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Abstract: This paper studies static state estimation based on measurements from a set of
sensors, a subset of which can be compromised by an attacker. The measurements from a
compromised sensor can be manipulated arbitrarily by the adversary. A new notion is adopted
to indicate the performance of an estimator, that is, the asymptotic exponential rate, with which
the worst-case probability of estimate lying outside certain ball centered at the true underlying
state goes to zero. An optimal estimator, which computes Chebyshev centers and only utilizes
the information contained in the averaged measurements, is proposed. Numerical examples are
given to elaborate the results.
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1. INTRODUCTION

Background: Static state estimation has a wide range of
applications in power system Schweppe and Handschin
(1974). In a power system, numerous sensors, which usu-
ally possess limited capacity, are spatially deployed and
connected via ubiquitous wireless/wired communication
networks. This makes it nearly impossible to guarantee
the security of every single sensor or communication chan-
nel. Therefore, security problems in a power system, or a
networked system in general, has attracted much attention
recently Mo et al. (2012); Teixeira et al. (2015).

Our Work, its Contributions and Related Literature: Ro-
bust estimation has been studied over decades to deal with
the uncertainties of input data Hampel (1974); Kassam
and Poor (1985); Huber (2011). The robustness is usually
measured by influence functions or breakdown point Huber
(2011), and several celebrated estimators have been devel-
oped, such as M-estimator, L-estimator, and R-estimator.
The limitation of robustness theory is the assumption that
the bad data are independent Huber (2011). However, in
our work, the fact that compromised sensors may coop-
erate and the estimation is done sequentially makes the
“bad” data correlated.

Recently, dynamic state estimation with possibly Byzan-
tine sensors has attracted much attention. Most of ap-
proaches in existing literature can be classified into two
categories: stacked measurements Fawzi et al. (2014); Pa-
jic et al. (2017); Mishra et al. (2017) and Kalman filter
decomposition Mo and Garone (2016); Liu et al. (2017).
Fawzi et al. (2014) used the stacked measurements from
time k to k + T − 1 to estimate the state at time k
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and provided l0 and l1-based state estimation procedures.
Since deterministic systems are concerned, the l0-based
procedure can exactly recover the state. Pajic et al. (2017)
extended deterministic systems in Fawzi et al. (2014) to
ones with bounded measurement noises and obtained up-
per bounds of estimation error of both l0 and l1-based
estimators. Mishra et al. (2017) further studied stochastic
systems with unbounded noises and proposed a notion of ε-
effective attack. The state estimation there is in essence an
attack detection problem, i.e., a Chi-squared test is applied
to the residues and the standard Kalman filter output
based on the measurements from the largest set of sensors
that are deemed ε-effective attack-free is used as the state
estimate. Notice that to detect the ε-effective attack-free
sensors correctly with high probability, the window size
T must be large enough. Mo and Garone (2016); Liu
et al. (2017) used local estimators at each sensor and
proposed a LASSO based fusion scheme. However, their
approach imposes some strong constraints on the system
dynamics. Furthermore, the estimate error of the proposed
algorithm when there are indeed attacks is not specifically
characterized.

In this paper, we deal with scenarios where noises are not
necessarily bounded and give a different characterization
of the estimator performance, i.e., the decaying rate of the
worst-case probability that the estimation error is larger
than some value δ rather than the worst-case error in Pajic
et al. (2017); Mo and Garone (2016); Liu et al. (2017) and
estimation error covariance in Mishra et al. (2017). This
is partially motivated by the following three observations.
Firstly, if unbounded noises are involved, the worst-case
estimation error might result in too conservative system
designs. Notice also that even for the bounded noises
cases studied in Pajic et al. (2017), the upper bound
of the worst-case estimation error thereof increases with
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respect to the window size T , which counters intuition
since more information should lead to better estimation
accuracy. Secondly, to mitigate the bad effects caused by
possible Byzantine sensors, one has to accumulate much
enough information, that is, the time window size T in the
aforementioned stacked measurements approach should be
large enough. In this case, the decaying rate of a proba-
bility is able to characterize its value well enough. Lastly,
the system operator may pre-define the error threshold δ
according to the performance specification, which leads to
a more flexible system design.

In the subsequent sections, we focus on the problem of
secure state estimation with Byzantine sensors. A fusion
center aims to estimate a vector state x ∈ Rn from
measurements collected by m sensors, among which n
sensors might be compromised. Without imposing any
restrictions on the attacker’s capabilities, we assume that
the compromised sensors can send arbitrary messages.
This work, which deals with static state estimation though,
provides insights into the dynamic state estimation we are
planning to investigate in the future. We note that secure
static state estimation with Byzantine sensors was studied
in Han et al. (2015) as well, which, however, focused on
resilience analysis about a generic convex optimization
based estimator and used the worst-case estimate error
as the performance metric. What is more, Han et al.
(2015) studied the one-shot scenario, while in this work the
observations are taken sequentially, the possible temporal
correlations make the analysis more challenging.

The main contributions of this work are summarized as
follows.

(1) We propose a new metric to characterize the per-
formance of an estimator when an adversary may
be present. This metric is reasonable and a flexible
system design can be achieved based on the a priori
performance requirement.

(2) An optimal estimator is proposed, which computes
Chebyshev centers based on the averaged measure-
ments (Theorem 4).

Notations : R (R+) is the set of (nonnegative) real numbers.
N (N+) is the set of nonnegative (positive) integers. For
a vector x ∈ Rn, define ‖x‖0 as the “zero norm”, i.e., the
number of nonzero elements of the vector x. For a vector
x ∈ Rn, the support of x, denoted by supp(x), is the set
of indices of nonzero elements:

supp(x) � {i ∈ {1, 2, . . . , n} : xi �= 0}.
Define 1 as the column vector, of which each element is one
and the size should be clear from the context. For a matrix
M ∈ Rm×n, unless stated otherwise, Mi represents the i-
th row of M , and MI the matrix obtained from M after
removing all of the rows except those indexed by I, i,e,
Mi’s with i ∈ I.

2. PROBLEM FORMULATION

2.1 System Model

Consider the problem of estimating the state x ∈ Rn using
m sensors’ measurements. The measurement equation for
sensor i is

zi(k) = Hix+ wi(k),

where zi(k) ∈ R is the real-valued “true” measurement
collected by the sensor i at time k ∈ N+, Hi ∈ R1×n is
the output matrix associated with sensor i, wi(k) ∈ R is
the observation noise. It is assumed that wi(k) is Gaussian
distributed with zero mean and covariance E[(wi(k))

2] =
Wi for any i, k. Furthermore, wi(k) are independent across
the sensors and over time, i.e., E[wi1(k1)wi2(k2)] = 0 if
i1 �= i2 or k1 �= k2.

In the presence of attacks, the measurement equation may
be

yi(k) = zi + ai(k),

where yi(k) ∈ R is the manipulated measurement that
arrives at the fusion center and ai(k) ∈ R is the bias
injected by the attacker.

Let M � {1, . . . ,m} be the index set of all the sensors.
We assume the attacks are q-sparse:

Assumption 1. (q-sparse attack). There exists an index
set C ⊂ M such that

(1) for any sensor i ∈ M \ C, ai(k) = 0 for any time k.
(2) |C| = q.

The sparse attack model, which is conventional in the
related literature Fawzi et al. (2014); Pajic et al. (2017);
Mishra et al. (2017); Mo and Garone (2016); Liu et al.
(2017); Han et al. (2015); Ren et al. (2018), says that the
set of compromised sensors is somewhat “constant” over
time. This is in essence the only restriction we impose
on the attacker’s capability, since the bias ai(k) of a
compromised sensor may take any value.

To introduce measurement knowledge of the attacker, we
need the following definitions. Define the measurement
from all sensors at time k to be a column vector:

y(k) � [y1(k), y2(k), · · · ym(k)]
� ∈ Rm. (1)

We further define Y (k) as a matrix of all measurements
from time 1 to time k:

Y (k) � [y(1), y(2), · · · y(k)] ∈ Rm×k. (2)

The quantities a(k),A(k) are defined in the same manner.

Assumption 2. (Attacker’s knowledge). The adversary is
assumed to know the system parameters (i.e., each Hi

and Wi) and true state, has the causal knowledge of
observations from the compromised sensors, and owns
unlimited memory, i.e., Y (k)C and A(k) are known to the
attacker at time k.

The above assumption is prevailing in the related literature
as well, see Mishra et al. (2017); Mo and Garone (2016);
Liu et al. (2017); Han et al. (2015); Ren et al. (2018).
By the knowledge about sensors, an attacker can develop
the parameters Hi and Wi. To obtain the true state, the
attacker may deploy its own sensor network. Though it
might be difficult to obtain the accurate parameters and
true state for an attacker in practice, this assumption is de
facto when dealing with potential worst-case attacks. We
should note that this assumption is in accordance with the
Kerckhoffs’s principle Shannon (1949), namely the security
of a system should not rely on its obscurity.

With Assumptions 1 and 2, the measurements from com-
promised sensors might take any value and might be cor-
related across sensors and over time.

IFAC NecSys 2018
Groningen, NL, August 27-28, 2018

290

We assume that the system knows the number q, but
does not know the exact set of compromised sensors C.
The quantity q might be determined by the a priori
knowledge about the quality of each sensor. Alternatively,
the quantity q may be viewed as a design parameter, which
indicates the resilience level that the system is willing to
introduce.

Let H = [H�
1 , H�

2 , . . . , H�
m]� be the measurement matrix.

We assume that the matrix H is 2q-observable:

Assumption 3. The measurement matrixH is 2q-observable,
i.e., for every set I ⊂ M with |I| = m − 2q, the matrix
HI is observable.

It has been shown in Fawzi et al. (2014) that the 2q-
observability of measurement matrix is the necessary and
sufficient condition to recover the exact state under q-
sparse attacks when there are no observation noises.

2.2 Performance Metric

At time k, given measurements from all the sensors Y (k),
the fusion center generates a state estimate x̂k. Notice
that the estimator, denoted by fk, might be random, i.e.,
given Y (k), x̂k is random variable governed by certain
probability measure on Rn that is determined by fk. Let
the system strategy f � (f1, f2, . . .) be a sequence of
estimators from time 1 to ∞.

Similarly, at time k, given the measurements Y (k), the
bias A(k − 1), the set of compromised sensors C and true
state x, the bias a(k) is generated according to some
probability measure on Rm. This bias injection mechanism
at time k is denoted by gk and the attack strategy by
g � (g1, g2, . . .). Let G be the set of all attack strategies
such that the generated bias a(k) satisfies the q-sparse
attack model in Assumption 1.

In this paper, we are concerned with the worst-case sce-
nario. Given a system strategy f , we define

e(f, k, δ) � sup
C⊂M,g∈G,x∈Rn

Pf,g,x,C (‖x̂k − x‖2 > δ) (3)

as the worst-case probability that the distance between
the estimate at time k and true state is larger than certain
value δ ∈ R+ considering all possible attack strategy, the
set of compromised sensors and the true state. We use
Pf,g,x,C to emphasize that the probability depends on the
estimator f , attack strategy g, the true state x, and the
set of compromised sensors C.
Ideally, one wants to design an estimator f such that
e(f, k, δ) is minimized at any time k for any δ. However, it
is quite difficult to analyze e(f, k, δ) when k takes finite
values since computing the probability of error usually
involves numerical integration. Therefore, we consider a
asymptotic estimation performance, i.e., the exponential
rate that the worst-case probability goes to zero:

r(f, δ) � lim inf
k→∞

− log e(f, k, δ)

k
. (4)

Obviously, for any δ, the system would like to maximize
r(f, δ) by designing the estimator f .

2.3 Problems of Interest

What is the optimal estimator f in the sense that the rate
r(f, δ) is maximized for a given δ?

3. OPTIMAL ESTIMATOR IN THE PRESENCE OF
ATTACKS

In this section, we provide an estimator as Chebyshev
centers and sketch out the proof of its optimality due to
the page limitation.

To proceed, we first present in Theorem 1 a preliminary
results on a random variable, which is then utilized to
develop the “nice” structure of an optimal estimator shown
in Corollary 1. The latter lays the foundations of proving
the optimality of our proposed estimator.

3.1 Preliminaries

We first need the following lemma:

Lemma 1. Let A1, . . . ,An be a finite collection of events
with the same underlying sample space, i.e., P(∪n

j=1Aj) ≤
1. Then it holds that

P(∩n
j=1Aj) ≥

n∑
j=1

P(Aj)− n+ 1. (5)

Proof. If n = 1, it trivially holds.

When n ≥ 2, we prove this by induction. Notice that

P(∩2
j=1Aj) =

2∑
j=1

P(Aj)− P(∪2
j=1Aj)

≥
2∑

j=1

P(Aj)− 1,

which concludes the case when n = 2. Suppose (5) holds
for some n− 1 with n ≥ 3, then

P(∩n
j=1Aj) =P(∩n−1

j=1Aj) + P(An)− P((∩n−1
j=1Aj) ∪ Aj)

≥
n−1∑
j=1

P(Aj)− n+ 2 + P(An)− 1

≥
n∑

j=1

P(Aj)− n+ 1.

The proof is thus complete. �

Let Bδ(x) denote the closed ball center at x ∈ Rn with
radius δ > 0:

Bδ(x) � {y ∈ Rn : ‖y − x‖2 ≤ δ}.
Theorem 1. Given any random variable y ∈ Rn, there
always exist x∗ ∈ Rn such that P(y 
∈ Bδ(x)) ≥ 1/(n + 1)
holds for every x 
∈ Bδ(x

∗).

Proof. Let A denote the set of x such that random
variable y has a high probability lying in its neighborhood:

A � {x : P(y ∈ Bδ(x)) > n/(n+ 1))}. (6)

Then it suffices to show that there exists x∗ ∈ Rn such
that

A ⊆ Bδ(x
∗). (7)

In the following argument, the dimension n is fixed.
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We assume that the system knows the number q, but
does not know the exact set of compromised sensors C.
The quantity q might be determined by the a priori
knowledge about the quality of each sensor. Alternatively,
the quantity q may be viewed as a design parameter, which
indicates the resilience level that the system is willing to
introduce.

Let H = [H�
1 , H�

2 , . . . , H�
m]� be the measurement matrix.

We assume that the matrix H is 2q-observable:

Assumption 3. The measurement matrixH is 2q-observable,
i.e., for every set I ⊂ M with |I| = m − 2q, the matrix
HI is observable.

It has been shown in Fawzi et al. (2014) that the 2q-
observability of measurement matrix is the necessary and
sufficient condition to recover the exact state under q-
sparse attacks when there are no observation noises.

2.2 Performance Metric

At time k, given measurements from all the sensors Y (k),
the fusion center generates a state estimate x̂k. Notice
that the estimator, denoted by fk, might be random, i.e.,
given Y (k), x̂k is random variable governed by certain
probability measure on Rn that is determined by fk. Let
the system strategy f � (f1, f2, . . .) be a sequence of
estimators from time 1 to ∞.

Similarly, at time k, given the measurements Y (k), the
bias A(k − 1), the set of compromised sensors C and true
state x, the bias a(k) is generated according to some
probability measure on Rm. This bias injection mechanism
at time k is denoted by gk and the attack strategy by
g � (g1, g2, . . .). Let G be the set of all attack strategies
such that the generated bias a(k) satisfies the q-sparse
attack model in Assumption 1.

In this paper, we are concerned with the worst-case sce-
nario. Given a system strategy f , we define

e(f, k, δ) � sup
C⊂M,g∈G,x∈Rn

Pf,g,x,C (‖x̂k − x‖2 > δ) (3)

as the worst-case probability that the distance between
the estimate at time k and true state is larger than certain
value δ ∈ R+ considering all possible attack strategy, the
set of compromised sensors and the true state. We use
Pf,g,x,C to emphasize that the probability depends on the
estimator f , attack strategy g, the true state x, and the
set of compromised sensors C.
Ideally, one wants to design an estimator f such that
e(f, k, δ) is minimized at any time k for any δ. However, it
is quite difficult to analyze e(f, k, δ) when k takes finite
values since computing the probability of error usually
involves numerical integration. Therefore, we consider a
asymptotic estimation performance, i.e., the exponential
rate that the worst-case probability goes to zero:

r(f, δ) � lim inf
k→∞

− log e(f, k, δ)

k
. (4)

Obviously, for any δ, the system would like to maximize
r(f, δ) by designing the estimator f .

2.3 Problems of Interest

What is the optimal estimator f in the sense that the rate
r(f, δ) is maximized for a given δ?

3. OPTIMAL ESTIMATOR IN THE PRESENCE OF
ATTACKS

In this section, we provide an estimator as Chebyshev
centers and sketch out the proof of its optimality due to
the page limitation.

To proceed, we first present in Theorem 1 a preliminary
results on a random variable, which is then utilized to
develop the “nice” structure of an optimal estimator shown
in Corollary 1. The latter lays the foundations of proving
the optimality of our proposed estimator.

3.1 Preliminaries

We first need the following lemma:

Lemma 1. Let A1, . . . ,An be a finite collection of events
with the same underlying sample space, i.e., P(∪n

j=1Aj) ≤
1. Then it holds that

P(∩n
j=1Aj) ≥

n∑
j=1

P(Aj)− n+ 1. (5)

Proof. If n = 1, it trivially holds.

When n ≥ 2, we prove this by induction. Notice that

P(∩2
j=1Aj) =

2∑
j=1

P(Aj)− P(∪2
j=1Aj)

≥
2∑

j=1

P(Aj)− 1,

which concludes the case when n = 2. Suppose (5) holds
for some n− 1 with n ≥ 3, then

P(∩n
j=1Aj) =P(∩n−1

j=1Aj) + P(An)− P((∩n−1
j=1Aj) ∪ Aj)

≥
n−1∑
j=1

P(Aj)− n+ 2 + P(An)− 1

≥
n∑

j=1

P(Aj)− n+ 1.

The proof is thus complete. �

Let Bδ(x) denote the closed ball center at x ∈ Rn with
radius δ > 0:

Bδ(x) � {y ∈ Rn : ‖y − x‖2 ≤ δ}.
Theorem 1. Given any random variable y ∈ Rn, there
always exist x∗ ∈ Rn such that P(y 
∈ Bδ(x)) ≥ 1/(n + 1)
holds for every x 
∈ Bδ(x

∗).

Proof. Let A denote the set of x such that random
variable y has a high probability lying in its neighborhood:

A � {x : P(y ∈ Bδ(x)) > n/(n+ 1))}. (6)

Then it suffices to show that there exists x∗ ∈ Rn such
that

A ⊆ Bδ(x
∗). (7)

In the following argument, the dimension n is fixed.
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If A only contains j ≤ (n + 1) elements, say, x1, . . . , xj .
Then Lemma 1 together with (6) yields that

P(y ∈ ∩j
i=1Bδ(xi)) > 0,

which means that the set ∩j
i=1Bδ(xi) is not empty. Then

A ⊆ Bδ(x
∗) for any x∗ ∈ ∩j

i=1Bδ(xi).

If A contains j > (n + 1) elements (j might be infinite).
Then again by Lemma 1, one obtains that for any n + 1
elements, say, x1, . . . , xn+1, there holds

P(y ∈ ∩n+1
i=1 Bδ(xi)) > 0,

that is, ∩n+1
i=1 Bδ(xi) �= ∅. Since Bδ(x) is compact and

convex for any x, then Helly’s theorem Danzer and Klee
(1963) means that

∩x∈ABδ(x) �= ∅.
Then A ⊆ Bδ(x

∗) for any x∗ ∈ ∩x∈ABδ(x). The proof is
thus complete. �

3.2 Compressed and Deterministic Estimator

Notice that a generic estimator fk might randomly gener-
ate the estimate x̂k based on all the information contained
in Y (k). In other words, given a different Y (k), the prob-
ability measure that governs x̂k might be different. In this
subsection, however, we shall show that without loss of
optimality, one may only consider estimators with certain
“nice” structure.

To proceed, we define an operator avg(·) that averages
each row of the inputed real-valued matrix, i.e., for any
matrix M ∈ Rn1×n2 ,

avg(M) � M1/n2,

where 1 is the column vector with each element being 1.
Then one can see that avg(Y (k)) is a vector in Rm and
the i-th element is the empirical mean of the observation
from time 1 to k available for sensor i.

We use Pf (x̂k|Y (k)) to denote the conditional probability
measure of estimate x̂k given any system strategy f ∈ F
and the information Y (k) 1 .

Definition 1. A system strategy f is said to be compressed
if it only utilizes the averaged information avg(Y(k))
to generate estimate x̂k at each time k, that is, the
conditional probability measures satisfy

Pf (x̂k ∈ A|Y (k)) = Pf (x̂k ∈ A|Y ′(k)) (8)

for any Borel set A ⊂ Rn whenever avg(Y (k)) =
avg(Y ′(k)).

Let F (Fc, resp.) be the set of all possible (compressed,
resp.) system strategies. In the following theorem, we show
that F and Fc are equivalent in our setting.

Theorem 2. For any f ∈ F , there exists another estimator
f ′ ∈ Fc such that

e(f ′, k, δ) ≤ e(f, k, δ), ∀δ > 0, k.

Proof. Due to the page limitation, we only present the
critical part. The details can be found in the journal
version. The proof is constructive: for any f ∈ F , we let f ′

1 Notice that if the estimator is deterministic at time k, then the
conditional probability measure degenerates and only takes value on
one point in Rn.

satisfy (9) and (10). For any y ∈ Rm, Borel set A ⊂ Rn,
and time k,

Pf ′(x̂k ∈ A| avg(Y (k)) = y)

=

∫

Rm×k

Pf (x̂k ∈ A|Y (k) = Y )

dP(Z(k) = Y | avg(Z(k)) = y), (9)

where dP(Z(k) = Y | avg(Z(k)) = y) is the derivative of
conditional probability measure P(Z(k)| avg(Z(k)) = y)
at the point Z(k) = Y . Notice that the conditional prob-
ability measure P(Z(k)| avg(Z(k)) = y) is well-defined
since avg(Z(k)) is a sufficient statistic of the “true” mea-
surements Z(k) for the underlying state x, i.e., for any
state x,

Px(Z(k)| avg(Z(k)) = y) = P(Z(k)| avg(Z(k)) = y).

Furthermore, f ′ ∈ Fc means that

Pf ′(x̂k ∈ A|Y (k)) = Pf ′(x̂k ∈ A|Y ′(k)) (10)

for any Borel set A ⊂ Rn whenever avg(Y (k)) =
avg(Y ′(k)). �

Remark 1. Intuitively, only measurements from benign
sensors provide “useful information” needed to estimate
the underlying state, while the most harmful compromised
sensors will merely generate disturbing noises. In our case,
the averaged information avg(Y(k)) can fully summarize
the information contained in measurements from benign
sensors due to the fact that avg(Y(k)) is a sufficient
statistic when there is no attacker. Therefore, one may
only consider a compressed estimator that only utilizes
the averaged information each time.

Definition 2. A system strategy f is said to be com-
pressed and deterministic if there exists one possibly time-
dependent function f̃k : Rm → Rn such that the estimate
at each time k

x̂k = f̃k(avg(Y (k))).

By the above definition, under a compressed and determin-
istic system strategy: 1) only the “averaged information”
contained in Y (k) (i.e., avg(Y (k))) is utilized. 2) given
avg(Y (k)), the estimate is deterministic (rather than ran-

dom) since f̃ is a function.

Let Fcd be the set of all compressed and deterministic
system strategies. Then one sees that Fcd ⊂ Fc ⊂ F .
In the following theorem, we show that Fc and Fcd are
equivalent in our setting.

Theorem 3. For any f ∈ Fc, there exists another estimator
f ′ ∈ Fcd such that

r(f ′, δ) ≥ r(f, δ), ∀δ > 0.

Proof. Notice that a compressed strategy f ∈ Fc

can be completely characterized by the sequence of
conditional probability measures from time 1 to ∞:
(Pf (x̂1| avg(Y (1))),Pf (x̂2| avg(Y (2))), . . .). The estimator
f ′ is given as follows: for any y ∈ Rm and time k,

Pf ′(A| avg(Y (k)) = y) =

{
1 when x∗(k) ∈ A,

0 otherwise,

where x∗(k) is such that Pf (x �∈ Bδ(x̂k)) ≥ 1/(n + 1)
holds for every x �∈ Bδ(x

∗(k)), the existence of which is
guaranteed by Theorem 1. Then one obtains that for every
x ∈ Rn and y ∈ Rm:
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Pf

(
x̂k �∈ Bδ(x)

∣∣∣ avg(Y (k)) = y
)

≥Pf ′

(
x̂k �∈ Bδ(x)

∣∣∣ avg(Y (k)) = y
)
/(n+ 1). (11)

Then one obtains that for every time k and δ > 0:

e(f, k, δ) ≥ e(f ′, k, δ)/(n+ 1). (12)

Recall that e(f, k, δ) is the worst-case probability defined
in (3). Then it follows that for any δ > 0:

r(f, δ) = lim inf
k→∞

− log e(f, k, δ)

k

≤ lim inf
k→∞

− log e(f ′, k, δ)/(n+ 1)

k

= lim inf
k→∞

− log e(f ′, k, δ)

k
(13)

=r(f ′, δ).

The proof is thus complete. �

With the above two theorems, the following can be readily
obtained:

Corollary 1. Without loss of optimality, one can only
consider a compressed and deterministic system strategy
in Fcd, i.e., for any f ∈ F , there exists another estimator
f ′ ∈ Fsd such that

r(f ′, δ) ≥ r(f, δ), ∀δ > 0.

3.3 Optimal Estimator as Chebyshev Centers

To proceed, we need the following definitions. The distance
of a point x0 ∈ Rn to a bounded and non-empty set
A ⊂ Rn is defined as

dist(x0,A) = sup{‖x− x0‖2 : x ∈ A}.
For a bounded and non-empty set A ⊆ Rn, its radius
rad(A) ∈ R+ and Chebyshev center c(A) ∈ Rn are
computed by

rad(A) = min
x0∈Rn

dist(x0,A),

c(A) = arg min
x0∈Rn

dist(x0,A).

Given y ∈ Rm, x ∈ Rn, define its “distance” d(y, x)
as the optimal value of the following optimization prob-
lem:

minimize
a ∈ Rm

1

2

m∑
i=1

(yi −Hix+ ai)
2/Wi

subject to ‖a‖0 = q.

(14)

Further define the set X (y, φ), φ ≥ 0 as the set of x such
that the distance to y is upper bounded by φ, i.e.,

X (y, φ) � {x ∈ Rn : d(y, x) ≤ φ}.
Given δ ≥ 0, define X(y, δ) as the set of x such that the
radius of X (y, φ) is upper bounded by δ:

X(y, δ) �
⋃

φ∈Φ(y,δ)

X (y, φ), (15)

where Φ(y, δ) is given by

Φ(y, δ) � {φ ≥ 0 : rad(X (y, φ)) ≤ δ}.
Let f∗ be the estimator such that the estimate at time k
is the Chebyshev center of X(avg(Y (k)), δ), i.e.,

f∗
k (Y (k)) = c (X(avg(Y (k)), δ)) . (16)

The optimality of f∗ is shown in the following theorem.

Theorem 4. Given any δ > 0, the estimator f∗ is optimal
in the sense that it maximizes the rate in (4), i.e., for any
admissible estimator f ∈ F , there holds

r(f∗, δ) ≥ r(f, δ).

Proof. We first provide the upper bound of r(f, δ) for
any f ∈ F . This leverages Corollary 1 and show that any
f ∈ Fsd possessing performance r(f, δ) larger than the
upper bound would require certain set of avg(Y (k)) to be
in two different non-intersecting balls, which is impossible.
We then show that our proposed estimator f∗ can achieve
this upper bound. The performance is analyzed mainly
using the large deviation theory.

4. NUMERICAL SIMULATIONS

Theorem 1 plays a critical role in the derivation of the
main results in this paper, in particular, Theorem 3. It
is, however, somewhat abstract. Therefore, in this section
we illustrate Theorem 1 by several examples when the
dimension n = 2.

In all the examples, δ is fixed to be 1. We let y has different
distributions and plot the region {x : P(y �∈ Bδ(x)) < 1/3}.
Both Figs. 1 and 2 verify Theorem 1 since in each case,
the region {x : P(y �∈ Bδ(x)) < 1/3} can be covered by a
disk with radius not larger than 1.
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Fig. 1. The random variable y is at point [0, 0] with
probability 1 in the top-left sub-figure, and is uni-
formly distributed in the disk with boundary being
the black circle in the other three ones. Every black
circle is centered at the origin and is with radius
being 0.5, 1,

√
3/2, respectively. The region {x : P(y �∈

Bδ(x)) < 1/3} is empty in the down-right sub-figure,
and is in the disk with circumference being the red
circle in the other three ones.
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Pf

(
x̂k �∈ Bδ(x)

∣∣∣ avg(Y (k)) = y
)

≥Pf ′

(
x̂k �∈ Bδ(x)

∣∣∣ avg(Y (k)) = y
)
/(n+ 1). (11)

Then one obtains that for every time k and δ > 0:

e(f, k, δ) ≥ e(f ′, k, δ)/(n+ 1). (12)

Recall that e(f, k, δ) is the worst-case probability defined
in (3). Then it follows that for any δ > 0:

r(f, δ) = lim inf
k→∞

− log e(f, k, δ)

k

≤ lim inf
k→∞

− log e(f ′, k, δ)/(n+ 1)

k

= lim inf
k→∞

− log e(f ′, k, δ)

k
(13)

=r(f ′, δ).

The proof is thus complete. �

With the above two theorems, the following can be readily
obtained:

Corollary 1. Without loss of optimality, one can only
consider a compressed and deterministic system strategy
in Fcd, i.e., for any f ∈ F , there exists another estimator
f ′ ∈ Fsd such that

r(f ′, δ) ≥ r(f, δ), ∀δ > 0.

3.3 Optimal Estimator as Chebyshev Centers

To proceed, we need the following definitions. The distance
of a point x0 ∈ Rn to a bounded and non-empty set
A ⊂ Rn is defined as

dist(x0,A) = sup{‖x− x0‖2 : x ∈ A}.
For a bounded and non-empty set A ⊆ Rn, its radius
rad(A) ∈ R+ and Chebyshev center c(A) ∈ Rn are
computed by

rad(A) = min
x0∈Rn

dist(x0,A),

c(A) = arg min
x0∈Rn

dist(x0,A).

Given y ∈ Rm, x ∈ Rn, define its “distance” d(y, x)
as the optimal value of the following optimization prob-
lem:

minimize
a ∈ Rm

1

2

m∑
i=1

(yi −Hix+ ai)
2/Wi

subject to ‖a‖0 = q.

(14)

Further define the set X (y, φ), φ ≥ 0 as the set of x such
that the distance to y is upper bounded by φ, i.e.,

X (y, φ) � {x ∈ Rn : d(y, x) ≤ φ}.
Given δ ≥ 0, define X(y, δ) as the set of x such that the
radius of X (y, φ) is upper bounded by δ:

X(y, δ) �
⋃

φ∈Φ(y,δ)

X (y, φ), (15)

where Φ(y, δ) is given by

Φ(y, δ) � {φ ≥ 0 : rad(X (y, φ)) ≤ δ}.
Let f∗ be the estimator such that the estimate at time k
is the Chebyshev center of X(avg(Y (k)), δ), i.e.,

f∗
k (Y (k)) = c (X(avg(Y (k)), δ)) . (16)

The optimality of f∗ is shown in the following theorem.

Theorem 4. Given any δ > 0, the estimator f∗ is optimal
in the sense that it maximizes the rate in (4), i.e., for any
admissible estimator f ∈ F , there holds

r(f∗, δ) ≥ r(f, δ).

Proof. We first provide the upper bound of r(f, δ) for
any f ∈ F . This leverages Corollary 1 and show that any
f ∈ Fsd possessing performance r(f, δ) larger than the
upper bound would require certain set of avg(Y (k)) to be
in two different non-intersecting balls, which is impossible.
We then show that our proposed estimator f∗ can achieve
this upper bound. The performance is analyzed mainly
using the large deviation theory.

4. NUMERICAL SIMULATIONS

Theorem 1 plays a critical role in the derivation of the
main results in this paper, in particular, Theorem 3. It
is, however, somewhat abstract. Therefore, in this section
we illustrate Theorem 1 by several examples when the
dimension n = 2.

In all the examples, δ is fixed to be 1. We let y has different
distributions and plot the region {x : P(y �∈ Bδ(x)) < 1/3}.
Both Figs. 1 and 2 verify Theorem 1 since in each case,
the region {x : P(y �∈ Bδ(x)) < 1/3} can be covered by a
disk with radius not larger than 1.
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Fig. 1. The random variable y is at point [0, 0] with
probability 1 in the top-left sub-figure, and is uni-
formly distributed in the disk with boundary being
the black circle in the other three ones. Every black
circle is centered at the origin and is with radius
being 0.5, 1,

√
3/2, respectively. The region {x : P(y �∈

Bδ(x)) < 1/3} is empty in the down-right sub-figure,
and is in the disk with circumference being the red
circle in the other three ones.
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Fig. 2. In all the four cases, the random variable y
may be one of the three points (indicated by black
marks) uniformly with probability 1/3. The three
points are vertices of an equilateral triangle, of which
the circumcenter is the origin and circumradius is
1, 5/6, 0.5, 0.1, respectively. The region {x : P(y �∈
Bδ(x)) < 1/3} is a singleton (i.e., the origin) in the
top-left sub-figure, and is the area inside the red circle
in the other three ones.

5. CONCLUSION

In this paper, we studied secure static state estimation
problem with Byzantine sensors. A new metric was pro-
posed to characterize the performance of an estimator, i.e.,
the decaying rate of the worst-case probability that the
estimation error is larger than certain value. An optimal
estimator, which only utilizes the averaged measurements
and computes Chebyshev centers, was given.
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