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Abstract�— In this paper, we study stealthy false-data attacks
against state estimators in power networks. The focus is
on applications in SCADA (Supervisory Control and Data
Acquisition) systems where measurement data is corrupted by
a malicious attacker. We introduce two security indices for the
state estimators. The indices quantify the least effort needed
to achieve attack goals while avoiding bad-data alarms in the
power network control center (stealthy attacks). The indices
depend on the physical topology of the power network and the
available measurements, and can help the system operator to
identify sparse data manipulation patterns. This information
can be used to strengthen the security by allocating encryption
devices, for example. The analysis is also complemented with
a convex optimization framework that can be used to evaluate
more complex attacks taking model deviations and multiple
attack goals into account. The security indices are nally
computed in an example. It is seen that a large measurement
redundancy forces the attacker to use large magnitudes in the
data manipulation pattern, but that the pattern still can be
relatively sparse.

I. INTRODUCTION

In Fig. 1, a schematic block diagram of a modern power
network control sytstem is shown. The power network mod-
els we consider are on the transmission level. They should be
thought of as large and consisting of up to hundreds of buses
that are spread out over a large geographic area (a region in a
country, for example). To monitor and control the behavior
of such large-scale systems, SCADA (Supervisory Control
and Data Acquisition) systems are used to transmit mea-
surements, status information, and circuit-breaker signals to
and from Remote Terminal Units (RTUs) that are connected
to substations, see [1]�–[3]. For such large-scale systems,
lost data and failing sensors are common. The incoming
data is therefore often fed to a so-called state estimator
which provides Energy Management Systems (EMS) and the
human operator in the control center with hopefully accurate
information at all times.

The technology and the use of the SCADA systems
have evolved quite a lot since the 1970s when they were
introduced. The early systems were mainly used for logging
data from the power network. Today a modern system is sup-
ported by EMS such as automatic generation control (AGC),
optimal power ow analysis, and contingency analysis (CA),
as is indicated in Fig 1. With the advent of new sensors such
as PMUs (Phasor Measurement Units), so-called Wide-Area
Monitoring and Control Systems (WAMS/WAMC) will also
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Fig. 1. A schematic block diagram of a power network, a SCADA system,
and a control center. Noisy measurements (zi) of power ows (Pi, Pij ) are
sent over the SCADA system to the state estimator where estimates of for
example the bus phase angels (δ̂i) are computed. The effect of manipulations
on the measurement data zi are considered in this paper. The manipulations
can arise from attacks at various levels A1�–A3 in the system. Figure adapted
from [4].

be introduced. This provides yet another layer of control in
the modern power network control systems. One motivation
for this paper is that SCADA/EMS systems are increasingly
more connected to ofce LANs in the control center. Thus
these critical infrastructure systems are potentially accessible
from the internet. The SCADA communication network is
also heterogeneous and consists of bre optics, satellite,
and microwave connections. Data is often sent without
encryption. Therefore many potential security threats exist
for modern power control systems, as has been pointed out
in for example [4].

The focus of this work is on the state estimator and its
so-called Bad Data Detection (BDD) system that is used to
remove faulty data, see [2], [3], [5]. The BDD system works
by checking that the received data (zi in Fig. 1) reasonably
well matches a physical model of the power network. In
the recent paper [6], it was shown how an attacker can
avoid triggering the BDD system by coordinated attacks on
the measurement data zi. The attacker can corrupt these
data by attacking the RTUs (A1), by tampering with the
heterogeneous communication network (A2), or by breaking
into the SCADA system through the control center ofce
LAN (A3). In this paper, we further analyze this problem
and quantify how sensitive the state estimator is to these



Fig. 2. A simple 4-bus power network. Each bus has a voltage (Vi) and
phase angle (δi) associated to it. The dots indicate available active power
ow measurements.

attacks.

A. Related Work and Contribution of This Paper

False-data injection attacks in power networks were rst
studied in [6], to the authors�’ best knowledge. In [6], it was
shown that an attacker can manipulate the state estimate
while avoiding bad-data alarms. It was also shown that
rather simple false-data attacks often can be constructed by
an attacker with access to the power network model. The
attacker�’s goal in [6] was either random or targeted false-
data attacks. In the targeted attacks, the goal was to change
the state estimate into a specic target value.

In this paper, we study a different targeted attack scenario.
Here the goal is to manipulate one power ow measurement
and to change related measurements in a consistent manner
so that no alarms are triggered. Or more accurately: so that
the risk of alarms is not increased. At the same time, this
shall be done using as small effort as possible. These targeted
attacks require less knowledge about the system than the
targeted attacks in [6], since the state vector is not necessarily
involved. By �”small-effort attacks�” we here mean either to
corrupt as few measurements as possible, or to corrupt the
magnitude of the measurement vector as little as possible.
The least efforts are then used to dene security indices
for each targeted measurement. The indices are bounded or
computed using simple matrix search techniques or convex
optimization. Our study shows that large measurement redun-
dancy gives large magnitude attacks, but that they can still be
sparse. Finally, we develop a convex optimization framework
that can be used to evaluate false-data attacks which deviate
from the model in order to decrease the attack effort and
still only marginally increase the risk of a bad-data alarm.
Multiple attack goals can also be included in this framework.

II. POWER NETWORK MODELING AND STATE

ESTIMATION

In this section, we review basic steady-state power network
modeling and state-estimation techniques.

A. Active Power Flow Models

It is assumed the power system has n + 1 buses. Here
we will only consider models of the active power ows Pij ,
active power injections Pi, and bus phase angles δi, where
i, j = 1, . . . , n + 1. It is also of interest to study reactive
power ows and the voltage levels, but we leave this for
future work.

Consider the simple 4-bus power network in Fig. 2. We
assume throughout that the power network has reached a
steady state. Since measurements are only sent at a low
frequency in the SCADA systems, transients cannot be seen
in the state estimator. Assuming that the resistance in the
transmission line connecting buses i and j is small compared
to its reactance, we have that the active power ow from bus
i to bus j is [2],

Pij =
ViVj

Xij
sin(δi − δj). (1)

At each bus i, active power can also be injected through
a generator. Denote this quantity with Pi. A negative Pi

indicates a power load. Assuming that there are no losses,
conservation of energy yields that for all buses it holds that

Pi =
∑

k∈Ni

Pik, (2)

where Ni is the set of all buses connected to bus i. The
models we use are based on application of (1) and (2) on
each bus in the network.

Remark 1: It is possible to include resistive losses in (1)
and shunt loads in (2), see [2], but to simplify notation we
leave this out.

B. State Estimation

The state-estimation problem we consider consists of
estimating n phase angles δi given a set of active power
ow measurements. One has to x one (arbitrary) bus phase
angle as reference angle, for example δ1 := 0, and therefore
only n angles have to be estimated. The voltage level of each
bus is assumed to be known, as well as the reactance of each
transmission line.

The m active power ow measurements are denoted by
zi, and are equal to the actual power ow plus independent
random measurement noise ei, which we assume has a
Gaussian distribution of zero mean,

e =




e1
...

em



 ∈ N (0, R),

where R := EeeT is the diagonal measurement covariance
matrix. For the example in Fig. 2 using the indicated mea-
surements of P1 and P12, we obtain
(

z1

z2

)
=

(
P1

P12

)
+

(
e1

e2

)

=

(
V1V2
X12

sin(δ1 − δ2) + V1V3
X13

sin(δ1 − δ3)
V1V2
X12

sin(δ1 − δ2)

)
+

(
e1

e2

)
.

In general, we denote such models by

z = P + e = h(x) + e ∈ Rm, (3)

where h(x) is the power-ow model derived using (1)�–(2),
and x ∈ Rn is a vector of n bus phase angles. Note that
here we only analyze the dependence on the phase angles
δi, and everything else is assumed xed and known to the



Fig. 3. Same example as in Fig. 2, but with ve measurements z1 − z5
(indicated by dots). This system is observable.

state estimator. This decoupling assumption is common in
the literature, see [2], but can be relaxed to include reactive
power-ow measurements and bus voltage estimates.

The Gauss-Newton method is often used [2] to estimate
the n unknown bus phase angles from power ows measure-
ments z,

x̂k+1 = x̂k + (HT
k R−1Hk)−1HT

k R−1(z − h(x̂k)), (4)

where x̂k ∈ Rn, k denotes iteration number, and Hk is the
Jacobian evaluated at x̂k,

Hk :=
∂h

∂x
(x̂k) ∈ Rm×n.

We will assume the phase differences δi−δj in the power
network are all small. Then a linear approximation of (3) is
accurate, and we obtain

z = Hx + e, (5)

where H ∈ Rm×n is a constant Jacobian matrix. The
estimation problem (4) can then be solved in one step,

x̂ = (HT R−1H)−1HT R−1z. (6)

The phase-angle estimate x̂ can be used to estimate the active
power ows by

ẑ = Hx̂ = H(HT R−1H)−1HT R−1z =: Kz, (7)

where K is the so-called �”hat matrix�” [2]. The BDD system
uses such estimates to identify faulty sensors and bad data
by comparing the estimate ẑ with z, see below.

As an example, assuming the voltages Vi = 1 and
reactances Xij = 1 for the network in Fig. 2, we obtain
the model

H =
(
−1 −1 0
−1 0 0

)
,

where x =
(
δ2 δ3 δ4

)T
, and δ1 = 0 is the reference bus.

However, HT H is not invertible and it is not possible to use
(6) to obtain a unique estimate x̂. This network is therefore
called unobservable [2]. If we add more measurements, such
as in the network in Fig. 3, the model becomes

H =





−1 −1 0
−1 0 0
1 0 0
1 0 −1
0 −1 0




, (8)

where P =
(
P1 P12 P21 P24 P13

)T
. Here HT H is

invertible and it is possible to estimate the phase angles in the
system. Assuming the measurement error covariance R = I ,
the hat matrix becomes

K =





0.60 0.20 −0.20 0 0.40
0.20 0.40 −0.40 0 −0.20
−0.20 −0.40 0.40 0 0.20

0 0 0 1.00 0
0.40 −0.20 0.20 0 0.60




. (9)

The hat matrix shows how the power ow measurements z
are weighted together to form a power ow estimate ẑ. The
rows of the hat matrix can be used to study the measurement
redundancy in the system [2]. Typically a large degree of
redundancy (many non-zero entries in each row) is desirable
to compensate for noisy or missing measurements. In (9),
it is seen that all measurements are redundant except the
measurement of P24 which is called a critical measurement.
Without the critical measurement observability is lost. From
the hat matrix one is lead to believe that the critical mea-
surement is sensitive to attacks. This is indeed the case as
we shall see, but also some of the other measurements are
sensitive to attacks. This is however not as easy to see from
the hat matrix and we therefore take a different approach to
quantify the security here.

III. PROBLEM FORMULATION

The scenario we consider is that an attacker gains access
to the measurements through attacks A1�–A3, and is able
to change some, or all, of the measurements from z into
za := z + a. The attack vector a is the corruption added to
the real measurement z. The attacker�’s goal is to fool the
EMS and the human operator that a particular power ow
measurement is zk,a := zk + ak and not zk, for some k and
xed scalar ak. A necessary condition for a stealthy attack
is that the BDD system is not triggered (or more accurately,
that the alarm risk is not increased). To just corrupt the
corresponding measurement zk into zk + ak will typically
trigger a bad-data alarm, as seen in the next section. We will
consider how many, and by how much, other measurements
zi, i #= k, need to be corrupted in coordination with zk to
avoid triggering alarms. A power ow measurement zk that
requires more and larger corruptions to be altered in stealth is
here considered more secure, and will obtain larger security
indices, as dened below.

Remark 2: An optimal solution to the above problem in
terms of the 2-norm of the attack vector a has recently been
presented in [7]. The stealthy attack vector a of minimal 2-
norm, ‖a‖2 =

√
aT a, that achieves zk,a := zk + ak is given

by a = ak
Kkk

K·,k, where K·,k is the k-th column of the
hat matrix (7) using R = I . Generally these attack vectors
are not sparse (except for critical measurements), however.
This can be seen in the example (9). The present study is
motivated by the fact that an attacker most likely would
use sparse attack vectors, and corrupt as few measurement
devices as possible.



IV. SPARSE ATTACKS AND THE SECURITY INDEX αk

In the control center, the measurement residual r,

r := z − ẑ = P + e − Hx̂ = (I − K)z, (10)

is computed and analyzed in the BDD system. The phase
angle estimate x̂ is given by (6). If the residual r is larger
than expected (measurement errors e will typically make r #=
0), then an alarm is triggered and bad measurements zi are
identied and removed [2], [5], [8]. A key observation in [6]
is that an attacker that manipulates the measurements from z
into za := z+a, where a = Hc ∈ R(H) and c is an arbitrary
vector, is undetectable since the residual r is not affected.
That certain errors are undetectable by residual analysis has
been know for a long time in the power systems community,
see for example [5], [8]. It is easy to show that such a lies
in the nullspace of I − K in (10). Intuitively this is clear
since za corresponds to an actual physical state in the power
network (minus the measurement error e). The BDD system
only triggers when the measurements deviate too much from
a possible physical state, at least as long as the linear model
is valid.

In light of this, and the problem introduced in Section III,
it is natural to consider the following problem:

αk := min
c

‖Hc‖0

such that 1 =
∑

i

Hkici,
(11)

where ‖Hc‖0 denotes the number of non-zero elements in
the vector a = Hc, and Hki is the element (k, i) of H . In
(11), we optimize over all corruptions a = Hc ∈ R(H) that
do not trigger bad-data alarms. A solution c∗ to (11) can be
re-scaled to obtain a∗ = akHc∗ such that the measurement
attack za = z + a∗ achieves the attacker�’s goal zk,a = zk +
ak, and at the same time corrupts as few measurements as
possible. In total, αk = ‖a∗‖0 measurements have to be
corrupted to manipulate the measurement zk. Unfortunately,
the problem (11) is non-convex and is generally hard to solve
for large problems. However, it is easy to get bounds on αk

even for large models, as shown next.
It is clear that the lower bound αk ≥ 1 holds, since at least

one measurement (zk) is corrupted. One can also show that
if measurement zk is a critical measurement, then αk = 1. A
simple upper bound can be achieved by looking at the k-th
row of H: Every column of H with a non-zero entry in the
k-th row can be used to construct a false-data attack vector
a that achieves the attack goal. Assume that Hki is non zero.
Then the attack vector

ai
k :=

ak

Hki
H·,i,

where H·,i denotes the i-th column of H , achieves the attack
goal. By selecting the sparsest vector among all ai

k, we obtain
an upper bound ᾱ1

k on αk. Formally we have,

ᾱ1
k := min

i:Hki %=0
‖H·,i‖0.

Since H is typically sparse for power networks, this bound
seems many times to be pretty good and is also very fast

Fig. 4. A power network and its security indices αk . The ow P24 with
α4 = 1 is easiest to attack. Only one measurement has to be corrupted.
The ows P21 and P12 with index α2 = α3 = 3 are hardest to attack,
and require a coordinated attack involving three sensors.

TABLE I

THE SECURITY INDEX αk , THE BOUND ᾱ1
k , AND THE SPARSEST ATTACK

VECTORS FOR THE POWER NETWORK IN FIG. 4

.
Measurement Power ow αk ᾱ1

k a∗

z1 P1 2 2
(
1 0 0 0 1

)T

z2 P12 3 4
(
1 1 −1 0 0

)T

z3 P21 3 4
(
−1 −1 1 0 0

)T

z4 P24 1 1
(
0 0 0 1 0

)T

z5 P13 2 2
(
1 0 0 0 1

)T

to compute. A second upper bound, ᾱ2
k, is discussed in the

next section, and the best of them can be used as an upper
bound of αk

ᾱk := min{ᾱ1
k, ᾱ2

k}. (12)

Obtaining better easily computed bounds, or even to charac-
terize the exact solution of (11) is an interesting problem for
future work.

Remark 3: To obtain a better bound ᾱ1
k, one can include a

column in H that corresponds to the reference bus (∂h/∂δ1).
In Fig. 4 and in Table I, the security indices αk and sparse

attack vectors for the model (8) are shown. The index makes
it easy to locate ows whose measurements are relatively
easy to attack without triggering bad-data alarms. In this
example, the critical measurement of P24 with α4 = 1 is
easiest to attack, and P21 and P12 with index α2 = α3 = 3
are hardest to attack. It is also seen that the upper bound ᾱ1

k
is tight in most cases.

Comparing with the hat matrix (9), it is seen that the num-
ber of non-zero elements in each row of the hat matrix is not
correlated to the number of sensors that has to be involved in
a stealthy attack, except in the case of critical measurements
(z4). For example, the measurement z1 is quite redundant
since the estimate ẑ1 depends on z1, z2, z3, z5. But in fact
only two measurements (z1, z5) have to be manipulated when
z1 is attacked. A large diagonal entry in the hat matrix K
seems correlated with a smaller security index, however.
Nevertheless, it is not clear from the hat matrix how many,
and which, measurements that can be involved in a false-data
attack. Hence it seems that measurement redundancy analysis
as commonly performed in power systems is not appropriate
to evaluate the system�’s security, and the introduction of
other metrics is appropriate.



V. SMALL MAGNITUDE ATTACK VECTORS AND THE

SECURITY INDEX βk

Next we consider a different security index which we
denote by βk. The security index αk is appropriate to
measure resistance against an attacker with limited access to
the number of measurements. However, the magnitude of the
elements in a sparse attack vector a can be large, and this can
be an issue since the power system is nonlinear. An attack
vector a with large elements may push the estimator into the
nonlinear regime which may lead to bad-data alarms even if
a ∈ R(H), or non-convergence of the Gauss-Newton method
(4). Thus an attacker may want to construct small magnitude
attack vectors while achieving his goals. It is also well known
that the minimization of the 1-norm that we use below often
gives rise to sparse solutions, see for example [9]. Therefore
it seems that βk is a good compromise between a sparse and
a small attack vector. The method we introduce below is also
based on convex optimization tools, and it is relatively easy
to extend this framework to include multiple attack goals and
model deviations etc.

The 1-norm of an attack vector a is ‖a‖1 :=
∑

i |ai|.
This is a measure of the total amount of changes added
to the measurement vector z. Let us next study the convex
optimization problem

βk := min
c

‖Hc‖1

such that 1 =
∑

i

Hkici,
(13)

which can be re-cast into a linear program. A solution c∗

to (13) can be re-scaled to obtain a∗ = akHc∗ such that
the measurement attack za = z + a∗ achieves zk,a = zk +
ak, and at the same time the minimal amount of additional
power, ‖a∗‖1, is added to the measurement vector z. We
can interpret the dimensionless quantity βk as the minimal
possible amplication of the attack ak: The attacker wants
to add ak MWs to the power-ow measurement zk, but must
in the process of doing so add a total change of βkak MWs
to z in order to avoid triggering alarms.

Remark 4: Since the 1-norm optimal solutions a∗ often
are sparse, a natural upper bound of αk is

ᾱ2
k := ‖a∗‖0,

to be used in (12). One could consider to possibly further
improve the bound by using reweighted 1-norm minimization
[9].

Remark 5: It is clear that the lower bound βk ≥
1 holds. We also have the upper bound βk ≤
minj:Hkj %=0

∑
i |Hij/Hkj |. But since βk can be computed

exactly using tools such as CVX [10], these bounds do not
seem as important as the bounds on αk.

It is possible to rene the index βk to take more complex
attack scenarios into account, as long as the constraints are
convex. For example, the attacker may be willing to take
risks and slightly increase the chance of bad-data alarms. By
adding a bias d #∈ R(H) to the attack vector, a = Hc + d,
it no longer lies in the nullspace of I −K, and the risk of a

bad-data alarm is increased. The benet of introducing a bias
(from the attacker�’s point of view) is that it may decrease the
size of a and increase its sparsity. It would also be possible
to interpret d as an error in the attacker�’s model.

The measurement residual r (10) in the BDD system is
distributed according to

r ∈ N (Sd,Ω), Ω := SR,

where N is the Gaussian distribution, Ω the covariance, and
Sd the expected value of the residual. S := I − K is the
so-called residual sensitivity matrix [2] (remember that K is
the hat matrix (7)). Hence d #= 0 changes the expected value
of the residual. But it should be clear that if the normalized
residual ‖diag(Ω)−1/2Sd‖p is small, the risk of a bad-data
alarm is still small. Hence, one can introduce a security index
βε

k by

βε
k := min

a
‖a‖1

such that 1 = ak, ‖diag(Ω)−1/2Sa‖p ≤ ε,
(14)

where we have used that Sa = S(Hc+d) = Sd. Depending
on the exact BDD system that is being used by the SCADA-
system operator and the choice of integer p, the size of ε
can be related to an increase in probability of a bad-data
alarm, see [7]. Common BDD-methods include chi-squares
tests and normalized residual tests [2]. Note that the attacker
needs to be more informed to solve (14) than to solve (13)
since R is needed.

It is also clear that the above framework can be generalized
to study attacks with coordinated goals. The optimization
problem

min
a

‖a‖1

such that a ∈ G, ‖diag(Ω)−1/2Sa‖p ≤ ε,
(15)

where G is a convex set of attack goals, possibly involving
more than one measurement, is one such generalization. For
example, G could be intervals such as G = {0.9 ≤ a1 ≤
1.1, −1.1 ≤ a2 ≤ −0.9}. By solving (15) for various
scenarios it is possible for the SCADA-system operator to
test the security of the state estimator.

VI. EXAMPLE: THE IEEE 14-BUS POWER NETWORK

Here we consider the IEEE 14-bus benchmark power
network that was also analyzed in [6]. A different perspective
is taken here and we compute its security indices and
compare with two heuristic redundancy measures. For the
computations, the MATLAB package MATPOWER [11] and
the optimization toolbox CVX [10] are used. Power ow
measurements are added at each bus, and at every end of
every interconnecting transmission line. In total there are
m = 54 measurements, all assumed equally good R = I ,
and the matrix H has size 54 × 13. This considered system
has more measurements than is normal in a power system,
and should therefore have large measurement redundancy.
The question is: Does this imply security against false-data
attacks?
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Fig. 5. In the upper plot, the security index bound ᾱk (blue rings) and the
redundancy measure r1

k (red full circles) are plotted versus measurement
number. In the lower plot, the security index βk (blue rings) and the
redundancy measure r2

k (red full circles) are plotted. There is no simple
connection between ᾱk and r1

k , whereas the variations in βk and r2
k

correlate very well.

In Fig. 5, the security indices ᾱk (bound) and βk are
plotted versus measurement number. For comparison, two
heuristic measurement redundancy quantities are also plotted.
These are dened by

r1
k := #{|Kik/Kkk| ≥ 0.33; i = 1, . . . ,m} ≥ 1,

r2
k :=

∑

i

|Kik/Kkk| ≥ 1,

where K is the hat matrix (7). The scaled columns of K
are minimal stealthy 2-norm attacks, see Remark 2. Hence
these are valid attack vectors, and βk ≤ r2

k with equality for
critical measurements. The quantity r1

k counts the number
of elements in such an attack vector whose magnitude is at
least 33% of the attacked measurement. One could expect
that those large elements are involved in a sparse attack,
and would give a good estimate of αk. The number 33%
is chosen somewhat arbitrarily. However, in these numerical
experiments r1

k always failed to give accurate predictions of
αk no matter this choice.

As seen in the upper plot of Fig. 5, there is no simple
connection between the sparsity of possible attacks (or at
least with the bound ᾱk) and the quantity r1

k. Sometimes r1
k is

too large, and sometimes too small, and it is hard to conclude
anything other than that this heuristic must be considered as
bad. The number of sensors needed for an attack seemingly
has little to do with it.

In the lower plot, the index βk is plotted together with r2
k.

There is clearly strong correlation between variations in βk

and r2
k. Maybe this is not so surprising given Remark 2. But

note that the optimal 1-norm attacks often are much sparser.
To summarize: Large measurement redundancy in terms of
r2
k seems to give larger security with respect to the security

measure βk (attack vector magnitude), but the quantity r1
k

has little to do with the security measure αk (attack vector

sparsity).

VII. SUMMARY AND FUTURE WORK

In this paper, we have introduced two security indices
for state estimators in power networks. The indices help to
locate power ows whose measurements are potentially easy
to manipulate. Large indices indicate that a large coordinated
attack is needed in order to not trigger an alarm in the control
center. We also showed how convex optimization tools can
be used to evaluate attacks, taking deviations from the exact
power system model and multiple attack goals into account.
We have also seen that simple measurement redundancy
quantities seem to give security in terms of attack vector
magnitude, but not in terms of attack vector sparsity. This
was demonstrated on an IEEE 14-bus network with large
measurement redundancy.

For future work, we intend to study how one can use these
indices and tools to increase the security. It is also interesting
to study the inuence of model errors in H .
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