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Abstract— Due to their flexibility, battery powered or energy-
harvesting wireless networks are deployed in diverse applica-
tions. Securing data transmissions between wireless devices is
of critical importance in order to avoid privacy-sensitive user
data leakage. In this paper, we focus on the scenario where
some nodes are curious (but not malicious) and try to identify
the initial states of one (or more) other nodes, while some
other nodes aim to preserve the privacy of their initial states
from these curious nodes. We present a privacy-preserving
finite transmission event-triggered quantized average consensus
algorithm. Its operation is suitable for battery-powered or
energy-harvesting wireless network since it guarantees (i) effi-
cient (quantized) communication, and (ii) transmission ceasing
(which allows preservation of available energy). Furthermore,
we present topological conditions under which the proposed
algorithm allows nodes to preserve their privacy. We conclude
with a comparison of our algorithm against other algorithms
in the existing literature.

I. INTRODUCTION

Wireless control networks (WCN) play a major role in im-
portant applications due to their deployment flexibility, which
allows them to operate unattended in hostile environments
with a limited energy budget [1]. Security and privacy of
WCN is a challenging issue since, during their operation in a
potentially hostile environment, they are exposed to a variety
of privacy attacks. Specifically, distributed coordination algo-
rithms require exchange of collected data between neighbor-
ing nodes. In many occasions, there might be curious nodes
in the network that aim to extract private and/or sensitive
data, such as the state of a node. Efficient (quantized)
communication between nodes is another desirable feature
since (i) it is suitable for the available network resources,
and (ii) it exhibits advantages and applicability to public-key
cryptosystems. For these reasons, several strategies have been
proposed for distributed coordination via quantized average
consensus [2], [3].
Existing Literature. There have been different approaches
for dealing with the problem of calculating the quantized
average of the initial states with privacy preservation guar-
antees. In [4], [5] the authors present approaches based on
differential privacy, in which nodes inject uncorrelated noise
into the exchanged messages. The injection of correlated
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noise at each time step and for a finite period of time was
proposed in [6]. In [7] the nodes asymptotically subtract
the initial offset values they added in the computation. The
problem of calculating the average of the initial states in
a privacy-preserving manner is also discussed in [8] for a
continuous time weight balanced system. In [9] the average
of the initial states is calculated in a privacy-preserving man-
ner via a state-decomposition-based approach, whereas [10]
discusses the problem under certain topological conditions.
Homomorphic encryption [11], [12] is another strategy which
guarantees privacy preservation, but requires the existence of
trusted nodes and imposes heavier computational require-
ments. In [13] the authors present an event-based offset
adding algorithm. This strategy allows the calculation of the
exact quantized average in a finite number of time steps,
but requires a large number of time steps for convergence.
Finally, in [14] the authors present an initial zero-sum offset
algorithm. This strategy leads to fast finite-time convergence
to the exact average, but requires multiple simultaneous
transmissions, which increase significantly the header of the
transmitted message.
Main Contributions. In this paper, we present a novel
privacy-preserving event-triggered distributed algorithm
which (i) achieves average consensus under privacy con-
straints with quantized communication, (ii) converges after
a finite number of time steps, and (iii) relies on event-
driven operation and ceases transmissions once convergence
has been achieved (which makes it suitable for battery
powered or energy-harvesting wireless networks). The main
contributions of our paper are the following.
A. We present a novel privacy-preserving distributed event-
triggered algorithm, which operates with quantized values
and calculates the exact average of the initial states under
privacy constraints; see Algorithm 1 in Section IV-B.
B. We show that our proposed privacy-preserving algorithm
converges after a finite number of iterations for which
we provide a polynomial upper bound. Furthermore, we
establish our algorithm’s transmission stopping capabilities;
see Theorem 1 in Section IV-C.
C. We present topological conditions that ensure privacy
preservation for the nodes that follow the proposed algo-
rithm; see Proposition 1 in Section IV-D.
D. We demonstrate our algorithm’s operation and compare
its performance against other finite-time privacy-preserving
algorithms from the current literature; see Section V.
The proposed privacy-preserving algorithm relies on multiple
state decomposition. Specifically, at initialization, each node
decomposes its initial state into multiple substate values, so
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that the average of the substate values is equal to the initial
state. The node utilizes one substate as its initial state. Then,
it injects the other substates to its state at specific instances
and transmits them to a different neighboring node each time.
This ensures that each neighboring node receives at least one
substate, which helps preserve the privacy of each node’s
initial state (as long as at least one neighboring node is not
colluding with curious nodes).

II. NOTATION AND BACKGROUND

The sets of real, rational, integer and natural numbers
are denoted by R,Q,Z and N, respectively. The set of
nonnegative integers is denoted by Z+.
Graph-Theoretic Notions. Consider a network of n (n ≥ 2)
agents communicating only with their immediate neighbors.
The communication topology can be captured by a directed
graph (digraph), called communication digraph Gd = (V, E),
where V = {v1, v2, . . . , vn} is the set of nodes and E ⊆
V × V − {(vj , vj) | vj ∈ V} is the set of edges (self-
edges excluded). A directed edge from node vi to node vj
is denoted by mji ≜ (vj , vi) ∈ E , and captures the fact
that node vj can receive information from node vi (but not
the other way around). We assume that the given digraph
Gd = (V, E) is strongly connected (i.e., for each pair of
nodes vj , vi ∈ V , vj ̸= vi, there exists a directed path1

from vi to vj). The subset of nodes that can directly transmit
information to node vj is called the set of in-neighbors of vj
and is represented by N−

j = {vi ∈ V | (vj , vi) ∈ E}, while
the subset of nodes that can directly receive information
from node vj is called the set of out-neighbors of vj and
is represented by N+

j = {vl ∈ V | (vl, vj) ∈ E}. The
cardinality of N−

j is called the in-degree of vj and is denoted
by D−

j = |N−
j |, while the cardinality of N+

j is called the
out-degree of vj and is denoted by D+

j = |N+
j |.

Node Operation. With respect to quantization of information
flow, we have that at time step k ∈ Z+, each node vj ∈ V
maintains (i) the state variables ysj [k], z

s
j [k], q

s
j [k] (where

ysj [k] ∈ Z, zsj [k] ∈ Z+, qsj [k] =
ys
j [k]

zs
j [k]

), (ii) the mass variables
yj [k], zj [k], (where yj [k] ∈ Z and zj [k] ∈ Z+), (iii) the
substate counter sj (where sj ∈ N), (iv) the privacy variables
uy
j [sj ], uz

j [sj ] (where uy
j [sj ] ∈ Z, uz

j [sj ] ∈ Z), (v) the
transmission variables S brj and M trj (where S brj ∈ N
and M trj ∈ N).

For every node vj , the state variables ysj [k], z
s
j [k], q

s
j [k] are

used to store the received messages, calculate the quantized
average of the initial values, and communicate with other
nodes; the mass variables yj [k], zj [k] are used to commu-
nicate with other nodes; the substate counter sj is used to
transmit the privacy variables; the privacy variables uy

j [sj ],
uz
j [sj ] are used to preserve the privacy of the initial state; and

the transmission variables S brj , M trj are used to decide
whether the state variables will be broadcasted or the mass
variables will be transmitted.

1A directed path from vi to vj exists if we can find a sequence of
vertices vi ≡ vl0 , vl1 , . . . , vlt ≡ vj such that (vlτ+1

, vlτ ) ∈ E for τ =
0, 1, . . . , t− 1.

Node Transmission Strategy. We assume that each node
is aware of its out-neighbors and can directly transmit
messages to each out-neighbor; however, it cannot neces-
sarily receive messages (at least not directly) from them. In
the proposed distributed algorithm, each node vj assigns a
round-robin unique order in the set {0, 1, ...,D+

j −1} to each
of its outgoing edges mlj , where vl ∈ N+

j . More specifically,
the order of link (vl, vj) for node vj is denoted by Plj

(such that {Plj | vl ∈ N+
j } = {0, 1, ...,D+

j − 1}). This
unique predetermined order is used during the execution of
the proposed distributed algorithm as a way of allowing node
vj to transmit messages to its out-neighbors in a round-robin
fashion. This means that each node vj transmits directly to
one out-neighbor at a time, following a predetermined order.
The next time it transmits to an out-neighbor, it continues
from the outgoing edge it stopped the previous time, and
cycles through the edges in a round-robin fashion according
to the predetermined ordering.

III. PROBLEM FORMULATION

Consider a strongly connected digraph Gd = (V, E), where
each node vj ∈ V has an initial (i.e., for k = 0) quantized
value yj [0] (for simplicity, we take yj [0] ∈ Z). Furthermore,
consider that the node set V is partitioned into three disjoint
subsets. Specifically, we have (i) the subset of nodes vj ∈
Vp ⊂ V that wish to preserve their privacy by not revealing
their initial states yj [0] to other nodes, (ii) the subset of nodes
vc ∈ Vc ⊂ V that are curious and try to identify the initial
states of all or a subset of nodes in the network, and (iii)
the rest of the nodes vi ∈ Vn ⊂ V that neither wish to
preserve their privacy nor aim to identify the states of any
other nodes. Note that Vp∩Vc = ∅, which means that curious
nodes in Vc do not worry about preserving the privacy of
their initial states. In fact, since curious nodes collaborate
arbitrarily among themselves (in order to identify the initial
states of other nodes in the network), we assume that they
are willing to communicate to other curious nodes their states
and their received messages over side channels (effectively,
curious nodes operate like a single entity). An example is
shown in Fig. 1 (from [14]).

vj1

vj2

vcvλ

Fig. 1. Example of a digraph with the different types of nodes in the
network: nodes vj1 , vj2 ∈ Vp wish to preserve their privacy, node vc ∈ Vc

is curious and wishes to identify the initial states of other nodes in the
network, and node vλ ∈ Vn is neither curious nor wishes to preserve its
privacy.

We consider that the private information for each node
is its initial state yj [0]. We adopt the following notion of
privacy, which aims to ensure that the state yj [0] cannot be
inferred exactly by curious nodes and relates to notions of
possible innocence in theoretical computer science [15], [16]
in the sense that there is some uncertainty about yj [0].
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Definition 1. A node vj ∈ Vp preserves the privacy of
its initial state yj [0] ∈ Z if yj [0] cannot be inferred by
curious nodes vc ∈ Vc at any point during the operation of
the algorithm. This means that curious nodes in Vc cannot
determine a finite range [α, β] (where −∞ < α < β < ∞
and α, β ∈ R) in which the initial state yj [0] lies in.

In this paper, we develop a distributed algorithm that
allows nodes to address problems P1, P2 and P3 presented
below, while processing and transmitting quantized informa-
tion via available communication links.
P1. Every node vj obtains, after a finite number of steps, a
fraction qsj which is equal to the exact average q of the initial
states of the nodes (i.e., there is no quantization error), where

q =

∑n
l=1 yl[0]

n
. (1)

Specifically, we argue that there exists k0 so that for every
k ≥ k0 we have

ysj [k] = α

n∑
l=1

yl[0] and zsj [k] = αn, (2)

for some α ∈ N. This means that

qsj [k] =
(
∑n

l=1 yl[0])α

nα
:= q, (3)

for every vj ∈ V (i.e., for k ≥ k0 every node vj calculates
q as the ratio of two integer values).
P2. Every node vj ∈ Vp preserves the privacy of its initial
state yj [0] (i.e., it does not reveal its initial state yj [0] to
other nodes) when it exchanges quantized information with
neighboring nodes while calculating q in (1) (i.e., its state
variables ysj , zsj , qsj fulfill (2) and (3), respectively).
P3. Every node vj stops performing transmissions towards
its out-neighbors vl ∈ N+

j once its state variables ysj , zsj , qsj
fulfill (2) and (3), respectively.

IV. PRIVACY-PRESERVING EVENT-TRIGGERED
QUANTIZED AVERAGE CONSENSUS ALGORITHM

WITH FINITE TRANSMISSION CAPABILITIES

Assumption 1. We assume that all nodes have knowl-
edge of the maximum out-degree in the network D+

max =
maxvj∈V D+

j (or a common upper bound of it).

Assumption 1 is important for guaranteeing convergence
to the average of the initial states. In case Assumption 1 does
not hold (or if different nodes use different upper bounds),
then our algorithm may converge to a value that is not equal
to the average of the initial states (i.e., our algorithm will
simply achieve consensus). Specifically, in (2) the α may
not be the same for ys and zs. Thus, qs in (3) may not be
equal to q; the reason for this will become clear later in the
paper. It is worth pointing out that nodes can run a simple
max consensus algorithm [17] on their out-degrees to easily
obtain D+

max needed in Assumption 1.

A. Initialization for Privacy-Preserving Algorithm with Mul-
tiple State Decomposition

Our strategy is based on the event-triggered deterministic
algorithm in [18] with some modifications (since the algo-
rithm in [18] is not privacy-preserving). The main difference
is the deployment of a mechanism that decomposes the initial
state yj [0] of each node vj ∈ Vp into D+

max + 2 substates.
The average of the D+

max+2 substates is equal to the initial
state yj [0]. Subsequently, each substate is transmitted to a
different out-neighbor at a different time step.

In previous works (e.g., [6], [7], [13], [14], [19]), each
node vj ∈ Vp injects a nonzero offset uj to its initial state.
This means that it sets ỹj [0] = yj [0] + uj , where uj ̸=
0. However, in our case we require each node vj ∈ Vp to
decompose its initial state yj [0] into D+

max + 2 substates
whose average is equal to the initial state. Furthermore, each
node vj maintains its substate counter sj ∈ N, and its privacy
variables uy

j [sj ] ∈ Z, uz
j [sj ] ∈ Z. At initialization, each

node vj ∈ Vp chooses the privacy variables uy
j [sj ] ∈ Z,

uz
j [sj ] ∈ Z, to satisfy the following constraints:

uy
j [sj ] = 0, ∀ sj > D+

max + 1, (4a)

yj [0] =

∑D+
max+1

sj=0 uy
j [sj ]

D+
max + 2

, (4b)

uz
j [sj ] = 1, ∀ sj ∈ [0,D+

max + 1], (4c)

uz
j [sj ] = 0, ∀ sj > D+

max + 1. (4d)

Constraints (4a)–(4d) are explicitly analyzed below:
1. In (4a) each node vj stops injecting nonzero offsets after
D+

max + 2 time steps in order not to intervene with the
calculation of the quantized average. This allows each node
to calculate the exact quantized average of the initial states
without any error.
2. In (4b) the average of the total injected offset in the
network by node vj needs to be equal to node vj’s initial
state yj [0]. This means that each node vj creates D+

max + 2
substates of its initial state in a way that allows the cal-
culation of the exact quantized average of the initial states
without any error.
3. In (4c) the substate uz

j [sj ] which is injected in the network
by node vj needs to be equal to 1 so that (i) the event-
triggered conditions of the presented algorithm hold and (ii)
the operation of the algorithm leads to the calculation of the
exact average.
4. In (4d) each node vj stops injecting nonzero offsets after
D+

max + 1 time steps which allows the calculation of the
quantized average without any error.

We will argue that the above choices lead to the calcula-
tion of the exact quantized average in a privacy-preserving
manner.

Remark 1. Note here that each node vj ∈ Vp that wishes to
preserve its privacy chooses its privacy variables uy

j [sj ] ∈ Z,
uz
j [sj ] ∈ Z according to (4a)–(4d). Each node vi /∈ Vp

that does not wish to preserve its privacy can simply set
uy
i [sj ] = yi[0], for every si ∈ [0,D+

max + 1]. Then, each
vi /∈ Vp simply executes the proposed algorithm. Note here
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that curious nodes execute the proposed algorithm with
parameters chosen as described previously, but may com-
municate and reveal to other curious nodes their states and
their received messages. However, they do not interfere with
the computation of the quantized average in any way (e.g.,
they do not transmit corrupted messages to their neighbors).

B. Privacy-Preserving Finite Transmission Event-Triggered
Algorithm

Algorithm 1 Finite-Time Privacy-Preserving Event-
Triggered Quantized Average Consensus
Input: A strongly connected digraph Gd = (V, E) with n =
|V| nodes and m = |E| edges. Each node vj ∈ V has an
initial state yj [0] ∈ Z and has knowledge of D+

max.
Initialization: Each node vj ∈ V does the following:
1) Assigns to each outgoing edge vl ∈ N+

j a unique order
Plj in the set {0, 1, ...,D+

j − 1}.

2) Chooses uy
j [sj ] such that (

∑D+
max+1

sj=0 uy
j [sj ])/(D+

max +

2) = yj [0]; uy
j [s

′
j ] = 0 for s′j > D+

max + 1; then, sets
counter sj = 0.

3) Chooses uz
j [sj ] = 1 for sj ∈ [0, D+

max+1], and uz
j [s

′
j ] =

0 for s′j > D+
max + 1.

4) Sets yj [0] = uy
j [sj ], zj [0] = uz

j [sj ], zsj [0] = zj [0],
ysj [0] = yj [0], qsj [0] = ysj [0]/z

s
j [0], sj = sj+1, S brj = 0,

M trj = 0.
5) Broadcasts zsj [0], y

s
j [0] to every vl ∈ N+

j .
Iteration: For k = 0, 1, 2, . . . , each node vj ∈ V:
1) Receives ysi [k], z

s
i [k] from every vi ∈ N−

j (if no message
is received it sets ysi [k] = 0, zsi [k] = 0).

2) Receives yi[k], zi[k] from each vi ∈ N−
j and sets

yj [k + 1] = yj [k] +
∑

vi∈N−
j

wji[k]yi[k],

zj [k + 1] = zj [k] +
∑

vi∈N−
j

wji[k]zi[k],

where wji[k] = 1 if a message with yi[k], zi[k] is received
from in-neighbor vi, otherwise wji[k] = 0.

3) If wji[k] ̸= 0 or zsi [k] ̸= 0 for some vi ∈ N−
j then calls

Algorithm 1.A
4) Sets M trj = max{M trj , u

z
j [sj ]}.

5) If M trj = 1 then (i) sets yj [k] = yj [k]+uy
j [sj ], zj [k] =

zj [k]+uz
j [sj ], and (ii) chooses vl ∈ N+

j according to Plj

(in a round-robin fashion) and transmits yj [k], zj [k]; then,
sets yj [k] = 0, zj [k] = 0, M trj = 0, sj = sj + 1.

6) If S brj = 1 then broadcasts zsj [k+1], ysj [k+1] to every
vl ∈ N+

j ; then, sets S brj = 0.
7) Repeats (increases k to k + 1 and goes to Step 1).
Output: (3) holds for every vj ∈ V .

Algorithm 1.A Event-Triggered Conditions for Algorithm 1
(for each node vj)
Input
ysj [k], z

s
j [k], q

s
j [k], yj [k + 1], zj [k + 1], S brj , M trj and

the received ysi [k], z
s
i [k] from every vi ∈ N−

j .
Execution
1) Event Trigger Conditions 1: If

Condition (i): zsi [k] > zsj [k], or
Condition (ii): zsi [k] = zsj [k] and ysi [k] > ysj [k],
then sets

zsj [k + 1] = max
vi∈N−

j

zsi [k], and

ysj [k + 1] = max
vi∈{vi′∈N−

j |zs
i′ [k]=zs

j [k+1]}
ysi [k],

and sets qsj [k + 1] =
ys
j [k+1]

zs
j [k+1] , and S brj = 1. If neither

Condition (i) nor Condition (ii) hold, node vj sets zsj [k+
1] = zsj [k], y

s
j [k + 1] = ysj [k], q

s
j [k + 1] = qsj [k].

2) Event Trigger Conditions 2: If
Condition (i): zj [k + 1] > zsj [k + 1], or
Condition (ii): zj [k + 1] = zsj [k + 1] and yj [k + 1] >
ysj [k + 1],
then sets zsj [k + 1] = zj [k + 1], ysj [k + 1] = yj [k + 1],

and sets qsj [k + 1] =
ys
j [k+1]

zs
j [k+1] and S brj = 1.

3) Event Trigger Conditions 3: If
Condition (i): 0 < zj [k + 1] < zsj [k + 1] or
Condition (ii): zj [k + 1] = zsj [k + 1] and yj [k + 1] <
ysj [k + 1],
then sets M trj = 1.

Output
ysj [k], z

s
j [k], q

s
j [k], S brj , M trj .

Definition 2. During the execution of Algorithm 1, at time
step k0, there is at least one node vj′ ∈ V , for which

zj′ [k0] ≥ zi[k0], ∀vi ∈ V. (5)

Then, among the nodes vj′ for which (5) holds, there is at
least one node vj for which

yj [k0] ≥ yl[k0], where vj , vl ∈ {vj′ ∈ V | (5) holds}. (6)

For notational convenience we will call the mass variables
of node vj for which (5) and (6) hold as the “leading mass”
(or “leading masses”).

The intuition behind Algorithm 1 is as follows. Each node
vj ∈ Vp that would like to preserve its privacy performs
the steps described below. Note that a node vi ∈ Vn

performs similar steps but with different values for the
substate variables as discussed earlier.
Initialization.
A. Node vj assigns to each outgoing edge a unique order Plj

in order to perform transmissions in a round-robin fashion.
B. Node vj initializes the substate counter sj to zero (i.e.,
sj = 0) and the set of (D+

max + 2) privacy variables uy
j [sj ],

uz
j [sj ] according to (4a)–(4d) for sj ∈ [0,D+

max + 1].
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C. Node vj utilizes the substates uy
j [0], u

z
j [0] as its initial

state (i.e., it sets yj [0] = uy
j [0] and zj [0] = uz

j [0]). Then,
it considers its set of stored mass variables yj [0], zj [0]
to be the “leading mass.” For this reason, it sets its state
variables zsj [0], y

s
j [0], q

s
j [0] to be equal to the stored mass

variables yj [0], zj [0], and then broadcasts the values of its
state variables.

Iteration.
A. Node vj receives the (possibly) transmitted state variables
from its in-neighbors and, receives and stores the (possibly)
transmitted mass variables from its in-neighbors.
B. If node vj received a set of state variables and/or a set
of mass variables from its in-neighbors, then it executes
Algorithm 1.A. During Algorithm 1.A each node vj checks:
B – Event Trigger Conditions 1: It checks whether the
received set of state variables is equal to the “leading mass.”
If it receives messages from multiple in-neighbors it checks
which set of state variables is the “leading mass.” If Event
Trigger Conditions 1 hold, it sets its state variables to be
equal to the received set of state variables which is the
“leading mass” and decides to broadcast its updated state
variables (i.e., it sets S brj = 1).
B – Event Trigger Conditions 2: It checks whether the
set of mass variables it stored is the “leading mass.” If this
condition holds, it sets its state variables to be equal to the
stored set of mass variables and decides to broadcast its
updated state variables (i.e., it sets S brj = 1).
B – Event Trigger Conditions 3: It checks whether the
set of mass variables it stored is not the “leading mass”
(i.e., it checks whether its state variables are equal to the
“leading mass”). If this condition holds, this means that
a pair of mass variables of another node in the network
is the “leading mass” (and the state variables of node vj
became equal to the “leading mass” from Event Trigger
Conditions 1). This means the stored pair of mass variables
is not the “leading mass” and thus vj decides to transmit its
stored mass variables (i.e., it sets its transmission variable
M trj = 1).
C. Node vj sets its transmission variable M trj to be equal
to the maximum value of M trj and the substate uz

j [sj ].
This step is important for the privacy-preserving mechanism.
Note that the value of the substate uz

j [sj ] is equal to 1
for sj ∈ [0,D+

max + 1]. This means that the value of the
transmission variable M trj will become equal to 1 for the
first D+

max+1 time steps (since sj becomes equal to 1 during
the Initialization procedure). Thus, node vj will perform
transmissions of the substates uy

j [sj ], u
z
j [sj ] towards its out-

neighbors.
D. If M trj is equal to 1, node vj (i) injects the substates
uy
j [sj ], uz

j [sj ] to its mass variables, (ii) transmits its mass
variables towards an out-neighbor according to the unique
order Plj , and (iii) increases the substate counter sj .
E. If S brj is equal to 1, node vj broadcasts its state variables
towards every out-neighbor. Then, it repeats the procedure.

C. Convergence Analysis of Algorithm 1

Due to space limitations, we omit the proofs of the two
lemmas and the theorem below; they will be available in an
extended version of our paper.

Lemma 1. If, during time step k0 of Algorithm 1, the
mass variables of node vj fulfill (5) and (6), then the state
variables of every node vi ∈ V satisfy

zsi [k0] ≤ zj [k0], (7)

or

zsi [k0] = zj [k0] and ysi [k0] ≤ yj [k0]. (8)

Lemma 2. If, during time step k0 of Algorithm 1, the
mass variables of each node vj with nonzero mass variables
fulfill (5) and (6), then we have only “leading masses”
and no “follower masses.” This means that “Event Trigger
Conditions 2” will never hold again for future time steps
k ≥ k0. As a result, the transmissions that (may) take
place will only be via broadcasting (from “Event Trigger
Conditions 1 and 3”) for at most n− 1 time steps and then
they will cease.

Theorem 1. Consider a strongly connected digraph Gd =
(V, E) with n = |V| nodes and m = |E| edges. The
execution of Algorithm 1 allows each node vj ∈ V to reach
quantized average consensus after a finite number of time
steps k0 upper bounded by 1 + D+

max + n2 + (n − 1)m2,
where n is the number of nodes and m is the number of
edges in the network, and D+

max is the maximum out-degree
in the network. Furthermore, each node stops transmitting
towards its out-neighbors once quantized average consensus
is reached.

D. Topological Conditions for Privacy Preservation

Proposition 1. Consider a fixed strongly connected digraph
Gd = (V, E) with n = |V| nodes. Assume that a subset of
nodes vj ∈ Vp follow Algorithm 1 where they choose the
set of substates as in (4a)–(4d). Curious nodes vc ∈ Vc will
not be able to identify the initial state yj [0] of vj ∈ Vp, as
long as vj has at least one in- or out-neighbor that aims
to preserve its privacy, i.e., in-neighbor vi ∈ Vp ∩ N−

j or
out-neighbor vl ∈ Vp ∩N+

j .

Proof: We consider the following cases regarding the
topological conditions for privacy preservation during the
execution of Algorithm 1. Then, we summarize the results
and derive the necessary and sufficient topological conditions
for privacy preservation.
A. Every in- and out-neighbor of node vj is curious (i.e.,
vi ∈ Vc, ∀vi ∈ N−

j , and vl ∈ Vc, ∀vl ∈ N+
j ). In this

case, the curious in- and out-neighbors communicate with
each other and node vj ∈ Vp will not be able to maintain its
privacy. Specifically, at Initialization curious nodes will know
uy
j [0]. Then, during the Iteration procedure, curious nodes

will know the messages vj has received and the messages
vj has transmitted. This means that they will be able to
determine the values of uy

j [sj ] ∈ Z, for sj ∈ [1, D+
max].
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Note that the average of every uy
j [sj ], for sj ∈ [0, D+

max],
is equal to vj’s initial state yj [0]. This means that curious
nodes will be able to determine the initial state yj [0]. As a
result, for the case where every in- and out-neighbor of node
vj is curious, node vj does not preserve the privacy of its
initial state.
B. One out-neighbor of node vj , say vl′ , is neither curious
nor following the privacy-preserving strategy (i.e., vl′ ∈ Vn),
and all other in- and out-neighbors of both nodes vj , vl′ are
curious (i.e., vi ∈ Vc, ∀vi ∈ N−

j ∪ N−
l′ , and vl ∈ Vc, ∀vl ∈

(N+
j \ {vl′}) ∪ N+

l′ ). During the Initialization procedure,
curious nodes will know yl′ [0]. Also, during the Iteration
procedure, curious nodes will know the messages vj has
received and the messages vj has transmitted. Furthermore,
curious nodes can infer the input of node vl′ from its output.
Then, they will be able to extract the messages of node vj
(as if a curious node was directly connected to node vj). As
a result, for the case where one out-neighbor of node vj , say
vl′ , is neither curious nor following the privacy-preserving
protocol and every other in- and out-neighbor of node vj and
vl′ is curious, node vj does not preserve the privacy of its
initial state.
C. One out-neighbor of node vj , say vl′ , is following the
privacy-preserving strategy (i.e., vl′ ∈ Vp) and all other in-
and out-neighbors of both nodes vj , vl′ are curious (i.e., vi ∈
Vc, ∀vi ∈ N−

j ∪N−
l′ , and vl ∈ Vc, ∀vl ∈ (N+

j \{vl′})∪N+
l′ ).

During the Iteration procedure, curious nodes will not be able
to infer the substates transmitted from node vj to node vl′ .
This means that the inferred substates do not reveal the initial
state of node vj . As a result, curious nodes will not be able
to infer the initial state of node vj and the initial state of
node vl′ . Thus, in this case node vj preserves the privacy of
its initial state.
D. The case where one in-neighbor of vj , say vi′ , is following
the privacy-preserving strategy and all other in- and out-
neighbors of both nodes are curious can be analyzed as C.

From the four cases A – D we considered, we have that
a node vj ∈ Vp is able to preserve its privacy if it has at
least one in- or out-neighbor (say vi′ or vl′ ) who also wants
to preserve its privacy and follows the proposed privacy-
preserving strategy. Furthermore, it is important to note that
curious nodes will not be able to determine (i) the values of
the messages transmitted from vi′ to vj , or (ii) the values of
the messages transmitted from vj to vl′ . Since the substate
values can be arbitrary, this means that curious nodes will
not be able to determine a finite range [α, β] (where α < β
and α, β ∈ R) in which the initial state yj [0] lies in (as
already mentioned in Definition 1).

Remark 2. Note here that decomposing the initial state of
every vj ∈ Vp into D+

max + 2 sets of substates is essential
for privacy preservation. One set of substates is used as
vj’s initial state. The remaining D+

max + 1 substates are
transmitted towards the out-neighbors of vj . This means
that vj transmits at least one set of privacy variables (or
substates) to each out-neighbor. As a result, if vl′ ∈ Vp

(where vl′ ∈ N+
j ), then vl′ receives at least one set of vj’s
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Fig. 2. Execution of Algorithm 1 averaged over 1000 random digraphs
of 20 nodes. Top figure: Average values of node state variables plotted
against the number of iterations. Middle Figure: Average total number
of transmissions plotted against the number of iterations. Bottom Figure:
Average number of nodes performing transmissions plotted against the
number of iterations.

privacy variables and sums it with its own mass variables
and privacy variables. Then vl′ transmits its own privacy
variables towards its out-neighbors (which are summed with
the received privacy variables from vj).

V. SIMULATION RESULTS

In this section, we illustrate the behavior of Algorithm 1
and the advantages of its operation. We analyze the scenario
of 1000 randomly generated digraphs of 20 nodes each
where, the initial quantized state of each node remained
the same (for each one of the 1000 randomly generated
digraphs); the average of the chosen initial states happened
to be q = 13.4.

In Fig. 2, we illustrate Algorithm 1 over 1000 random
digraphs of 20 nodes; we show the average number of time
steps needed for quantized average consensus to be reached,
the average number of transmissions accumulated until each
time step, and the average number of nodes performing
transmissions at each time step. We observe that Algorithm 1
converges after 180 time steps, with the average total number
of transmissions performed until time step 180 being equal
to 808.4. Additionally, we observe that the average number
of nodes performing transmissions at each iteration becomes
almost equal to zero after 50 time steps, and becomes
eventually equal to zero after 180 time steps.

In Fig. 3 we plot the node state variables averaged over
1000 randomly generated digraphs of 20 nodes each, where
the average of the initial states is q = 13.4. We compare
Algorithm 1 against (i) the event-based offset algorithm in
[13] (see middle of Fig. 3), and (ii) the initial zero-sum offset
algorithm in [14] (see bottom of Fig. 3). In [13] (case (i)), the
initial offset for every node vj is uj ∈ [−100,−50] and the
offset adding steps are Lj ∈ [20, 40] during the execution.
In [14] (case (ii)), the initial offset for every node vj is
uj ∈ [−100, 100] and the offsets are u

(l)
j ∈ [−20, 20], for
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Fig. 3. Comparison between Algorithm 1, the event-based offset algorithm
in [13], and the initial zero-sum offset algorithm in [14] (averaged over
1000 random digraphs of 20 nodes). Top figure: Average values of node
state variables plotted against the number of iterations for Algorithm 1.
Middle Figure: Average values of node state variables plotted against the
number of iterations for the event-based offset algorithm in [13]. Bottom
Figure: Average values of node state variables plotted against the number
of iterations for the initial zero-sum offset algorithm in [14].

every vl ∈ N+
j . We observe that Algorithm 1 converges after

185 time steps and again significantly outperforms the event-
based offset algorithm in [13] which converges after 362 time
steps. Furthermore, it is interesting to note that Algorithm 1
requires almost the same number of time steps as the initial
zero-sum offset algorithm [14] which converges after 186
time steps. However, note that in [14] each node performs
multiple simultaneous transmissions of different quantized
values during the Initialization operation. Finally, note that
neither [13] nor [14] exhibit finite transmission capabilities.
This makes Algorithm 1 the first algorithm in the current
literature in which each node (i) achieves the exact quantized
average of the initial states, (ii) terminates its transmission
operation, and (iii) preserves the privacy of its initial state.

VI. CONCLUSIONS

In this paper, we presented a privacy-preserving event-
triggered quantized average consensus algorithm. The al-
gorithm allows each node in the network to calculate the
exact quantized average of the initial states in the form of
a quantized fraction without revealing its initial quantized
state to other nodes. The privacy-preserving strategy takes
full advantage of the algorithm’s event-based nature and
finite transmission capabilities and allows each node to cease
transmissions once convergence has been achieved without
knowledge of any global parameter (e.g., network diameter).
We also analyzed the algorithm’s finite-time convergence and
presented an upper bound on the required number of time

steps. Then, we presented necessary and sufficient topologi-
cal conditions under which the proposed algorithm allows
nodes to preserve their privacy. Finally, we demonstrated
the performance of our proposed algorithm and compared
it against other algorithms in the existing literature.
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