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Abstract: In this work, we study the worst-case consequence of innovation-based integrity
attacks with side information in a remote state estimation scenario. A new type of linear attack
strategy based on both intercepted and sensing data is proposed and a corresponding stealthiness
constraint is characterized. The evolution of the remote estimation error covariance is derived
in the presence of the proposed malicious attack, based on which the worst-case attack policy is
obtained in closed form. Furthermore, the system estimation performance under the proposed
attack is compared with that under the existing attack strategy to determine which attack is
more critical in deteriorating system functionality. Simulation examples are provided to illustrate
the developed results.
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1. INTRODUCTION

The widespread implementation of cyber-physical systems
(CPS) in critical infrastructures ranging from national
power grids to manufacturing processes has reinforced the
safety and security requirements in the control system
design. Due to the interconnection between different com-
ponents and technologies, CPS are vulnerable to cyber
threats which may cause severe consequences on national
economy, social security or even loss of human lives (Kim
and Kumar, 2012; Mo et al., 2015). Hence, security is of
fundamental importance to ensure the safe operation of
CPS and has attracted considerable interest from both
academic and industrial communities.

The cyber-physical attack space can be divided according
to adversary’s system knowledge, disclosure resources and
disruption resources (Sandberg et al., 2015). False-data
injection attacks, a particular type of integrity attack, were
initially proposed for electric power grids on measurement
data in Liu et al. (2011). The consequence of false-data
injection attacks on remote state estimation was inves-
tigated in Mo et al. (2010) and a quantitative measure
of system resilience to such an attack was proposed. The
explicit trade-off between attack stealthiness and system
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performance degradation was analyzed for control signal
injection attack in Kung et al. (2016). Furthermore, the
false-data injection attacks on system state dynamics and
secure estimation problems were investigated in Shi et al.
(2016a,b). Replay attack, which degrades system perfor-
mance by recording and replaying the sensor data without
the knowledge of system parameters, were studied in Mo
and Sinopoli (2009), Mo et al. (2014), Miao et al. (2013).
Specifically, the feasibility conditions and countermeasures
were considered for LQG control systems in Mo and Sinop-
oli (2009) and Mo et al. (2014), while the attack detection
problem was investigated under a stochastic game frame-
work in Miao et al. (2013). Denial-of-Service (DoS) attack
attempts to block the communication channel and prevent
legitimate access between system components. Since jam-
ming is a power-intensive activity and the available power
of a jammer might be limited, DoS models were studied for
resource-constrained attackers (Gupta et al., 2010; Zhang
et al., 2015). Besides the aforementioned works which only
focus on one side, i.e., either the attacker or the defender,
game-theoretic approaches were proposed to investigate
the optimal transmission scheduling and power scheduling
problems taking both sides into consideration (Li et al.,
2015, 2016).

An innovation-based linear integrity attack, which is de-
signed based on the intercepted innovation sequence from
being noticed by the χ2 false-data detector, was proposed
in Guo et al. (2016). The evolution of the estimation
error covariance and the worst-case attack strategy were

Preprints of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright by the
International Federation of Automatic Control (IFAC)

8729



Fig. 1. System Architecture: The sensor transmits the mea-
surement to the remote estimator through a wireless
communication network. The attacker is able to mod-
ify the transmitted data based on both the intercepted
and the sensing information without being detected.

obtained. In this work, we consider the scenario where
the malicious agent is able to take an extra measurement
of the system state besides the previous intercepted mea-
surement. In this case, the linear attack strategy can be
designed based on both the intercepted and sensing data,
which is different from Guo et al. (2016). For the proposed
linear attack policy, the remote estimation error covariance
is derived and the worst-case strategy is obtained in closed
form. It is further proved that the attack consequence
using both the intercepted and sensing data is more severe
than that only using the intercepted data (Guo et al.,
2016) when the system is stable.

The remainder of the paper is organized as follows. Sec-
tion II introduces the system architecture. Section III
presents the innovation-based linear attack strategy and
the stealthiness constraint. Section IV derives iteration of
the remote estimation error covariance. Section V obtains
the worst-case attack in closed form and compares with
the existing result. Numerical examples are provided in
Section VI. Some concluding remarks are given in the end.

2. SYSTEM ARCHITECTURE

2.1 Process Model

As shown in Fig. 1, we consider a first-order discrete-time
linear time-invariant (LTI) process described by

xk+1 = Axk + wk, (1)

y1
k = C1xk + v1

k, (2)

where A,C ∈ R, C1 6= 0, k ∈ N is the time index, xk ∈ R
is the system state, y1

k ∈ R is the sensor measurement,
wk ∈ R and v1

k ∈ R are zero-mean i.i.d. Gaussian noises
with covariances Q ≥ 0 and R1 > 0, respectively. The
initial state x0 is zero-mean Gaussian with covariance
Π0 ≥ 0 and independent of wk and v1

k for all k ≥ 0.

2.2 Remote Estimator

At each time instant, the sensor sends its measurement to
a remote estimator through a wireless communication net-
work. To estimate the system state, the following standard
Kalman filter is adopted by the remote estimator:

x̂1−
k = Ax̂1

k−1, (3)

P 1−
k = A2P 1

k−1 +Q, (4)

K1
k =

C1P
1−
k

C2
1P

1−
k +R1

, (5)

x̂1
k = x̂1−

k +K1
k(y1

k − C1x̂
1−
k ), (6)

P 1
k = P 1−

k −K1
kC1P

1−
k , (7)

where x̂1−
k and x̂1

k are the a priori and the a posteriori
minimum mean squared error (MMSE) estimates of the
state xk, respectively, and P 1−

k and P 1
k the corresponding

error covariances.

It is well known that the Kalman filter converges from any
initial condition exponentially fast (Anderson and Moore,
2012). Thus, we define the steady-state value as

P1 , lim
k→+∞

P 1−
k , (8)

K1 ,
C1P1

C2
1P1 +R1

, (9)

where P1 is the unique positive semi-definite solution of the
Riccati equation P1 = A2P1 +Q−A2C2

1P
2
1 /(C

2
1P1 +R1).

For the ease of presentation, we assume that the system
starts from the steady state, i.e., Π0 = P1, which results
in a fixed-gain estimator with Kk = K1, ∀k.

2.3 False-Data Detector

A false-data detector is equipped at the remote side
to monitor system behavior and detect the existence of
potential cyber attacks. According to Anderson and Moore
(2012), the innovation sequence z1

k = y1
k − C1x̂

1−
k has a

steady-state Gaussian distribution N (0,M) with M =
C2

1P1 + R1 and E[z1
i z

1
j ] = 0 for all i 6= j. Hence, its

statistical characteristics (mean and covariance) are used
to diagnose the system anomalies.

The χ2 false-data detector is widely used for fault detec-
tion in practice (Mason and Young, 2002; Pouliezos and
Stavrakakis, 2013; Mo and Sinopoli, 2009; Mo et al., 2014;
Miao et al., 2013). It makes a decision based on the sum
of the normalized innovation sequence, i.e., at time k, the
detection criterion follows the hypothesis testing:

gk =

k∑
i=k−J+1

z1
iM
−1z1

i

H0

≶
H1

δ, (10)

where J is the window size of detection, δ is the threshold,
the null hypotheses H0 means that the system is operating
normally, while the alternative hypotheses H1 means that
the system is under attack. The normalized sum in (10)
satisfies the χ2 distribution with mJ degrees of freedom.
Thus, it is easy to calculate the false alarm rate from the χ2

distribution. If gk is greater than the threshold, an alarm
will be triggered.

3. ATTACK STRATEGY AND STEALTHINESS
CONSTRAINT

In this section, we consider a malicious agent who inten-
tionally launches attacks to degrade the system estimation
performance. The attacker is not only able to intercept
the transmitted data packet, but also has an extra private
sensor to measure the system state itself. In this case, we
introduce the innovation-based attack policies and analyze
the stealthiness constraints needed from being detected.

3.1 Linear Attack Strategy

Similar to the attack models in existing works (Mo et al.,
2015; Smith, 2015; Callegati et al., 2009), we assume that
the attacker has full knowledge of the process model and
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is capable of intercepting and modifying the transmitted
measurements. It is worth noticing that the attacker
can work equivalently with the measurement and the
innovation under above assumptions. Specifically, based on
the system knowledge, the attacker is able to implement
a filter to first calculate the innovation zk according to
zk = yk − Cx̂−k with x̂−k = E[xk|y1:k−1], then generate
the compromised innovation z̃k, and finally go back to the
manipulated measurement ỹk according to ỹk = z̃k +Cx̃−k
with x̃−k = E[xk|ỹ1:k−1]. This procedure yk → zk → z̃k →
ỹk means that generating ỹk is equivalent to generating
z̃k. To simplify the subsequent discussion, we design the
attack strategy in terms of zk.

When the malicious attacker is only capable of intercepting
the transmitted data, the attack strategy is based on the
system innovation z1

k. Recall the linear attack strategy
studied in Guo et al. (2016), which is defined as

z̃1
k = T 1

k z
1
k + b1k, (11)

where z1
k ∈ R is the currently intercepted innovation,

z̃1
k ∈ R is the innovation modified by the attacker, T 1

k ∈ R
is an arbitrary number, and b1k ∈ R is a zero-mean
i.i.d. Gaussian random variable with covariance L1

k and
independent of z1

k. In this case, z̃1
k is zero-mean Gaussian

distributed with covariance T 1
k (C2

1P1 +R1)T 1
k + L1

k.

However, if the malicious attacker is able to measure the
system state itself according to

y2
k = C2xk + v2

k,

with C2 6= 0 and v2
k ∈ R being a zero-mean i.i.d. Gaussian

noise with covariance R2 > 0, the attack strategy can be
designed based on the intercepted data and the sensing
data together, i.e.,

z̃3
k = T 3

k z
3
k + b3k, (12)

where z3
k = yk − Cx̂3−

k = C(xk − x̂3−
k ) + vk ∈ R2 is the

innovation calculated by the malicious attacker using a
Kalman filter with yk = [y1

k, y
2
k]′ ∈ R2, C = [C1, C2]′ ∈

R2, and vk = [v1
k, v

2
k]′ ∈ R2 being i.i.d. Gaussian noise

with covariance R = Diag{R1, R2}, z̃3
k ∈ R2 is the

compromised innovation, T 3
k = [T 31

k , T 32
k ] ∈ R1×2 is an

arbitrary attack vector, and b3k ∈ R2 is zero-mean Gaussian
distributed with covariance L3

k and independent of z3
k. It

can be observed that z̃3
k is Gaussian distributed with zero

mean and covariance T 3
k (CP3C

′ +R)T 3
k
′
+ L3

k.

3.2 Stealthiness Constraint

For the aforementioned two types of linear attack strate-
gies, the goal of the malicious attacker is to degrade the
system estimation performance as much as possible and
simultaneously remain stealthy to the false-data detector.
According to the detection criterion (10), if the modified
innovation sequence z̃ik = T ikz

i
k + bik, i = 1, 3 preserves the

same statistical characteristic as the original innovation
z1
k, the detection rate of the proposed linear attack is

the same as that without attack. As mentioned above,
z1
k ∼ N (0,M) with M = C2

1P1 +R1, z̃1
k ∼ N (0, T 1

kMT 1
k +

L1
k) and z̃3

k ∼ N (0, T 3
k (CP3C

′+R)T 3
k +L3

k). Thus, to avoid
being detected, the attack strategies (11) and (12) need to
satisfy the stealthiness constraints

T 1
kMT 1

k + L1
k ≤M, (13)

T 3
k (CP3C

′ +R)T 3
k
′
+ L3

k ≤M, (14)

respectively. The notation P3 stands for the steady-state
value of the covariance matrix E[(xk − x̂3−

k )(xk − x̂3−
k )′],

which corresponds to the unique semi-definite solution of
Riccati equation X = A2X+Q−A2X2C ′(CXC ′+R)−1C.

3.3 Problem of Interest

Based on the system model and proposed attack strategies,
the problems we are interested in contain the following:

(1) How does the estimation error covariance evolve in
the presence of the linear attack?

(2) What is the worst-case attack policy that yields the
largest error covariance?

(3) What is the degradation of estimation performance
under different attack strategies?

The detailed mathematical formulations and solutions to
these problems will be introduced in the following sections.

4. PERFORMANCE ANALYSIS

Let x̃i−k and x̃ik be the a priori and the a posteriori MMSE
estimates at the remote estimator in the presence of the
proposed linear attack z̃ik = T ikz

i
k + bik, i = 1, 3, which can

be obtained from the recursion

x̃i−k = Ax̃ik−1, (15)

x̃ik = x̃i−k +K1z̃
i
k, (16)

where the fixed gain K1 is given in (9).

Since the false-data detector is unaware of the malicious
attack if the stealthiness constraint is satisfied, the state
estimate x̃ik produced by the remote estimator will deviate
from the true system state. To quantify the system per-
formance, we define P̃ i−k and P̃ ik as the a priori and the a
posteriori MMSE error covariance at the remote estimator
under linear attack z̃ik = T ikz

i
k + bik, i = 1, 3. The evolution

of the error covariance under different types of attacks is
summarized in the following.

4.1 Error Covariance under Attack using Intercepted Data

Lemma 1. (Guo et al., 2016) When the process (1)–(2) is
under linear attack z̃1

k = T 1
k z

1
k + b1k, the estimation error

covariance at the remote estimator follows the recursion

P̃ 1
k = A2P̃ 1

k−1 +Q+ (1− 2T 1
k )∆1,

where ∆1 = C2
1P

2
1 /(C

2
1P1 +R1).

4.2 Error covariance under Attack using Intercepted and
Sensing Data

Theorem 2. When the process (1)–(2) is under linear
attack z̃3

k = T 3
k z

3
k + b3k, the estimation error covariance

at the remote estimator follows the recursion

P̃ 3
k = A2P̃ 3

k−1 +Q+ ∆1 − 2K1T
3
kCP3, (17)

where P3 is the unique positive semi-definite solution of
X = A2X + Q + A2X2C ′(CXC ′ + R)−1C with C =
[C1, C2]′, R = Diag{R1, R2}.

Proof. According to the process model (1)–(2) and state
estimate iteration (15)–(16), the estimation error when the
system is under linear attack z̃3

k = T 3
k z

3
k + b3k follows

xk − x̃3−
k = A(xk−1 − x̃3

k−1) + wk−1,

xk − x̃3
k = xk − x̃3−

k −K1z̃
3
k,
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based on which the error covariance at the remote estima-
tor can be represented as

P̃ 3−
k = A2P̃ 3

k−1 +Q,

P̃ 3
k = P̃ 3−

k + ∆1 − 2E[(xk − x̃3−
k )z̃3

kK1]

= P̃ 3−
k + ∆1 − 2E[(xk − x̃3−

k )(xk − x̂3−
k )T 3

kCK1],
(18)

where the last equality is due to the fact that

z̃3
k = T 3

kC(xk − x̂3−
k ) + T 3

k vk + b3k. (19)

To obtain the explicit error iteration, we need to figure
out the last term of (18). It is worth noticing that
the corrupted innovation z̃3

k is used to update the state
estimate in the presence of the attack while the true
innovation z1

k is adopted in the absence of the attack.
These two situations are considered separately as follows.

When the system is under linear attack z̃3
k = T 3

k z
3
k + b3k,

according to (19), one has

xk − x̃3−
k =A(xk−1 − x̃3−

k−1) + wk−1 −AK1T
3
k−1C(xk−1

− x̂3−
k−1)−AK1T

3
k−1vk−1 −AK1b

3
k−1,

xk − x̂3−
k =A(1−KC)(xk−1 − x̂3−

k−1) + wk−1 −AKvk−1,

from which the correlation of the estimation error between
the estimator and the attacker is given by

PEA−k = E[(xk − x̃3−
k )(xk − x̂3−

k )]

= A2(1−KC)PEA−k−1 +Q

−A2K1T
3
kC(1−KC)P3 +A2K1T

3
kRK

′

= A2(1−KC)PEA−k−1 +Q, (20)

where the second equality follows from E[(xk−1−x̂3−
k−1)2] =

P3 and E[vk−1v
′
k−1] = R. The last equality follows from

the fact that K = P3C
′(CP3C

′ +R)−1.

In the absence of the attack, the innovation z1
k is used to

estimate the system state, i.e.,

xk − x̃3−
k

= A(1−K1C1)(xk−1 − x̂1−
k−1) + wk−1 −AK1v

1
k−1.

The correlation between the estimator and the attacker in
this case follows

P ea−k = E[(xk − x̃3−
k )(xk − x̂3−

k )]

= A2(1−K1C1)(1−KC)P ea−k−1 +Q+A2K1K̄1R1

= A2(1−KC)P ea−k−1 +Q−A2K1C1(1−KC)P ea−k−1

+A2K1C1(1−KC)P3, (21)

where the last equality follows from K = [K̄1, K̄2] = (1−
KC)P3C

′R−1 = [(1−KC)P3C1/R1, (1−KC)P3C2/R2].

According to the steady-state assumption, when the mali-
cious attack occurs, the evolution of the correlation term
between the estimator and the attacker follows (20) with

PEA−0 = limk→∞ P ea−k , i.e., the initial value of the correla-
tion in the presence of the attack is the steady-state value
of that in the absence of the attack. It can be observed
from (21) that limk→∞ P ea−k = P3. Note that P3 is the
unique positive semi-definite solution of X = A2X +Q+
A2X2C ′(CXC ′+R)−1C, which coincides with the solution
of (20). Hence, there is no dynamic in the evolution of the
correlation term, i.e., E[(xk−x̃−k )(xk−x̂3−

k )] = P3, ∀k ∈ N.
Therefore, the remote estimation error covariance (18) is
obtained as

P̃ 3
k = A2P̃ 3

k−1 +Q+ ∆1 − 2K1T
3
kCP3,

which completes the proof. �

5. WORST-CASE LINEAR ATTACK STRATEGY

Based on the error covariance iteration obtained in last
section, we derive a closed-form expression of the worst-
case linear attack strategy and compare the attack conse-
quence between different strategies in this section.

5.1 Worst-case Attack using Intercepted Data

Lemma 3. (Guo et al., 2016) For process (1)–(2) with the
linear attack z̃1

k = T 1
k z

1
k + b1k, T 1

k = −1 and b1k = 0 is
the worst-case linear attack strategy in the sense that the
remote estimation error covariance is maximized.

5.2 Worst-case Attack using Intercepted and Sensing Data

Theorem 4. For process (1)–(2) with the linear attack
z̃3
k = T 3

k z
3
k + b3k, the worst-case linear attack strategy

which maximizes the remote estimation error covariance

is T 3
k = −

√
∆1

∆3

K
K1

, where ∆1 = C2
1P

2/(C2
1P1 + R1) and

∆3 = P 2
3C
′(CP3C

′ +R)−1C.

Proof. In the proof, we first show that whether there
exists malicious attacks during the past time instants
or not, the optimal estimation gain at time k is the
steady-state gain K. Then, the feasibility of the optimal
gain is verified taking the stealthiness constraint into
consideration, based on which we derive the closed-form
expression of the worst-case linear attack strategy.

According to state estimate iteration (15)–(16), one has

xk − x̃3
k = A(xk−1 − x̃3

k−1) + wk−1 − K̃kz
3
k,

where K̃k = K1[T 3
k + b3k(z3

k
′
z3
k)−1z3

k]. Then, the estimation
error covariance at the remote estimator is obtained as

P̃ 3
k = A2P̃ 3

k−1 +Q+ K̃k(CP3C
′ +R)K̃ ′k

− 2E{K̃kz
3
k[A(xk−1 − x̃3

k−1) + wk−1]}. (22)

Note that to find the optimal state estimate at time k
which minimizes the estimation error covariance P̃ 3

k is

equivalent to find the optimal gain K̃k. Now we focus on
calculating the last term of (22). We first evaluate that

A(xk−1 − x̃3
k−1) + wk−1

= Ak(x0 − x̂1
0) +

k−2∑
i=0

Ak−1−iwi + wk−1 −
k−1∑
i=1

Ak−iK̃iz
3
i ,

where the last equality follows from the assumption x̃3
0 =

x̂1
0. It can be also obtained that

z3
k = CA[(1−KC)A]k−1(x0 − x̂3

0)

+ CA

k−2∑
i=0

[(1−KC)A]k−2−i(1−KC)wi + Cwk−1

+ CA

k−1∑
i=0

[(1−KC)A]k−1−iKvi + vk.

Due to the fact that E[z3
i z

3
j
′
] = 0,∀i 6= j, it now follows

that the last term of (22) can be further simplified as
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E
[
K̃kz

3
k[A(xk−1 − x̃3

k−1) + wk−1]
]

= K̃kCA
2

{
(1−KC)k−1A2(k−1)PEA

+

k−2∑
i=0

(1−KC)k−2−iA2(k−2−i)(1−KC)Q

}
+ K̃kCQ

= K̃kCA
2PEA + K̃kCQ

= K̃kCP3, (23)

where the first equality follows from E[w2
i ] = Q, ∀i ∈ N

and E[(x0 − x̂3
0)(x0 − x̂1

0)] = PEA. The second equality
is due to the fact that PEA is the unique positive semi-
definite fixed point of X = (I −KC)A2X + (I −KC)Q.
Hence, the remote estimation error covariance is given by

P̃ 3
k = A2P̃ 3

k−1 +Q+ K̃k(CP3C
′ +R)K̃ ′k − 2K̃kCP3

= AP̃ 3
k−1A

′ +Q+ (K̃k − Λ)(CP3C
′ +R)(K̃k − Λ)′

− Λ(CP3C
′ +R)Λ′ (24)

with Λ = P3C
′(CP3C

′ +R)−1 = K.

Based on above derivation, we now move to the stage
of finding the worst-case linear attack strategy. It can
be observed from (24) that no matter what P̃ 3

k−1 is, the
optimal state estimate at time k which minimizes the error
covariance P̃ 3

k is obtained when K̃k = K1T
3
k = K, i.e.,

T 3
k = K

K1
. However, due to the existence of the false-

data detector, the feasibility of T 3
k needs to be verified.

Multiplying K1 on both sides of (14), one has

K1T
3
k (CP3C

′ +R)T 3
k
′
K1 = K(CP3C

′ +R)K ′ = ∆3

≤ K1(C2
1P1 +R1)K1 = ∆1,

which provides a feasibility condition for the optimal state
estimate.

For the case that ∆3 > ∆1, the optimal estimation gain
cannot be achieved. Without lose of generality, we assume
that K̃k = K1T

3
k = K1[T 31

k , T 32
k ] = [λ1K̄1, λ2K̄2].

The estimation error covariance (17) and the stealthiness
constraint (14) in this case can be represented as

P̃ 3
k = A2P̃ 3

k−1 +Q+ ∆1 − 2λ1K̄1C1P3 − 2λ2K̄2C2P3,

λ2
1K̄

2
1M1 + λ2

2K̄
2
2M2 + 2λ1λ2K̄1K̄2M12 + L3

k ≤M,

where M1 = C2
1P3 + R1, M2 = C2

2P3 + R2, M12 =
C1C2P3 and M = C2

1P1 +R1. Note that the worst attack
consequence is achieved when L3

k = 0 and T 3
k (CP3C

′ +

R)T 3
k
′

= M . In this case, finding optimal attack strategy
is equivalent to solving problem

min
λ1,λ2

λ1K̄1C1P3 + λ2K̄2C2P3

s.t. λ2
1K̄

2
1M1 + λ2

2K̄
2
2M2 + 2λ1λ2K̄1K̄2M12 = M.

Let the derivative of the Lagrangian with respect to λ1

and λ2 equal to zero, it can be obtained that λ1 = λ2.

Hence, the optimal estimation gain when ∆3 > ∆1 is in the
form of K̃k = K2T

3
k = λK. According to the stealthiness

constraint λ2∆3 = ∆1, the optimal estimator at time k is

obtained when T ∗ = T 3
k = λ K

K1
=
√

∆1

∆3

K
K1

, i.e., for any

T † = T ∗ + Γ with Γ ∈ R1×2 being an arbitrary vector
satisfying the constraint

T †(CP3C
′ +R)T †

′
< C2

1P1 +R1,

one has

P̃ 3
k (T †)− P̃ 3

k (T ∗) = −2K1ΓCP3 ≥ 0.

Similarly, for any T ‡ = −T ∗−Γ different from −T ∗, it can
be observed that the stealthiness constraint

T ‡(CP3C
′ +R)T ‡

′
= T †(CP3C

′ +R)T †
′
< C2

1P1 +R1

is satisfied and

P̃ 3
k (−T ∗)− P̃ 3

k (T ‡) = −2K1ΓCP3 ≥ 0.

Therefore, the worst-case linear attack strategy in the case

that ∆3 > ∆1 is T 3
k = −

√
∆1

∆3

K
K1

and b3k = 0.

For the case where the constraint of the false-data detector
is satisfied, i.e., ∆3 ≤ ∆1, the optimal estimation gain is
achievable, i.e., T 3

k = K
K1

. However, the worst-case linear

attack strategy is not the simple negative of T 3
k . As we

mentioned before, the remote estimation error covariance

is maximized when L3
k = 0 and T 3

k (CP3C
′ + R)T 3

k
′

= M .
To obtain the worst-case attack policy, we assume that
T 3
k = [−η1T

31
k , − η2T

32
k ] without loss of generality. It

can be derived that η1 = η2 = η in a similar way of the
case ∆3 > ∆1. Hence, the stealthiness constraint becomes
η2∆3 = ∆1, which leads to the worst-case linear attack

strategy T 3
k = −η KK1

= −
√

∆1

∆3

K
K1

. �

5.3 Comparison between Different Attack Consequence

In this subsection, we compare the worst attack conse-
quence for different linear attack strategies. The result is
summarized in the following theorem.

Theorem 5. For process (1)–(2), the worst-case error co-
variance at the remote estimator under linear attack strat-
egy z̃3

k = T 3
k z

3
k + b3k is

(1) larger than that under attack z̃1
k = T 1

k z
1
k + b1k if

|A| < 1;
(2) smaller than that under attack z̃1

k = T 1
k z

1
k + b1k if

|A| > 1;
(3) equal to that under attack z̃1

k = T 1
k z

1
k + b1k if |A| = 1.

Proof. According to the worst-case error covariance iter-
ation at the remote estimator

P̃ 3
k = A2P̃ 3

k−1 +Q+ ∆1 + 2|λ|∆3

when the system is under linear attack z̃3
k = T 3

k z
3
k+b3k and

P̃ 1
k = A2P̃ 1

k−1 +Q+ 3∆1

when the system is under linear attack z̃1
k = T 1

k z
1
k + b1k, we

then focus on comparing the terms |λ|∆3 and ∆1. Note
that P1 and P3 are the unique solutions of algebraic Riccati
equations

P1 = A2P1 +Q−A2∆1, (25)

P3 = A2P3 +Q−A2∆3, (26)

and P1 > P3 > 0. It can observed from (25)–(26) that
∆3 > ∆1 if |A| < 1, ∆3 < ∆1 if |A| > 1 and ∆3 = ∆1

if |A| = 1. Due to the worst-case stealthiness constraint

λ2∆3 = ∆2, one has |λ| =
√

∆1

∆3
< 1 if |A| < 1,

|λ| =
√

∆1

∆3
> 1 if |A| > 1 and |λ| =

√
∆1

∆3
= 1 if |A| = 1,

which leads to the results |λ|∆3 > ∆ if |A| < 1, |λ|∆3 < ∆
if |A| > 1 and |λ|∆3 = ∆ if |A| = 1. �
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Fig. 2. Remote estimation error covariances under different
worst-case linear attack strategies when |A| < 1.

6. SIMULATION EXAMPLE

To demonstrate the analytical results, we provide numeri-
cal examples in this section. We consider a stable process
with parameters A = 0.6, Q = 0.5, C1 = 1, C2 = 1, R1 =
2, R2 = 0.5. As shown in Fig. 2, the green x-mark line,
cyan circle line, magenta plus line and red dashed line rep-
resent the normalized error covariances under the worst-
case attack using intercepted and sensing data, randomly
generated attack using intercepted and sensing data, and
the worst-case attack using intercepted data and without
attack respectively. The malicious attacks start from the
steady state. Observed from Fig. 2, the worst-case attack
strategy yields a larger degradation of system estimation
performance than a randomly generated attack. It can be
also observed that for stable systems, the linear attack
depends on the knowledge of two sensors is much powerful
than that based on one sensor, which is consistent with
the analytical results obtained in Theorem 5.

7. CONCLUSION

In this paper, we proposed an innovation-based integrity
attack based on both intercepted and sensing data. The
evolution of remote estimation error covariance was inves-
tigated in the presence of attack, based on which the worst-
case strategy was obtained in closed form. Furthermore, we
compared the attack consequence with the existing work
to determine which strategy leads to a worse estimation
performance. Simulation were provided to demonstrate the
analytical results. Future works contain the consequence
analysis for high dimensional systems and the influence of
model uncertainty on the process yk → zk → z̃k → ỹk.
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