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Abstract: Undetectable attacks in security studies of cyber-physical systems render the
measurements of the system equal to a possible physical response. In this paper, we investigate
defense strategies against the undetectable single-attack for positive systems and second-order
systems, which both can be reinterpreted in terms of graphs with nodes and edges, while the
undetectable attack is added through one of the nodes. We show that an arbitrary placement of
a sensor prevents undetectable single-attack for these classes of systems. It is worth emphasising
that we do not need to measure at the corrupted node to prevent the undetectable single-attack,
but can measure at any node. The defense strategy is of a low complexity and can be readily
implemented.
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1. INTRODUCTION

Cyber-physical systems (CPS), enabled by today’s ubiq-
uitous information technology (IT) infrastructure, have
been widely regarded as new-generation engineered sys-
tems that seek to integrate computational units, commu-
nication networks, and physical plants to enable large-
scale, coordinated real-time monitoring, control, informa-
tion processing, and operation. In these systems, different
components interact through a set of networked agents,
such as sensors, actuators, control processing units and
communication devices. While seemingly of an unlimited
potential interconnecting network and computing devices
however, exposes the vulnerability of CPS and opens the
door to potential cyber threats. Through the IT com-
ponents, malicious attackers can gain access to sensing
and actuating devices to launch attacks, which is likely to
compromise the safe and reliable operation of a CPS and
in an extreme scenario, lead to catastrophic consequences
[Cárdenas et al. (2008)].

In light of the ever-expanding scope of CPS, there has
been growing concern over security issues of CPS, and
the needs to address the challenges in detecting threats,
dissecting the impact of attacks, and designing effective
? This research is supported in part by the Hong Kong RGC under
the grant number CityU 11260016, in part by Knut and Alice
Wallenberg Foundation, Swedish Research Council, and Swedish
Foundation for Strategic Research and in part by the Research
Grants Council of Hong Kong Special Administrative Region, China,
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defense strategies. Among a variety of issues, of particular
interest is the problem concerning undetectable attacks
and the protection against such attacks. In [Liu et al.
(2011)], undetectable false data injection attacks were con-
sidered for static systems with limited resources. Stealthy
deception attacks were studied in [Teixeira et al. (2010)].
Replay attacks [Mo and Sinopoli (2009)] act as one special
undetectable attack by stealing, recording, and repeating
the past signal as the malicious injection into the system.
Zero dynamics attacks target the invariant zeros of the
system and hide in the output [Pasqualetti et al. (2013)].
Covert attacks exploit decoupling structures to deceive
the controller by interrupting the input and the output
simultaneously [Smith (2011)].

The protection of a system is referred to the attribute
that attacks on the system can be either detected or
prevented. Adding a Gaussian signal unknown to the
attacker into communication channels can make Replay
attacks detectable [Mo and Sinopoli (2009)]. Undetectable
attacks can also be detected by changing system dynamics
[Teixeira et al. (2012)]. Furthermore, defense mechanism
was proposed in [Shames et al. (2011)] against all attacks
for general second-order systems by placing sensors on all
neighbors of the potential attacked nodes. While effective,
this strategy appears excessive. One should note that
adding more sensors may neither be effective nor feasible
in many situations, especially in a distributed setting,
because of environment constraints and cost-effectiveness
considerations.
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In this paper we first study undetectable attacks and
the protection of positive systems. Positive systems are
known [Berman and Plemmons (1979); Shafai et al. (1997);
Colombino and Smith (2015)] to have applications in
modeling growth behaviors of economics, ecological sys-
tems, population dynamics, and generally, dynamic sys-
tems involving positivity constraints. More recently, pos-
itive systems have also been used to model power grids,
traffic flow, communication/computation networks, and
production planning and logistics [Rantzer (2015)]. One
key property of a positive system is its states and outputs
all lie in the first orthant under non-negative disturbances.
Of particular interest in our present paper is to investi-
gate efficient strategies for the detection of undetectable
attacks; in other words, we are interested in using a small
and fewest number of sensors to detect attacks on a given
number of actuators.

In particular, we are interested in the protection of multi-
agent systems connected via a network graph. Intuitively,
the protection of interconnected systems to undetectable
attacks can be considerably more complex. That actuators
and sensors are distributed across an interconnected net-
work exposes the system to attacks of a higher cardinality,
and hence potentially makes the system more vulnerable.
We study second-order multi-agent systems and design
accordingly defense strategies.

The remainder of this paper is organized as follows. In
Section 2, we provide a concise background on invariant
zeros and non-negative matrix theory, where the relevance
to undetectable attacks is discussed. In Section 3, we
develop defense strategies against undetectable attacks to
stable and semi-stable positive systems. In Section 4, we
study second-order systems defined on strongly connected
digraphs and show that similar defense strategies can be
devised. Illustrative examples are given in Section 5, with
concluding remarks followed in Section 6.

Notation. Let R, C, Rn and Rm×n be the space of real
numbers, complex numbers, real vectors and real matrices.
For any A ∈ Rm×n, we denote by Ai,j , ρ(A), Λ(A), A>,
A−1, and Im(A), the (i, j)th entry, the spectral radius,
the spectrum, the transpose, the inverse, and the column
space respectively. A matrix A is said to be non-negative
(positive), denoted by A < 0 (A � 0), if all the entries of
matrix A are non-negative (positive). For s ∈ C, denote
Re(s) as the real part. We use ei to represent the ith
Euclidean coordinate and E to represent the canonical
basis.

2. PROBLEM FORMULATION AND
PRELIMINARIES

In this paper, we investigate the protection of two widely
used systems, namely positive systems and second-order
systems, with respect to undetectable attacks.

Consider the systems whose measurements y(t) are excited
by the initial states x(0) and the attacks d(t) consistently,
one interpretation of the undetectable attacks is that the
measurements due to the attacks coincide with a possible
physical response.

Definition 1. ([Pasqualetti et al. (2013)]) The non-zero
attack d(t) is undetectable if the system outputs satisfy

y(x(0), d(t), t) = y(x̄(0), 0, t), ∀t, (1)

where x(0) and x̄(0) are the actual and possible initial
states.

For linear systems, the condition (1) is equivalent to
y(x(0) − x̄(0), d(t), t) = 0, ∀t. Hence the design of un-
detectable attacks amounts to finding eligible inputs d(t)
which yield zero output coordinated with the initial state
x(0) − x̄(0). Let us study the following continuous-time
linear time-invariant (LTI) systems

ẋ(t) = Ax(t) +Bd(t),

y(t) = Cx(t),
(2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, x(t) ∈ Rn,
y(t) ∈ Rp, and the attack signal d(t) ∈ Rm 1 . It can
be recognized that finding a feasible control d(t) and the
initial state x(0) − x̄(0) such that y(t) = 0,∀t ≥ 0 is
the classical zero dynamics problem, which we elaborate
below.

Let the LTI system (2) be left-invertible, i.e., p ≥ m and
the transfer function G(s) = C(sI − A)−1B is column
full normal rank, and so is to the associated Rosenbrock
system matrix defined below.

Lemma 1. ([Pasqualetti et al. (2013)]) An attack signal
d(t) = −estd0 is undetectable if and only if there exists an
invariant zero s ∈ C, zero state x(0)− x̄(0) 6= 0, and zero
input d0 such that[

sI −A B
C 0

] [
x(0)− x̄(0)

d0

]
=

[
0
0

]
, (3)

where

[
sI −A B
C 0

]
is named the Rosenbrock system ma-

trix.

In the rest of this paper, we shall seek effective defense ap-
proaches by designing C to prevent undetectable attacks.
Generally speaking, adding more sensors such that C is
full column rank implies a conspicuous defensive policy
[(Shames et al., 2011)]. More precisely, by the Hautus
test, the system’s observability implies that x(0) = x̄(0).
Hence Bd(t) = 0,∀t ≥ 0, i.e., undetectable attacks are
non-existent. Nevertheless, this approach may not be fea-
sible since the consequent high-cost. This motivates us to
investigate defense strategies using the fewest number of
sensors possible.

An attack signal d(t) = −estd0 will vanish, remain a con-
stant d0, oscillate persistently, or increase exponentially if
Re(s) < 0, s = 0, s = jω (ω 6= 0), or Re(s) > 0, respec-
tively. The vanishing attack, corresponding to a minimum
phase zero s, i.e. Re(s) < 0, cannot bring in the significant
influences on the dynamics of the system, especial for the
stable system, in many applications, which is acceptable
for us. This will be illustrated in our later examples. On
the other hand, when s is a non-minimum phase zero of the
system, then there are two feasible approaches to prevent
the corresponding undetectable attacks.

Definition 2. We say that a defense strategy, namely a
design of C, successful if one of the following conditions
holds:
1 The undetectable attacks stated in this paper are only through
the actuators, while the predominant results addressed later are also
referential to attacks through the sensors only, or both.
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(i) rank

([
sI −A B
C 0

])
= n+m,

(ii) rank

([
sI −A B
C 0

])
< n+m, while d0 = 0 in (3),

for each s with Re(s) ≥ 0.

In the sequel, we focus on the undetectable single-attack
scenario, namely the undetectable attacks enter the system
only through one channel or one node. In other words, the
attack d(t) ∈ R and B = ei. Note that B = ei represents
the accessibility of the adversary to the system, which is
not like the typical encoder matrix, where the element “1”
marks the attacked position.

Like commonly assumed [Dibaji and Ishii (2015)], the
number of attacked targets is known, which is one in this
paper, while the exact target is unknown.

Next, we introduce some key definitions and preliminary
lemmas concerning non-negative matrices and beyond
from [Berman and Plemmons (1979)] and [Brualdi and
Ryser (1991)].

Definition 3. A matrix A of the form

A = λI − Ā, (4)

where λ ≥ ρ(Ā) and Ā < 0, is called an M-matrix.

This matrix A of the form (4) for which λ > ρ(Ā) is a
non-singular M-matrix, and a singular M-matrix strictly
takes the equality, i.e., λ = ρ(Ā).

Definition 4. A matrix in which all the off-diagonal ele-
ments are non-negative is named a Metzler matrix, i.e.,
∀i6=j Ai,j ≥ 0.

The next two lemmas introduce the connections between
M-matrix and Metzler matrix.

Lemma 2. Matrix A is a non-singular M-matrix if and
only if −A is a Hurwitz stable Metzler matrix.

Lemma 3. Matrix A is a M-matrix defined in (4) if and
only if −A is a Metzler matrix and the real part of each
non-zero eigenvalue of −A is negative.

Definition 5. Laplacian matrix L is an M-matrix with row
sums equal to zero.

Laplacian matrix is a typical example of singular M-
matrices. It is customary to define a graph, and so to asso-
ciate a communication network with a Laplacian matrix,
in which connectivity is an important notion.

We use G = (V, E) to show a directed graph, where V ,
{i}n1 represents the vertex set, with i ∈ V corresponding
to node i, and E ⊆ V × V is the directed edge set.

Definition 6. A directed graph is strongly connected if it
contains a directed path for every pair of vertices.

Given a matrix A, the corresponding graph can be defined
as follows: there is an edge from i to j if and only if
Aj,i 6= 0. Next we introduce the irreducibility of a matrix
in the notion of graphs.

Definition 7. A matrix is irreducible if the corresponding
graph is strongly connected.

One key lemma of this paper is introduced herein.

Lemma 4. For any irreducible and non-singular M-matrix
A, we have A−1 � 0.

3. PROTECTION IN POSITIVE SYSTEMS

We shall first attempt to design the defensive mechanism
against the undetectable single-attack for positive systems.

Positive systems can guarantee that states and outputs all
lie in the first orthant under non-negative disturbance.

Lemma 5. ([Farina and Rinaldi (2011)]) A linear system
(A,B,C) (2) is called positive if and only if
(i) A is Metzler, and
(ii) B < 0 and C < 0.

Theorem 8. Consider a Hurwitz stable positive system
with irreducible matrix A, for an arbitrary undetectable
single-attack, any defense strategy with arbitrary single
measurement is successful, i.e., if B = ei,∀ei ∈ E, any
defense strategy with C = e>j ,∀ej ∈ E is successful.

Proof. Through Lemma 1, we have[
sI −A ei
e>j 0

] [
x̃(0)
d0

]
=

[
0
0

]
, (5)

where x(0)−x̄(0) in (3) is replaced by x̃(0). Denote s = a+
jω.

First, we study the case s = jω 6= 0. Since [x̃>(0), d0]> ∈
Rn+1, and jωI − A is column full rank to Rn, i.e., there
@v ∈ Rn satisfying v 6= 0 such that (jωI − A)v = 0,

we have that rank

([
jωI −A
e>j

])
is full column rank to

Rn. Similarly, the matrix

[
jωI −A ei
e>j 0

]
is column full

rank to Rn+1. Furthermore, it is same to the matrix[
aI + jωI −A ei

e>j 0

]
for ∀a ∈ R. The discussions above

demonstrate that all points with non-zero imaginary parts
on the closed right-half complex plane can be blocked
successfully with B = ei, C = e>j ,∀ei, ej ∈ E.

The next step is to analyze the rank condition for s = a ≥
0, where possible unstable zeros lie in the non-negative real
axis. Because A is a stable matrix, aI−A is invertible, then
we have

rank

([
aI −A ei
e>j 0

])
=rank

([
aI −A 0

0 −e>j (aI −A)−1ei

])
=n+ 1

if and only if −e>j (aI − A)−1ei 6= 0, ∀ei, ej ∈ E. This is

equivalent to all entries of (aI−A)−1 are non-zero. Indeed,
since −A is an irreducible and non-singular M-matrix, so
is to aI − A for a ≥ 0, we have (aI − A)−1 � 0 according
to Lemma 4.

In conclusion, an arbitrary placement of single measure-
ment, i.e., C = e>j ,∀ej ∈ E, is a successful defense. 2

Next we shall investigate the same problem for a semi-
stable positive system with irreducible matrix A. Before
that, some definitions and lemmas need to be introduced.

Lemma 6. (Perron-Frobenius [Horn and Johnson (2012)])
Let a matrix A be irreducible and non-negative, then

(a) ρ(A) > 0,
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(b) ρ(A) > 0 is an algebraically simple eigenvalue of A,
(c) there exists uniquely determined and positive left and

right eigenvectors to ρ(A).

Lemma 7. To a matrix A with the positive νl satisfying
ν>l A = 0, we have ei /∈ Im(A), ∀ei ∈ E.

Theorem 9. Consider a Hurwitz semi-stable positive sys-
tem with irreducible matrix A, for an arbitrary unde-
tectable single-attack, any defense strategy with arbitrary
single measurement is successful.

Proof. When consider the case s = jω 6= 0, it is same to
the corresponding proof of Theorem 8, and all points with
non-zero imaginary parts on the closed right-half complex
plane can be blocked in this spirit.

Turn to the case s = a ≥ 0, through Lemma 6, it is shown
that a semi-stable Metzler matrix has no eigenvalue on
the imaginary axis except for the origin. Thus recalling
Lemma 3, matrix −A herein is a singular M-matrix, which
can be also expressed as −A = ρ(Ā)I− Ā. Then for a > 0,
aI − A is a non-singular M-matrix and is irreducible like
−A. Hence we obtain (aI −A)−1 � 0 through Lemma 4.

Nevertheless, when a = 0, aI − A = −A is not in-
vertible and we will refer to another approach. From
Lemma 6, the irreducible and semi-stable Metzler matrix
A above satisfies the condition of Lemma 7, then we have
ei /∈ Im(A), ej /∈ Im(A>), ∀ei, ej ∈ E. Thus the Rosen-

brock system matrix satisfies rank

([
−A ei
e>j 0

])
= n + 1

herein. 2

4. PROTECTION IN SECOND-ORDER SYSTEMS

In this section, we shall consider the design of defense
strategies against the undetectable single-attack for a type
of second-order systems. In such systems, we investigate a
network of n interconnected nodes. The communication
topology is given by a weighted digraph G = (V, E). In
this network, node i receives information from node j if
and only if there exists an edge from node j to node i in
the graph G. Moreover, denote Ni = {j ∈ V : i, j ∈ E} as
the negiborhood set of node i. We assume the following
double integrator dynamics for node i

ξ̇i(t) = ζi(t)

ζ̇i(t) = ui(t),
(6)

where ξi and ζi are the corresponding scalar states. In this
paper, we consider one general type of distributed control
law given as

ui = −kiζi(t) +
∑
j∈Ni

υi,j(ξj(t)− ξi(t)), (7)

where ki, υi,j > 0, ∀i, j = 1, · · · , N . It is shown in
[Shames et al. (2011)] that the controller (7) can guarantee
the asymptotically convergence to consensus. The closed-
loop of system (6) and (7) can be used to formulate
many physical systems in reality. One example is power
networks, where ξi(t) and ζi(t) represent the phase angle
and frequency of bus i. The coefficients ki and υi,j are
the damping coefficient of bus i and the susceptance
of the power line connecting buses i and j normalized
by the inertia of bus i [Kundur et al. (1994)]. Another
example is the mass-damper systems with friction and

linear dampers, see e.g., [Van der Schaft and Maschke
(2013)].

When the attacks are implemented and the sensors are
placed, the closed-loop of system (6) and (7) can be
rewritten in the following compact form:[

ξ̇(t)

ζ̇(t)

]
=

[
0 I
−L −K

] [
ξ(t)
ζ(t)

]
+Bd(t),

y(t) = C

[
ξ(t)
ζ(t)

]
,

(8)

where ξ(t) = [ξ1(t), · · · , ξn(t)]>, ζ(t) = [ζ1(t), · · · , ζn(t)]>,
B ∈ R2n, C> ∈ R2n, L is the Laplacian matrix as-
sociated with a strongly connected graph, and K =
diag {k1, · · · , kn}.
Theorem 10. Consider a second-order system defined on
a strongly connected graph, for an arbitrary undetectable
single-attack, any defense strategy with arbitrary single
measurement is successful.

Proof. The possible entrances of the single-attack can be

expresses as B =
[
e>i 0>

]>
or B =

[
0> e>i

]>
, and the

available placement of single measurement is C =
[
e>j 0>

]
or C =

[
0> e>j

]
. Here we shall investigate these four

combinations.

For all four cases, the Rosenbrock system matrices are
column full rank when s = jω 6= 0 in a similar spirit of
the proof of Theorem 8. The rest of the proof is devoted to
the case s = a ≥ 0. We shall consider all the four possible
combinations of B and C. We start with a > 0.

(i) If B =
[
e>i 0>

]>
and C =

[
e>j 0>

]
, we have that

rank

([
aI −A B
C 0

])
= rank

aI −I ei
L aI +K 0
e>j 0 0


= rank

([
0 −I ei
I 0 (aI +K)ei
0 0 −e>j (a2I + aK + L)−1(aI +K)ei

])
.

(9)
The invertibility of matrix a2I + aK +L is apparent
since a > 0 and K = diag (k1, · · · , kn) < 0. Hence

rank

([
aI −A B
C 0

])
= 2n+ 1 (10)

if and only if
e>j (a2I + aK + L)−1(aI +K)ei 6= 0, ∀ei, ej ∈ E.

(ii) If B =
[
0> e>i

]>
and C =

[
e>j 0>

]
, we have that

(10) holds if and only if
e>j (a2I + aK + L)−1ei 6= 0, ∀ei, ej ∈ E

(iii) If B =
[
0> e>i

]>
and C =

[
0> e>j

]
, we have that

(10) holds if and only if
e>j a(a2I + aK + L)−1ei 6= 0, ∀ei, ej ∈ E,

(iv) If B =
[
e>i 0>

]>
and C =

[
0> e>j

]
, we have that

(10) holds if and only if
e>j
(
I − a(a2I + aK + L)−1(aI +K)

)
ei 6=

0, ∀ei, ej ∈ E.

Therefore, the case (i), (ii), (iii) require us to prove that all
entries of matrix (a2I+aK+L)−1 are non-zero, whilst we
need to clarify the matrix

(
I−a(a2I+aK+L)−1(aI +K)

)
holds no zero entry for the case (iv).
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We first prove that all entries of (a2I + aK + L)−1 are
non-zero. Since the Laplacian matrix L is a singular
M-matrix, then we have L = ρ(L̄) − L̄ and L̄ ≥ 0.
Choosing ki to be the largest entry of K, the matrix
K can be decomposed into K = kiI − K̄, where K̄ =
diag (ki − k1, · · · , ki − ki−1, 0, ki − ki+1, · · · , ki − kn) ≥ 0.
This implies that

a2I + aK + L = a2I + akiI + ρ(L̄)− aK̄ − L̄
= (a2 + aki + ρ(L̄))I − (aK̄ + L̄).

Since the row sums of the Laplacian matrix L are equal
to zero, then the row sums of the matrix L̄ are equal to
ρ(L̄). By Theorem 8. 1. 22 in [Horn and Johnson (2012)] to-
wards the spectral radius inequalities for the non-negative
matrix, we can easily show that

ρ(aK̄ + L̄) ≤ ρ(L̄) + ρ(aK̄) = ρ(L̄) + max
1≤j≤n

a(ki − kj).

Furthermore, since a2+aki+ρ(L̄) > ρ(L̄)+ max
1≤j≤n

a(ki−kj),

then a2I + aK + L = (a2 + aki + ρ(L̄))I − (aK̄ + L̄)
is a irreducible and singular M-matrix. Hence, we have
(a2I + aK + L)−1 > 0 from Lemma 4.

Next, we shall show that
(
I − a(a2I + aK + L)−1(aI +K)

)
holds no zero entry. It is straightforward to see that

a(a2I + aK + L)−1(aI +K) =
(
I + (a2I + aK)−1L

)−1
.

Since (a2I + aK)−1 is a positive diagonal matrix, (a2I +

aK)−1L, denoted as L̃ is a Laplacian matrix of a strongly

connected digraph. It is straightforward that (I + L̃) is
an irreducible and non-singular M-matrix, satisfying that
(I + L̃)−1 > 0. Together with the fact that (I + L̃)−1 is a

row stochastic matrix, which is implied by (I+ L̃) is a row

stochastic matrix, we have that (I + L̃)−1i,j ∈ (0, 1) ,∀i, j.
Thus, we can see that(

I − a(a2I + aK + L)−1(aI +K)
)
i,i
> 0,(

I − a(a2I + aK + L)−1(aI +K)
)
i,j
< 0, ∀i 6= j.

(11)

The final step of the proof is to investigate the case a = 0.
Recall what we have mentioned before in Lemma 7, the
negative Laplacian matrix −L defined on a strongly con-
nected digraph inherits key properties of the irreducible
and semi-stable Metzler matrix, which are ei /∈ Im(L) and
ej /∈ Im(L>), ∀ei, ej ∈ E. The Rosenbrock system matri-
ces of four cases can be divided into two groups. When B =[
e>i 0>

]>
, C =

[
e>j 0>

]
or B =

[
0> e>i

]>
, C =

[
e>j 0>

]
,

the Rosenbrock system matrices are two full column rank
matrices since ei /∈ Im(L), ej /∈ Im(L>), ∀ei, ej ∈ E.

However, when B =
[
e>i 0>

]>
, C =

[
0> e>j

]
or B =[

0> e>i
]>
, C =

[
0> e>j

]
, the Rosenbrock system matrices

are clearly not full column rank. In this occasion, it is
straightforward to verify that d0 = 0. 2

5. ILLUSTRATIVE EXAMPLES

Example 11. In this example, we shall verify the result in
Theorem 8. We consider a positive system given as

A =

[−4 1 1
1 −3 1
1 1 −2

]
, B =

[
1
0
0

]
,

C = [ 0 0 1 ] ,

(12)

where A is irreducible, whilst B and C represent the case
with a undetectable single-attack and a single measure-
ment. Since zero of the system is −4, one possible solution

of (3) with s = −4 is x̃(0) = x(0)−x̄(0) = [−10 10 0]
>

and
d0 = 10. This implies an attack signal is d(t) = −10e−4t.

In Fig. 1, the solid lines indicate the trajectories initiate

from x(0) = [14.92 10.84 10.53]
>

with attack d(t), while
the dot lines are initiated from the possibly fraudulent

initial state x̄(0) = [24.92 0.84 10.53]
>

. Notice that the
outputs of these two cases (the red line) coincide always,
which reveals the undetectability of the attack d(t). In Fig.
2, there are the trajectories initiated from x(0) with (solid
lines) and without (dash lines) the attack d(t). The attack
d(t) cannot affect the asymptotic stability of the system.
In these figures, x(t), x̄(t), and x̂(t) represent the normal
state trajectories, the fraudulent state trajectories, and the
attacked state trajectories respectively.

Fig. 1. The undetectability of the attack d(t) on the stable
positive system defined in Example 11.

Fig. 2. The influence of the attack d(t) on the stable
positive system defined in Example 11.

Example 12. Here we shall present the result in Theorem
10. Without loss of generality, we consider a second-order
system given as

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−2 1 1 −1 0 0
1 −2 1 0 −1 0
1 1 −2 0 0 −1

 , B =


1
0
0
0
0
0

 ,
C = [ 0 0 0 1 0 0 ] .

(13)
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Notice that the zeros of the system are 0, −1 and −0.5±
1.6583j. For s = −1 one solution to the equation (3) is

x̄(0) = x(0)− x̃(0) = [1 1 1 0 −1 −1]
>

and d0 = 1 which
implies the attack signal d(t) = −10e−t. For s = 0 and
s = −0.5± 1.6583j, all the solution to (3) satisfies d0 = 0.
Hence the attack does not exist.

For the simulation in Fig. 3, the actual initial state
are set to be x(0) = [0.21 0.09 0.77 0.21 0.39 0.55]>

and the possibly fraudulent initial state are x̄(0) =

[−0.79 −0.91 −0.23 0.21 1.39 1.55]
>

.

The solid lines in Fig. 3 are the trajectories initiated from
x(0) with attack d(t), while the dot lines are initiated
from x̄(0). Notice that the outputs of these two cases (the
cyan line) are exact the same and the undetectability is
confirmed. In Fig. 4, there are the trajectories initiated
from x(0) with (solid lines) and without (dash lines) the
attack d(t). The second-order system can still achieve
consensus with the attack d(t) while the final stable point
of {xi(t), i = 1, 2, 3} is deflected.

Fig. 3. The undetectability of the attack d(t) on the
second-order system defined in Example 12.

Fig. 4. The influence of the attack d(t) on the second-order
system defined in Example 12.

6. CONCLUSION

An explicit and efficient protection of positive systems and
second-order systems to undetectable attacks was investi-
gated in this paper. We showed that for any undetectable
single-attack, defense with any single measurement is suc-
cessful. The next step is to extend our analysis to the more
general scenario of multiple attacks, in a progressive man-
ner for (1) general high-order distributed positive systems
and (2) general linear multi-agent systems.
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