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Abstract: This paper studies the problem of secure state estimation of a linear time-invariant
(LTT) system with bounded noise in the presence of sparse attacks on an unknown, time-varying
set of sensors. At each time, the attacker has the freedom to choose an arbitrary set of no
more than p sensors and manipulate their measurements without restraint. To this end, we
propose a secure state estimation scheme and guarantee a bounded estimation error irrespective
of the attack signals subject to 2p-sparse observability and a mild, technical assumption that
the system matrix has no degenerate eigenvalues. The proposed scheme comprises a design of
decentralized observers for each sensor based on the local observable subspace decomposition.
At each time step, the local estimates of sensors are fused by a median operator to obtain
a secure estimation, which is then followed by a local detection-and-resetting process of the
decentralized observers. The estimation error is shown to be upper-bounded by a constant
which is determined only by the system parameters and noise magnitudes. Moreover, we design
the detector threshold to ensure that the benign sensors never trigger the detector. The efficacy
of the proposed algorithm is demonstrated by its application on a benchmark example of IEEE
14-bus system. We show that our proposed scheme can effectively tolerate sparse attacks on
an unknown set of sensors, ensuring a bounded estimation error and effectively detecting and
resetting the attacked sensors.

Keywords: Estimation and filtering; Design of fault tolerant/reliable systems; Estimation and

fault detection

1. INTRODUCTION

Cyber-physical systems tend to be vulnerable to intel-
ligently devised malicious attacks because of the inter-
connectedness of remote sensors and unprotected cyber-
infrastructures operating physical plants. This has caused
significant concern in the research community (Cérdenas
et al., 2009), who have highlighted the dire need for re-
silient /secure estimation and control algorithms.

In this paper, we consider the secure state estimation of
an LTI system in the presence of attacks on an unknown
subset of sensors, which may vary with time. However,
the attacker is assumed to possess limited resources and,
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at each time instant, can corrupt at most p out of total
m sensors by injecting arbitrary signals to their mea-
surements. A milder scenario widely considered in the
literature assumes that the attacked subset of sensors is
fixed with respect to time. Thus, it is usually easier to
detect attacks in such a scenario. The problem becomes
significantly challenging when the attacked subset is time-
varying, and, in this regard, the method proposed in this
paper is quite fundamental.

There are three main research directions for tackling the
problem of secure state estimation with a fixed subset of
attacked sensors. The first is the sliding window method
which formulates the state estimation task as a batch op-
timization problem by considering the past measurements
in a finite time window. Under certain observability condi-
tions, Fawzi et al. (2014) and Shoukry and Tabuada (2016)
propose a method to minimize the norm of the residue sig-
nal for obtaining a secure state estimate. However, search-
ing for the minimizer is of combinatorial nature because
the corrupted sensor set is unknown. Shoukry et al. (2017)



employ Satisfiability Modulo Theory (SMT) to reduce the
size of attacked sensor subset by pruning the optimization
process. Nonetheless, the sliding window method discards
history information by ignoring the measurements out of
the considered window. The second method is based on
estimator switching that maintains multiple parallel esti-
mators based on measurements from sensor subsets with
cardinality m — p. By assuming that the corrupted subset
of sensors is fixed, this method guarantees the existence of
at least one subset of sensors unaffected by the attack.
Nakahira and Mo (2018) devise a detection scheme to
select all trusted subsets of sensors and fuse the corre-
sponding local estimates for secure estimation. However,
maintaining a combinatorial number of estimators simul-
taneously introduces a heavy computational and storage
burden. Mishra et al. (2017) replace the exhausted search
of sensor subsets with SMT-based searching, which can
improve the computational load to a great degree. Lu and
Yang (2019) resort to the set cover approach to reduce the
number of subset candidates by at least half. An and Yang
(2017) adopt a sequential switching mechanism where the
algorithm switches from a malicious subset to a trusted
one until it converges to the benign subset of subsets. The
third method is based on local decomposition-fusion that
solves a combinatorial complexity problem by designing m
decentralized estimators based on a centralized estimator
and fusing the local estimates by a convex optimization
problem (Liu et al., 2021b; Li and Mo, 2023). The optimal
trade-off between security and estimation accuracy can be
achieved by carefully choosing the optimization parame-
ters.

Allowing attacks on a time-varying subset of sensors is
more practical than the setup where the corrupted sub-
set is fixed. However, the problem becomes significantly
challenging in the following ways: (1) Historical knowl-
edge on corrupted sensors becomes useless because the
attacker can arbitrarily choose a totally different set at
each time. (2) Computational complexity increases since
the corrupted subset of sensors need to be searched at
every time step. Because of the aforementioned challenges,
the secure state estimation problem under time-varying
attack set is not well-explored. In this regard, He et al.
(2022) propose a saturation-gain filter where the gain of
the innovation term is saturated if the residue signal ex-
ceeds the prescribed threshold. However, this comes at the
cost of a restrictive assumption that the system is 1-step
2p-sparse observable, i.e. !, rank(C7\¢) = n,V|C| = 2p. An
and Yang (2020) proposed a switching-based non-linear
observer that asymptotically converges to a neighborhood
of the true system state in the presence of time-varying
sensor attacks. In this paper, we propose a decentralized
observer scheme that has bounded worst-case estimation
error in spite of time-varying attacked set, under 2p-sparse
observability. Our contribution can be summarized as fol-
lows:

e Estimation performance: We derive explicit estima-
tion error bounds under p-sparse attack on an arbitrary
time-varying subset of sensors.

e Observability requirement: Our method requires the
usual 2p-sparse observability condition. This assump-

1 The matrix C1\c represents the matrix composed of rows of C
with row index in 7 \ C.

tion is fundamental in the literature that assumes a
fixed subset of attacked sensors, and we show that no
additional requirement is needed in the time-varying
case.

e Low online computational complexity: As we em-
ploy reduced-order decentralized estimator design, we
need less online computational and storage resources
compared to Liu et al. (2021b).

e Low offline computational complexity: The 2p-
sparse observability requirement can be verified in poly-
nomial time with respect to the number of sensors and
the dimension of the system, under the assumption that
the system matrix has no degenerate eigenvalues.

The rest of the paper is organized as follows. We formulate
the problem of secure state estimation in Section 2 and
describe the local observable subspace decomposition in
Section 3. Then, in Section 4, we present the design of
decentralized observers and their fusion scheme. In the
same section, we present the overall algorithm and provide
the performance guarantee (Theorem 4). In Section 5,
a numerical example is demonstrated to corroborate the
performance of the proposed method. Finally, Section 6
concludes the paper with a future outlook.

Notations: The set of positive integers is denoted by Z7T.
The n-dimensional real and complex vector spaces are
denoted by R™ and C", respectively. The notation [z];
specifies the j-th entry of a vector x. By rowspan(A), we
represent the linear span of the rows of matrix A. The
conjugate transpose of a matrix A is A’. We use || - ||, to
denote the p-norm of a vector or the induced p-norm of a
matrix, which should be clear from the context. Finally,
Omax(-) denotes the maximum singular value of a matrix.

2. PROBLEM FORMULATION

Consider the discrete-time LTT system described by

z(k+1) = Az(k) + w(k) (1)

y(k) = Ca(k) + v(k) + a(k) (2)

where z(k) € R™ is the system’s state, w(k) € R", v(k) €
R™ are the bounded process noise and measurement noise,
respectively, with ||w(k)|2 < By and |Jv(k)||2 < B,, for
every k € {0} UZ™. The vector y(k) € R™ is the collection
of measurements from all m sensors, and i-th entry y; (k) is
the measurement from sensor i. The vector a(k) denotes
the sensor attack by an adversary and a,;(k) represents
the attack signal (malicious data) injected into sensor i’s
measurement at time k. We denote the set of sensors as
Z=1{1,2,---,m}. We consider the scenario where a time-
varying subset of sensors is compromised by a malicious
adversary. Let the support of vector a € R™ be

supp(a) = {i|l <i < m,a; #0}.
Definition 1. (Time-varying sparse attack). The attack
a(k) is said to be a time-varying p-sparse attack if the
compromised set C(k) £ supp {a(k)} satisfies |C(k)| < p
for all k. The set of all admissible time-varying p-sparse
attacks is then defined as A,. ¢

It is important to emphasize that the estimation scheme
has no direct information about C(k), but it knows that
the maximum number of corrupted sensors is p.



Another notion that needs to be defined is that of sparse
observability (Shoukry and Tabuada, 2016), which char-
acterizes the redundancy of the system’s observability.
Definition 2. (Sparse observability). The pair (A,C) is
said to be s-sparse observable if the pair (A, Cp\¢) is ob-
servable? for any subset of sensors C C Z with cardinality
ICl=s. ©

The secure state estimation problem aims at recovering
the system’s state z(k) at every time k with uniformly
bounded error through sensor measurements, which might
have been partly manipulated.

Definition 3. (Secure estimator). Denote (k) as the es-
timate at time k. Then, an estimator is said to be secure
against time-varying p-sparse attack if there exists a con-
stant B, > 0 determined only by the noise magnitudes
By, B, and system matrices A, C' such that, for all time k
and all attacks a € A,

sup |2(k) — z(k)||l2 < Be. ©
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In this paper, we propose a secure state estimation scheme
against time-varying p-sparse attacks, which only requires
2p-sparse observability. This condition is less restrictive
than the 1-step 2p-sparse observability (He et al., 2022),
and is necessary in the sense of exact state recovery when
the system is noise-free (Shoukry and Tabuada, 2016).

3. PRELIMINARIES ON LOCAL OBSERVABLE
SUBSPACE DECOMPOSITION

Before introducing our design of decentralized observers,
we need some preliminaries on the decomposition of ob-
servable space into local observable subspace. In order to
better represent and denote the structure of the system
observable space, we consider the following assumption on
the system matrix A.

Assumption 1. All the eigenvalues of matrix A have
geometric multiplicity 1. Without loss of generality, we
can assume that A is in the Jordan canonical form. o
Remark 1. If some eigenvalues of A have geometric mul-
tiplicity greater than 1, then the observability structure
becomes complicated, which makes expressing the ob-
servable space intractable, and validating the sparse ob-
servability (Definition 2) is NP-hard (Mao et al., 2022).
Therefore, for secure state estimation, it is quite common
to assume that A does not have degenerate eigenvalues
(Lee et al., 2020). o

The following assumption is needed for observability re-
dundancy to resiliently recover the system state.

Assumption 2. The system (A,C) is 2p-sparse observ-
able. o

Recall the index set of sensors Z £ {1,2,--- ,m}. Define
the index set of state entries as J = {1,2,--- ,n} and the
observability matrix with respect to sensor i as

0; 2 [C] (CA)T - (Can—1) T T (3)
Then, the observable subspace of sensor i is
0; £ rowspan(0;) = span (C}, (C;A)',---, (C; A1) ')

2 The matrix C1\c represents the matrix composed of rows of C
with row index in 7 \ C.

All the states that can be observed by the measurements
from sensor i belong to the linear vector space O;. The
dimension of Q; is denoted as n;. The system’s observable
space is given by O £ ier @i Define e; as the n-
dimensional canonical basis vector with 1 on the j-th entry
and 0 on all the other entries, then the following theorem

characterizes the transformation between @ and O);.

Theorem 1. For each sensor i, there exists a linear projec-
tion O—Q); represented by matrix H;, where H; is an n; Xn
matrix, such that, for any arbitrary = € O, H/H;x = x if
T E@i, and H;HZ.CCZO if x € ©\@’L

Moreover, if Assumption 1 holds, H; can be constructed
as the following n; x n matrix:

Hi = |:e.71 ej2 T ejni]/ (4)
where {j1,--- , jn,} = Q; with
Qi £{jeJ| Oe; #0}. (5)

Proof. See Appendix A of Li et al. (2022). O

Define

A; £ H;AH] € C"*™, C; £ CiH] e C™ (6)
where C; is i-th row of matrix C. Theorem 1 provides an
explicit formulation of the transformation H; from O to
©;. Using this model reduction defined by matrix H;, we
build a sub-system (121Z7 C’Z) corresponding to OQ; and local
observers in the next section.

4. SECURE ESTIMATION DESIGN

In this section, we propose a design of secure estimation
based on decentralized local state observers and local
detectors as well as a resilient centralized fusing scheme
by median operators.

4.1 Secure Estimation Algorithm

Our proposed algorithm is summarized in the following Al-
gorithm 1 and Fig. 1. At each time instant, the algorithm
is composed of three steps, i.e., (i) local observer state
update; (ii) secure fusion; (iii) local detection and reset.
As shown in Fig.1, step (i) and step (iii) are performed
in a decentralized manner, and step (ii) fuses the local
information to obtain a secure estimation by the median
operator.

In step (i) (line 4 in the algorithm), the local state n;" (k—1)
is updated to n;(k) using sensor measurement y;(k —1) by
(9). In step (ii) (line 5 in the algorithm), secure estimation
%(k) is obtained by fusing all the local states n;(k) using
the median operation in (10), where F; is designed as the
index set of sensors that can observe state j as follows:

Fi 2 {i €T | Oie; #0}. (7)
And the median operator is defined as
med(z;,i € S) £ fs+1)/2(zi,i € S), (8)

where operator fq(z;,7 € S) equals to the s-th smallest
element in the set {z;]¢ € S}. In step (iii) (lines 6-10 in the
algorithm), by local detection and resetting, state n;(k) is
reset as 1, (k) for the usage of next time step.

Even though we consider centralized estimation problems,
the algorithm is designed in a decentralized manner to iso-
late the influence of corrupted sensors, i.e., compromised



Algorithm 1 Secure Estimation at sensor ¢

1: Offline parameters: matrices H;, L;, A;, C;, constants
v, n;, sets Fj,5 €T
2: Initialize n;" (0) := H;3(0)
3: for every time index k € Z™ do
4:  Update n;(k) by
mik) = (As = L) nf (k= 1) + Liga(k = 1) (9)
5. Calculate each entry of (k) by

[#(k)], = med { [H n:(k)], i € fj} L Vied

(10)
6 i [m.(k) — Ha(k)l|2 > (7 + 1)y then
7 nj‘(k) = H;z(k)
8: else
9: nj_(k) = 771(k)
10: end if
11: end for
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Fig. 1. The information flow of our proposed estimation
scheme.

yi(k) will never influence the value of n;(k),j # ¢. In
this way, the combinatorial complex problem of finding
the corrupted sensor set is simplified as a resilient fusion
problem that can be solved in a computationally easy
way, i.e., taking the median. The security of our proposed
Algorithm 1 is proved in the next subsection.

4.2 Security of the Proposed Algorithm

In this subsection, we prove the security of the algorithm
by mathematical induction.

Define the set of sensors whose estimation error is smaller
than + at time k as “accurate” sensor set A(k):

Ak) = { i €T | lm(k) — Hiw(k)|2 <~}
Define good sensor set as those sensors who are free
of attack at time k, ie., G(k) = T\ C(k). We have

the following theorem providing the effectiveness of local
detection/resetting and resilient fusion algorithm.
Theorem 2. Suppose Assumption 1 and 2 are satisfied.

Moreover, assume for each sensor ¢, estimator gain L; and
detector parameter v satisfy the following inequality:

1 ~ Y Bw ||LZ||28U
Omax (Az LlCl) < (2\/771 1)

with v > By + ||L;||2B». Then we have the following
condition implication results:

JA(K) > m —p= (s1) = (s2) = (s3)
where the three statements are:

(s1) Resilient fusion by median operator at time k is
bounded:

[2(k) — 2(k)]loo <. (12)
(s2) Accurate sensor set covers good sensor set (good
sensors always provide accurate local estimate):

A(k+1) > G(k).
(s3) There will be at least the same number of accurate
local estimates at time &k + 1:

JA(k + 1) > m — p. (13)

Proof. See Appendix of Li et al. (2022). O

Remark 2. The statement (s3) means that our proposed
detection algorithm has no false alarm or type-I error.
Thus, no good sensor will be “wronged” and all benign
local states n;(k + 1),i € G(k), will be directly used in
the fusion step at time £+ 1. This means that the detector
threshold is suitable in the sense that no useful information
is discarded unnecessarily. This property is crucial for
maintaining observability redundancy. On the other hand,
the detection algorithm may have miss detection or type-
IT error. Nevertheless, our proposed median-based fusion
in (10) can tolerate the error introduced by undetected
corrupted local states and generate secure estimation as
shown in statement (s1). ¢

The intuition behind condition (11) is that, in order to
achieve stable state estimate against time-varying attacked
set, each local estimator ¢ should be “stable” enough so
that it immediately stops triggering the detector after the
attacker has left sensor i.

We present a necessary and sufficient condition under
which such v, L; satisfying (11) always exist.

Proposition 3. One can always find v and L; such that
(11) holds if and only if the following holds:

min Omax(Ai — LiCy) < Viel.

1
2/m; + 1
By reformulating (11), one obtains that

B'w + ||LZ||QBU
1= (2yni + )| Ai = LiCill2
The proof of Proposition 3 is straightforward from (14)
and (11), and is omitted due to space limit. The condition
required by Proposition 3 is easily satisfied because the
pair (A;, C;) is observable, which implies that the eigen-
values of A; — L;C; can be freely assigned.

v > (14)

As one may notice in Theorem 2, the result is provided
in an induction-based way, i.e., |A(k)] > m —p = |A(k +
1)] > m — p. In the following, by Theorem 2, we prove
that the security of our propose estimation is guaranteed
under time-varying p-sparse attacks as long as some initial
condition is satisfied. This is the main result of the paper.
Theorem 4. Suppose Assumption 1-2 and the following
conditions are satisfied:

(i) Inequality (11) holds.



(ii) Either the initial estimate satisfies ||Z(0)
or |A(0)| > m — p.

—2(0)[loc <

Then, Algorithm 1 provides a secure state estimate & in
the sense that

12(k) = 2(k)lloc < v, VhkEZT (15)
against any arbitrary time-varying p-sparse attack. More-

over, good sensors at time k will not trigger the detector
at time k + 1, i.e., Vi € G(k),

i (k +1) — Hiz(k + 1)[l2 < (v/ni + 1)7.

Proof. We prove (15) by mathematical induction. First,
the condition (iii) makes sure ||Z(0) — 2(0)||cc < 7. By the
induction structure of the result in Theorem 2, we know
that estimation error bound (15) holds for all k € ZT from
statement (s1), and inequality (16) holds from statement
(s2). O

(16)

The result in (15) can be interpreted as that the estimation
error ||Z(k) — z(k)||oo is not worse than initial estimation
error ||Z(0) — 2(0)||cc under a time-varying set of com-
promised sensors. From a theoretical point of view, the
result is non-trivial when the system is unstable, since
the state estimate by pure prediction (k) = A¥2(0) has
diverging error. Thus, a secure estimation algorithm must
incorporate useful information from partly manipulated
measurements and correct the state estimate to maintain
a bounded error. From the practical perspective, the ini-
tial time k£ = 0 is seen as the time when the attack is
launched and an estimator has stable estimation already.
Our proposed algorithm would not worsen the estimation
error upper bound compared to when there is no attack,
as long as the bound does not exceed ~.

5. NUMERICAL SIMULATION

We apply our proposed estimation scheme to the IEEE
14-bus system, which is a benchmark example extensively
used in the literature (Korres, 2010; Liu et al., 2021a) for
illustrating the performance of secure state estimation al-
gorithms. We adopt the continuous-time system dynamics
as in the following equations (Wood et al., 2013):

0i(t) = wi(t)

1
wi(t) = ey Diw;(t Z Ptlz]e
JEN;

where 60, (t) and w;(t) are the phase angle and angular fre-
quency on bus i, respectively, m; is the angular momentum
of 7, and w; is the process disturbance. The parameter D;
is the load change sensitivity w.r.t. the frequency and is
defined in Wood et al. (2013) Section 10.3. The power flow
between neighboring buses 7 and j is given by tle(t) =
— P (t) = ti; (0;(t) — 0;(t)), where t;; is the inverse of
resistance between bus ¢ and j. The power P;(t) denotes
the difference of mechanical power and power demand,
which is known to the system operator. The system is
sampled at discrete times with sampling interval T = 0.01
s. Every bus is equipped with four sensors (one electric
power sensor, one phase sensor and two angular velocity
sensors). The process noise w; and measurement noise v;
are i.i.d. uniformly distributed random vectors normalized
to satisfy noise bounds B,, = 1073, B, = 1072.

i(t) + wi(t)

The attack is switching between all 14 buses’ electrical
power sensors at every time index k. The attacked bus
index is switching as the following rule:

tod {1,2,3,4}, rem(k,3) =1

corrupte:

e =4 {5,6,7,8}, rem(k,3) = 2
{9,10,11,12,13,14}, rem(k,3) =0

where rem(k,3) is the remaining of k divided by 3. For
random signal attack, a;(k) is a random value uniformly
distributed in interval [—10, 10]. For slope signal attack,
a;(k) = k/5, i.e., the magnitude of injected data increases
by 20 for every second. The detector parameter 7 is chosen
to be 0.5.

estimation performance under random signal attack
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Fig. 2. Estimation of states under slope signal attack and
random signal attack on IEEE 14 system. The top
two sub-figures illustrate the phase angle and angular
velocity of bus 5 under random signal attack. The
bottom two sub-figures illustrate those under slope
signal attack.

Fig. 2 demonstrates the estimation performance on bus
5 under two kinds of attacks mentioned before. The Lu-
enberger observer used for the comparison is Z(k + 1) =
Az(k)+ > HIL; (yi(k) — C;@(k)) . Since the electrical
power measurement is directly related to angular fre-
quency w;, the estimation of ws is affected more signifi-
cantly for insecure estimators such as Luenberger observer
(shown in red line). In comparison, our proposed algorithm
recovers the system state with a small error (shown in the
blue dashed line).

To better illustrate the effectiveness of our proposed
detection-and-reset mechanism in Algorithm 1 line 6-10,
we show the residue norm ||n;(k) — H;Z(k)|| before and
after reset in Fig. 3. Only the first 30 samples are shown
for presentation clearness. When the residue norm is larger
than threshold (y/n;+1)y = 2.081 (blue triangle above the



red horizontal line), n;(k) is reset as H;Z (k) and the residue
norm is decreased significantly (to be the blue circle). In
Fig. 3, by this detection-and-reset mechanism, the residue
holds stable, and the result of Theorem 4 is validated.

residue norm under random signal attack
0.1

T T I I

lIns (k) — Hs&(k)||2

40 |- .
t 1]

20 | [
| |

0 0.1 0.2 0.3 0 0.1 0.2 0.3
time (sec) time (sec)

residue norm under slope signal attack

T T

lIns (k) — Hs&(k)||2

0 0.1 0.2 0.3 0 0.1 0.2 0.3
time (sec) time (sec)

residue norm of our proposed algorithm
detector threshold
—a— residue norm before reset

—o— residue norm after reset

Fig. 3. The residue norm ||n;(k) — H;&(k)||2 before and
after detection and resetting at bus i = 5. Sub-figure
on the right is the zoomed-in plot of the left.

6. CONCLUDING REMARKS

By designing local estimators based on observable space
decomposition and a detection-resetting mechanism, we
achieved secure estimation against sparse attacks on time-
varying sensor sets. The update of local states 7); as well as
detection-reset operations only rely on local information.
Thus, it will be straightforward to extend our method
to a distributed sensor network by calculating (10) in a
distributed manner. Moreover, our design only applies to
system with the dynamic matrix A that has no degenerate
eigenvalues. One direction to close this gap is to study
observable subspace decomposition on the system where A
has degenerate eigenvalues and design H; as the canonical
basis vector group of O;, which is not necessarily composed
of e;. Moreover, the fundamental limit of secure estimation
under time-varying set attack is not well studied to our
best knowledge and is left for future research.
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