζ(t) = n−1

∑n
i=1 ζi(t).

We study the convergence of {y(t)}t≥0 in the following
theorem, whose proof is sketched in Appendix B due to
limited space.

Theorem 2. (Convergence of {y(t)}t≥0). Suppose Assump-
tions 1, 2, and 3 are satisfied. For all t ≥ 1, we have

E[F (ỹ(t))− F (x∗)]

≤ 1

A(t)

(
γ(t)d(x∗) +

t∑
τ=1

a(τ)2

µA(τ) + γ(τ)
M

+
t∑

τ=1

a(τ)2

µA(τ) + γ(τ)

(mσ2

2
+

2
√
mLσ

1− β

))
(7)

where ỹ(t) = A(t)−1
∑t

τ=1 a(τ)y(τ), M = L2/2 +
2L2/(1− β), and σ is defined in Theorem 1.

Based on the convergence result in Theorem 2, we provide
an explicit utility-privacy tradeoff for Algorithm 1 in the
following corollary.

Corollary 1. (Utility Loss). Suppose the premise of Theo-
rem 2 holds. If

a(t) = t and γ(t) = 0, (8)

then there exists T ≥ 0 for all i ∈ N such that

1

n

n∑
i=1

E[∥x̃i(T )− x∗∥2] ≤ O
(
mL2 log(1/δ)

µ2q2ϵ2

)
(9)

where x̃i(T ) = A(T )−1
∑T

τ=1 a(τ)xi(τ).

Proof. We obtain from the update of A(t) in Algorithm

1 that
∑t

τ=1
a(τ)2

µA(τ)+γ(τ) =
∑t

τ=1
2τ2

µτ(τ+1) ≤ 2t
µ . By (7), we

have
E[F (ỹ(t))− F (x∗)]

≤ 4M

µ(t+ 1)
+

16
√
3m log(1/δ)L2

µ(1− β)qϵ
√
t+ 1

+
24mL2 log(1/δ)

µq2ϵ2

(10)

Upon using convexity of ∥·∥2 and (B.2), we obtain

1

n

n∑
i=1

E[∥x̃i(t)− ỹ(t)∥2] ≤ 8(L2 +mσ2)(log t+ 1)

µ2t(t+ 1)(1− β)2
. (11)

Due to µ-strong convexity of F , we have

1

n

n∑
i=1

∥x̃i(t)− x∗∥2 ≤ 2

n

n∑
i=1

∥x̃i(t)− ỹ(t)∥2 + 2∥ỹ(t)− x∗∥2

≤ 2

n
∥x̃i(t)− ỹ(t)∥2 + 4

µ

(
F (ỹ(t))− F (x∗)

)
,

which together with (10) and (11) gives the desired result.

Remark 1. Compared to existing decentralized optimiza-
tion methods with DP (Huang et al., 2015; Han et al.,
2016; Xiao and Devadas, 2021), Algorithm 1 attains a
much tighter bound of the utility loss, suggesting a better
tradeoff is achieved between privacy and utility.

As an immediate consequence of Corollary 1, we show in
Corollary 2 that Algorithm 1 attains O(1/t) when σ = 0.

Corollary 2. (Rate of Convergence if σ = 0). Suppose the
premise of Theorem 2 holds. If σ = 0,

a(t) = t and γ(t) = 0,

then for all t ≥ 1, and i ∈ N , we have

1

n

n∑
i=1

E[∥x̃i(t)− x∗∥2] ≤ 16

t+ 1

(
L2(log t+ 1)

µ2(1− β)2t
+

M

µ2

)
,

(12)

where x̃i(t) = A(t)−1
∑t

τ=1 a(τ)xi(τ), M is a positive
constant given in Theorem 2.

Proof. The proof is straightforward by adapting the proof
of Corollary 1 to the case with σ = 0.

Remark 2. Corollary 2 illustrates that the non-private
version of Algorithm 1 attains O(1/t) convergence when
Problem (1) is strongly convex, which is optimal for
non-smooth stochastic optimization (Yuan et al., 2018).
Compared to the optimal algorithm in (Yuan et al., 2018),
Algorithm 1 is robust to non-smooth regularizers, e.g.,
elastic net.

4. EXPERIMENTS

In this section, we present experimental results of the
proposed algorithm.

4.1 Setup

In the experiments, we consider a ring network of n = 20
nodes. The corresponding mixing matrix is created with
uniform weights. We use the benchmark dataset epsilon
(Sonnenburg et al., 2006), where the 400, 000 data samples
are evenly assigned to n = 20 working nodes at random.
We consider the following regularized SVM problem

min
x

{
F (x) =

1

n

n∑
i=1

fi(x) +
µ

2
∥x∥2

}
(13)

where µ = 0.0005,

fi(x) =
1

q

q∑
j=1

max
{
0, 1− y

(j)
i

〈
C

(j)
i , x

〉}
, (14)

and {C(j)
i , y

(j)
i }q=20000

j=1 := Di are data samples private

to node i. For the parameters of DP (ϵ, δ), we consider
ϵ ∈ {0.2, 0.4, 0.6, 0.8, 1} and δ = 0.01. For Algorithm 1, we
set a(t) = t and γ(t) = 20. For the algorithm in (Duchi
et al., 2011), we let a(t) = 1 and γ(t) = 20 +

√
µt.

4.2 Results

The convergence performance of the algorithm is captured
by suboptimality, i.e., F (n−1

∑n
i=1 x̃i(t)) − F (x∗), versus

the number of iterations, where the ground truth is ob-
tained by the optimizer SGDClassifier from scikit-learn
(Pedregosa et al., 2011). Each experiment is repeated three
times; the mean curve of the results is plotted.

We observe from Figure 1 that the private version of
Algorithm 1, at the expense of achieving (1, 0.01)-DP,
presents a slower convergence than its non-private coun-
terpart. As a result, the private algorithm yields a slightly
lower testing accuracy. However, they both outperform the
algorithm in (Duchi et al., 2011) in terms of convergence
speed and testing accuracy. Furthermore, Figure 2 high-
lights that the utility degenerates when the DP parameter
ϵ decreases. This is because a smaller ϵ suggests a tighter
DP constraint that requires a stronger noise to perturb the
subgradient, as revealed in Theorem 1.
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E[F (ỹ(t))− F (x∗)]

≤ 1

A(t)

(
γ(t)d(x∗) +

t∑
τ=1

a(τ)2

µA(τ) + γ(τ)
M

+
t∑

τ=1

a(τ)2

µA(τ) + γ(τ)

(mσ2

2
+

2
√
mLσ

1− β

))
(7)
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≤ 2

n
∥x̃i(t)− ỹ(t)∥2 + 4
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which together with (10) and (11) gives the desired result.

Remark 1. Compared to existing decentralized optimiza-
tion methods with DP (Huang et al., 2015; Han et al.,
2016; Xiao and Devadas, 2021), Algorithm 1 attains a
much tighter bound of the utility loss, suggesting a better
tradeoff is achieved between privacy and utility.

As an immediate consequence of Corollary 1, we show in
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Proof. The proof is straightforward by adapting the proof
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Remark 2. Corollary 2 illustrates that the non-private
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Problem (1) is strongly convex, which is optimal for
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Compared to the optimal algorithm in (Yuan et al., 2018),
Algorithm 1 is robust to non-smooth regularizers, e.g.,
elastic net.
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In this section, we present experimental results of the
proposed algorithm.

4.1 Setup

In the experiments, we consider a ring network of n = 20
nodes. The corresponding mixing matrix is created with
uniform weights. We use the benchmark dataset epsilon
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are evenly assigned to n = 20 working nodes at random.
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set a(t) = t and γ(t) = 20. For the algorithm in (Duchi
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4.2 Results

The convergence performance of the algorithm is captured
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We observe from Figure 1 that the private version of
Algorithm 1, at the expense of achieving (1, 0.01)-DP,
presents a slower convergence than its non-private coun-
terpart. As a result, the private algorithm yields a slightly
lower testing accuracy. However, they both outperform the
algorithm in (Duchi et al., 2011) in terms of convergence
speed and testing accuracy. Furthermore, Figure 2 high-
lights that the utility degenerates when the DP parameter
ϵ decreases. This is because a smaller ϵ suggests a tighter
DP constraint that requires a stronger noise to perturb the
subgradient, as revealed in Theorem 1.

Fig. 1. Performance comparison between Algorithm 1 and
(Duchi et al., 2011).

Fig. 2. Privacy–utility tradeoff. The suboptimality and
accuracy are evaluated after 3-epoch training.
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Appendix A. PROOF OF THEOREM 1

To track the privacy loss of an iterative algorithm after
T ≥ 1 rounds of iteration, we use Rényi DP (RDP)
(Mironov, 2017). To proceed, we present the definition and
some main properties of RDP (Mironov, 2017).

Definition 3. ((α, ϵ)-RDP). A randomized algorithm A :
D → R is ρ-RDP of order α > 1, or (α, ρ)-RDP for short,
if for every pair of neighboring datasets D,D′ ∈ D we have

Dα(A(D)||A(D′)) ≤ ρ,

where Dα(A(D)||A(D′)) is the α-Rényi divergence be-
tween A(D) and A(D′), i.e.,

Dα(A(D)||A(D′))

=
1

α− 1
log



R
Pr[A(D) = z]αPr[A(D′) = z]1−αdz.

Lemma 1. (Composition of RDP). Given T randomized
algorithms A1, . . . ,Aτ , . . . ,AT : D → R, each of which
is (α, ρ(τ))-RDP. Then A : D → Rt with A(D) =

(A1(D), . . . ,At(D)) is (α,
T

τ=1 ρ(τ))-RDP.

Lemma 2. (Relation between RDP and DP). If a random-

ized algorithm is (α, ρ)-RDP, then it is (ρ+ log(1/δ)
α−1 , δ)-DP,

∀δ ∈ (0, 1).

Lemma 3. (Gaussian Mechanism). Consider the Gaussian
mechanism for answering the query r : D → Rm:

M = r(D) + ν, (A.1)

where D ∈ D, ν ∼ N (0, σ2I). If σ2 = ∆2

2ρ where ∆ denotes

the sensitivity of r, i.e., ∆ = supD,D′∥r(D)− r(D′)∥, then
(A.1) is (α, αρ)-RDP.

We are now in a position to prove Theorem 1.

Consider the Gaussian mechanism

Mt = ĝ(t) + ν(t) (A.2)

where

ĝ(t) =



ĝ1(t)
...

ĝn(t)


 , ν(t) =



ν1(t)
...

νn(t)


 .

Its sensitivity can be derived as

∆(t) =
1

q
sup
D,D′

∥ĝD(t)− ĝD′(t)∥ ≤ 2L

q

where ĝD(t), ĝD′(t) denote the subgradient ĝ(t) evaluated
over the two neighboring datasets D,D′, respectively.

From Lemma 3, the Gaussian mechanism in (A.2) at every
iteration t is (α, αρ(t))-RDP with

ρ(t) =
ϵ2

6 log(1/δ)T
. (A.3)

By the post-processing theorem, Algorithm 1 also satisfies
(α, αρ(t))-RDP at every iteration t. Upon using Lemma
1, we further obtain, after T iterations, Algorithm 1 is
(α, αρ)-RDP with ρ = ϵ2/(6 log(1/δ)). Therefore, based
on Lemma 2, Algorithm 1 is (ϵ′, δ)-DP with

ϵ′ =
αϵ2

6 log(1/δ)
+

log(1/δ)

α− 1
≤ ϵ


1

6
+

1

2
+

1

3


= ϵ,

where we use α = 1 + 3 log(1/δ)/ϵ, ϵ2 ≤ ϵ ≤ 1 and
0 < δ ≤ 1/3 to obtain the inequality.

Appendix B. PROOF SKETCH OF THEOREM 2

Before proving Theorem 2, we present two useful lemmas
whose proofs are omitted for brevity.

Lemma 4. For the sequence {xi(t) : i ∈ N}t≥1 generated
by Algorithm 1 and the auxiliary sequence {y(t)}t≥1

defined in (6), one has that for all t ≥ 1 and i ∈ N ,

1

n

n
i=1

E [∥xi(t)− y(t)∥] ≤ a(t)(L+
√
mσ)

(1− β)(µA(t) + γ(t))
(B.1)

and

1

n

n
i=1

E

∥xi(t)− y(t)∥2


≤ a(t)2(L2 +mσ2)

(1− β)2(µA(t) + γ(t))2
.

(B.2)

Lemma 5. For all t ≥ 1, we have
t

τ=1

a(τ)
�
⟨ζ(τ), y(τ)− x∗⟩+ h(y(τ))− h(x∗)



≤ 1

2

t
τ=1

a(τ)2

µA(τ) + γ(τ)
∥ζ(τ)∥2 + γ(t)d(x∗).

(B.3)

We are ready to prove Theorem 2.

Following the procedure in (Duchi et al., 2011, Theorem
1), we can use the convexity of f = 1

n

n
i=1 fi, and

the Lipschitz continuity of fj , j ∈ N , and Lemma 5 (an
improved result over (Duchi et al., 2011, Lemma 2)) to
obtain

A(t) [F (ỹ(t))− F (x∗)]

≤ A(t) [f(ỹ(t))− f(x∗)] +

t
τ=1

a(τ) (h(y(τ))− h(x∗))

≤ 1

n

n
j=1

t
τ=1

La(τ)∥xj(τ)− y(τ)∥

+
1

2

t
τ=1

a(τ)2

µA(τ) + γ(τ)
∥ζ(τ)∥2 + γ(t)d(x∗)

+
1

n

t
τ=1

n
j=1

a(τ)

⟨ζj(τ), xj(τ)− y(t)⟩

+ ⟨gj(τ)− ζj(τ), xj(τ)− x∗⟩

.

Next, we exploit the statistical independence and (B.1)
to bound the right-hand side of the above equation in
expectation, arriving at (7) as desired.


