
Annual Reviews in Control 54 (2022) 200–218

A
1

T

C
s
J
K
a

b

c

d

e

A

K
E
H
B
M
S
D
L

1

o
c
J
n
G
r
i
w
&
M

i
a
t
A
c
w
a

h
R

Contents lists available at ScienceDirect

Annual Reviews in Control

journal homepage: www.elsevier.com/locate/arcontrol

utorial article

omparison of encrypted control approaches and tutorial on dynamic
ystems using Learning With Errors-based homomorphic encryption
unsoo Kim a, Dongwoo Kim b,∗, Yongsoo Song c, Hyungbo Shim d, Henrik Sandberg e,
arl H. Johansson e

Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
Western Digital Research, Milpitas, CA, USA
Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
ASRI, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
School of Electrical Engineering and Computer Science and Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden

R T I C L E I N F O

eywords:
ncrypted control
omomorphic encryption
ootstrapping
ulti-party computation

ecret sharing
ynamic system over encrypted data
earning With Errors

A B S T R A C T

Encrypted control has been introduced to protect controller data by encryption at the stage of computation
and communication, by performing the computation directly on encrypted data. In this article, we first review
and categorize recent relevant studies on encrypted control. Approaches based on homomorphic encryption,
multi-party computation, and secret sharing are introduced, compared, and then discussed with respect to
computational complexity, communication load, enabled operations, security, and research directions. We
proceed to discuss a current challenge in the application of homomorphic encryption to dynamic systems,
where arithmetic operations other than integer addition and multiplication are limited. We also introduce a
Learning With Errors based homomorphic cryptosystem called ‘‘Gentry-Sahai-Waters’’ scheme and discuss its
benefits that allow for recursive multiplication of encrypted dynamic systems, without use of computationally
expensive bootstrapping techniques.
. Introduction

Networked control has enabled significant developments in numer-
us industrial fields, while it has also led to urgent issues related to
yber-security (Amin, Cárdenas, & Sastry, 2009; Sandberg, Amin, &
ohansson, 2015). The more control systems have been connected to
etworks, the more possibilities for cyber-attacks have been discovered.
iven the inherent cyber–physical nature of these systems, such attacks

isk also the safe operation of the connected physical systems. Many
ncidents have been reported in recent years, including the StuxNet
orm (Langner, 2011), false data injection to power grids (Liu, Ning,
Reiter, 2011), and a security breach in water sewage system (Slay &
iller, 2007).

Studies in security of control systems are distinguished from those
n fault detection and isolation in the sense that the considered attacks
re malicious, not random faults, and may be elaborately designed
o avoid detection (Teixeira, Shames, Sandberg, & Johansson, 2015).

negligible probability of detection of a complex fault may be ac-
eptable in safety studies, but in security such cases can be the point
here the attacker deceives the detector. For example, zero-dynamics
ttacks (Pasqualetti, Dörfler, & Bullo, 2013) exploiting system models,

∗ Corresponding author.
E-mail address: Dongwoo.Kim@wdc.com (D. Kim).

replay attacks (Mo & Sinopoli, 2009) exploiting signals, and covert
attacks (Smith, 2015) exploiting both models and signals, have been
reported. A common point in these attacks is that the more the attacker
learns of the target system, the more effective and theoretically undetectable
attacks can be designed. An extreme case is the covert attack presented
in Smith (2015); if an adversary can compromise both the input and
output communication using all the information of model and signals,
then it can decouple the closed-loop of the plant and the controller, and
manipulate the plant arbitrarily. This is while the controller (with any
anomaly detector) cannot distinguish whether the received signals are
compromised, or not (see Fig. 1).

From the motivation that data stored or being transmitted in net-
works may be used for advanced attack generation, the notion of
encrypted control has been introduced (Farokhi, Shames, & Batterham,
2017; Kim et al., 2016; Kogiso & Fujita, 2015; Schulze Darup, Alexan-
dru, Quevedo, & Pappas, 2021), which aims for security enhancement
by protecting all data in networked controllers by encryption. Con-
ventional encryption has been used in data transmission, as illustrated
in Fig. 2(a), but computing devices in the network layer have been
regarded as one of the most vulnerable parts. Since cryptosystems
vailable online 28 October 2022
367-5788/© 2022 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.arcontrol.2022.10.002
eceived 29 July 2022; Received in revised form 10 October 2022; Accepted 10 O
ctober 2022

http://www.elsevier.com/locate/arcontrol
http://www.elsevier.com/locate/arcontrol
mailto:Dongwoo.Kim@wdc.com
https://doi.org/10.1016/j.arcontrol.2022.10.002
https://doi.org/10.1016/j.arcontrol.2022.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.arcontrol.2022.10.002&domain=pdf

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.
Fig. 1. A possible scenario (Smith, 2015) when all the information of system model
and control signals is used for cyber-attacks.

allowing arithmetic operations was invented (Rivest, Adleman, Der-
touzos, et al., 1978), more developed schemes (Cheon, Kim, Kim, &
Song, 2017; ElGamal, 1985; Paillier, 1999) have been applied to control
as in Farokhi et al. (2017), Kim et al. (2016) and Kogiso and Fujita
(2015). The concept of ‘‘control operation over encrypted data’’, as
illustrated in Fig. 2(b), is therefore a promising direction for improving
cyber-security.

Benefits of the solution in Fig. 2(b) are that all data can be kept
secure even when computation is performed, without decryption, and
the secret key for decryption is not shared. Unauthorized parties,
or possible network intruders, cannot learn any information through
eavesdropping as long as they do not have the secret key, because
encrypted signals cannot be distinguished from uniformly generated
random signals. Furthermore, a typical type of cryptosystem used for
encrypted operation, called homomorphic encryption, is known to be
more beneficial than other security mechanisms. For example, com-
pared to methods based on differential privacy (Dwork, 2008; Dwork,
Roth, et al., 2014), it does not sacrifice precision of the encrypted
messages, regardless of the increase of the security level. Also, many
homomorphic encryption schemes are based on discrete lattice prob-
lems, such as Lyubashevsky, Peikert, and Regev (2010) and Regev
(2009), and consider a stronger adversarial model than other schemes,
such as chaotic cryptology techniques (Bourbakis & Alexopoulos, 1992;
Matthews, 1989).

Nonetheless, the more operational abilities in recent cryptosystems
are generally accompanied by increased costs in terms of computation
or communication resource use. From an engineering point of view, ap-
plication of cryptosystems to control thus should consider the following
aspects for design.

• Type of controller, required operations, and available resources. Cryp-
tosystems that allow arithmetic operations or guarantee a higher
level of security usually require more data storage for encrypted
data. The computational effort or communication overhead taken
for each use of the arithmetic function may cost much more
than usual operation over un-encrypted messages. Possibly, only
one type of arithmetic function is supported, or only a limited
number of function evaluations may be allowed. Thus, the de-
sign of encrypted control systems should consider the required
type of operations and their complexity; the available amount of
computation and communication resources; the time use for each
arithmetic computation; whether the system is static or dynamic;
the available amount of data storage; and if there are multiple
units cooperating in the computation or there is only a single unit.

• Security model (adversarial model). The design should include an
adversarial model, which determines from what attacks the sys-
tem is protected. The adversary of interest can be an unauthorized
party in the network, or an external hacker intruding the network.
The adversary may aim for learning certain information by eaves-
dropping the communication lines or networked devices; or for
201
manipulating or forging a portion of data with a certain objective
in mind. Depending on the number of units and the structure of
the design, the security objective can be to protect the data from
external parties only, or to conceal it from participating units who
may be curious about other participants’ private information.

Considering the above aspects, the designer of an encrypted control
system chooses an appropriate cryptosystem, which may be computa-
tionally fast with only limited arithmetic support, may have much more
operation abilities with requirement of large amounts of resources, or
can be suitable for centralized or distributed computation schemes,
respectively. Usually, there are trade-offs between the cryptosystems,
in terms of use of resources, level of security, or enabled encrypted
operations. Relevant research efforts try to overcome this trade-off; by
re-constructing a computation system which exploits only a limited
type of operation, by developing a novel cryptosystem that is more
appropriate for a certain application, or by proposing a protocol that
guarantees an improved level of security. In short, the efforts try to
improve the security or computational efficiency, while not losing
operational abilities.

Contribution and organization: This article provides both a general re-
view of the field of encrypted control and a comprehensive introduction
of the specific topic of dynamic system design based on homomorphic
encryption. In Section 2, we discuss main approaches for encrypted
control, which are based on homomorphic encryption, multi-party com-
putation, or secret sharing, respectively. These cryptosystems, as tools
for encrypted control, are briefly introduced, and the approaches and
their application to control are compared. Trade-offs between com-
putation speed, operation ability, and security are also discussed. In
Section 3, we focus on the homomorphic encryption based approach
and introduce recent methods for linear dynamic systems. A tutorial on
a Learning With Errors (LWE) based homomorphic encryption scheme
is first provided, and we discuss its benefit in terms of recursive
multiplication. Then, we review a method that implements linear sys-
tems by exploiting only the addition and multiplication abilities of
cryptosystem. Finally, Section 4 concludes the paper.

Notation: Let N, Z, and R denote the set of natural numbers, integers,
and real numbers, respectively. The (component-wise) floor and round
functions are denoted by ⌊⋅⌋ and ⌈⋅⌋, respectively. For 𝑚 ∈ N and
𝑛 ∈ N, we let 0𝑚×𝑛 ∈ R𝑚×𝑛 be the zero matrix, and 𝐼𝑛 ∈ R𝑛×𝑛 be
the identity matrix. The set of integers modulo 𝑞 ∈ N is denoted
by Z𝑞 , and the (component-wise) modulo operation is defined by 𝑣
mod 𝑞 ∶= 𝑣 − ⌊𝑣∕𝑞⌋𝑞 for 𝑣 ∈ Z𝑚. We make use of ‘‘biased’’ modulo
operation defined as

𝑣 mod (𝑞, 𝑣0) ∶= 𝑣 −
⌊

𝑣 − 𝑣0
𝑞

⌋

𝑞 (1)

for 𝑣 ∈ Z𝑚 and 𝑣0 ∈ R𝑚, so that each component of the outcome is
greater than or equal to that of 𝑣0, and less than that of 𝑣0 + 𝑞. We
define col{𝑣𝑖}𝑛𝑖=1 = [𝑣⊤1 ,… , 𝑣⊤𝑛]

⊤ for column vectors {𝑣𝑖}𝑛𝑖=1 (or scalars),
and the (induced) infinity norm of a vector or a matrix is denoted as
‖ ⋅ ‖.

2. Encrypted control approaches

This section categorizes the relevant works into four categories
according to the underlying cryptographic primitives; homomorphic
encryption, fully homomorphic encryption, secret sharing, and multi-
party computation, together with a brief introduction to each primitive
and approach. Then, we provide discussions and comparisons between
them.

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.
Fig. 2. (a) Data protection by conventional encryption. (b) Configuration of encrypted control.
2.1. Homomorphic encryption based control

We begin with a brief introduction on homomorphic encryption.
Let a cryptosystem be denoted by (Z𝑞 ,,𝖤𝗇𝖼,𝖣𝖾𝖼), where the set Z𝑞 =
{0, 1,… , 𝑞 −1}, 𝑞 ∈ N, is the plaintext (un-encrypted message) space, 
is the ciphertext (encrypted) space, 𝖤𝗇𝖼 ∶ Z𝑞 →  and 𝖣𝖾𝖼 ∶  → Z𝑞 are
the encryption and decryption algorithms, respectively. We omit the
argument of encryption and decryption keys, for simplicity.

Homomorphic properties of cryptosystems imply that the encryp-
tion and decryption algorithms are ‘‘homomorphisms’’, which preserve
algebraic structure with respect to a certain arithmetic function. Let us
assume that the cryptosystem (Z𝑞 ,,𝖤𝗇𝖼,𝖣𝖾𝖼) is additively homomor-
phic, which means that the algorithms 𝖤𝗇𝖼 and 𝖣𝖾𝖼 are homomorphic
with respect to the addition operation; there exists a binary function
∗∶  ×  →  over ciphertexts such that

𝖣𝖾𝖼(𝐜1 ∗ 𝐜2) = 𝖣𝖾𝖼(𝐜1) + 𝖣𝖾𝖼(𝐜2) mod 𝑞, ∀𝐜1 ∈ , ∀𝐜2 ∈ ,

which implies that

𝐜 = 𝖤𝗇𝖼(𝑥1) ∗ 𝖤𝗇𝖼(𝑥2) ⟹ 𝖣𝖾𝖼(𝐜) = 𝑥1 + 𝑥2 mod 𝑞,

∀𝑥1 ∈ Z𝑞 , ∀𝑥2 ∈ Z𝑞 . (2)

It means that whenever we decrypt the outcome of the operation ∗ over
ciphertexts, we obtain the same addition outcome over plaintexts, so
it enables to perform the addition directly over encrypted messages,
without decryption.

The ability of addition is a basic property, but by exploiting it, mul-
tiplication by (un-encrypted) constant numbers can also be performed.
Given a natural number 𝑘 ∈ N, we define

𝑘 ⋅ 𝐜 ∶=

𝑘 times
⏞⏞⏞⏞⏞⏞⏞
𝐜 ∗ ⋯ ∗ 𝐜.

And, we extend the definition for an integer 𝑘 ∈ Z, by

𝑘 ⋅ 𝐜 ∶= (𝑘 mod (𝑞, 1)) ⋅ 𝐜,

where the operation mod(𝑞, 1) defined from (1) ensures that 𝑘 mod
(𝑞, 1) ≥ 1. Then, it follows that

𝖣𝖾𝖼(𝑘 ⋅ 𝐜) = (𝑘 mod (𝑞, 1)) ⋅ 𝖣𝖾𝖼(𝐜) mod 𝑞

= 𝑘 ⋅ 𝖣𝖾𝖼(𝐜) mod 𝑞

holds for all 𝑘 ∈ Z and 𝐜 ∈ , because 𝑘 mod(𝑞, 1) = 𝑘 + 𝑑𝑞 with some
𝑑 ∈ Z.

It enables multiplication by integer matrices as well; for an integer
matrix 𝐾 = [𝑘𝑖𝑗] ∈ Z𝑚×𝑛 and a set 𝐱 = {𝖤𝗇𝖼(𝑥𝑖)}𝑛𝑖=1 of encrypted
messages of 𝑥𝑖 ∈ Z𝑞 , 𝑖 = 1,… , 𝑛, we define

𝐾 ⋅ 𝐱 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑘11 𝑘12 ⋯ 𝑘1𝑛
𝑘21 𝑘22 ⋯ 𝑘2𝑛
⋮ ⋮ ⋱ ⋮

𝑘𝑚1 𝑘𝑚2 ⋯ 𝑘𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎢

⎣

𝖤𝗇𝖼(𝑥1)
𝖤𝗇𝖼(𝑥2)

⋮
𝖤𝗇𝖼(𝑥𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

∶=

⎡

⎢

⎢

⎢

⎢

⎢

(𝑘11 ⋅ 𝖤𝗇𝖼(𝑥1)) ∗ (𝑘12 ⋅ 𝖤𝗇𝖼(𝑥2)) ∗ ⋯ ∗ (𝑘1𝑛 ⋅ 𝖤𝗇𝖼(𝑥𝑛))

(𝑘21 ⋅ 𝖤𝗇𝖼(𝑥1)) ∗ (𝑘22 ⋅ 𝖤𝗇𝖼(𝑥2)) ∗ ⋯ ∗ (𝑘2𝑛 ⋅ 𝖤𝗇𝖼(𝑥𝑛))

⋮

⎤

⎥

⎥

⎥

⎥

⎥

, (3)
202

⎣
(𝑘𝑚1 ⋅ 𝖤𝗇𝖼(𝑥1)) ∗ (𝑘𝑚2 ⋅ 𝖤𝗇𝖼(𝑥2)) ∗ ⋯ ∗ (𝑘𝑚𝑛 ⋅ 𝖤𝗇𝖼(𝑥𝑛))⎦
which is simply a component-wise constant multiplication and consec-
utive additions over encrypted data. Then, it can also be easily verified
that 𝖣𝖾𝖼(𝐾 ⋅𝐱) = 𝐾 ⋅[𝑥1, 𝑥2,… , 𝑥𝑛]⊤ mod 𝑞, for all 𝐾 ∈ Z𝑚×𝑛 and 𝑥 ∈ Z𝑛

𝑞 .
Thanks to the property of allowing computation over ciphertexts

without the secret key nor decryption, the computation can be assigned
to an operation unit who is honest to do the computation correctly
while being curious about the transmitted data, or to a networked
unit which can be possibly accessed by unauthorized third parties.
In addition to the described homomorphic properties, there are also
encryption schemes (Boneh, Goh, & Nissim, 2005; Brakerski, Gentry,
& Vaikuntanathan, 2014; Brakerski & Vaikuntanathan, 2011; Cheon
et al., 2017; Dijk, Gentry, Halevi, & Vaikuntanathan, 2010; Fan &
Vercauteren, 2012) which enable to compute both the addition and
a limited number of multiplication on encrypted data. Those schemes
are sometimes called somewhat or leveled homomorphic encryption to
be distinguished from (partially) homomorphic encryptions allowing
addition only, but we denote both of them, simply, as homomorphic
encryption.

The application of homomorphic encryption for control has been
introduced in Farokhi et al. (2017), Kim et al. (2016) and Kogiso and
Fujita (2015). Since homomorphic cryptosystems support addition and/
or multiplication, most controllers based on homomorphic encryption
considers linear operation (matrix multiplication) or polynomial func-
tions (represented with small number of additions and multiplications)
only; see Fig. 3(a) for an example case of linear controllers based
on homomorphic encryption. It has also been used for implementing
model predictive control (Schulze Darup, Redder, Shames, Farokhi, &
Quevedo, 2017), data-driven control (Alexandru, Tsiamis, & Pappas,
2020), and reinforcement learning based control (Suh & Tanaka, 2021),
where the computation circuits are represented with linear functions or
low degree polynomials.

Operation unit and attack model: The model of the controller is
usually considered as a single operation unit who performs the compu-
tation over encrypted data without accessing the secret key. It is often
specified as a networked controller under possible eavesdropping attack
(which tries to learn private control data) or considered as a cloud-
based controller performing the computation on behalf of the controller
designer, which should not learn any private information through the
computation. In short, adversaries of homomorphic encryption based
controllers can be both external eavesdroppers and the controller itself,
and cryptosystem parameters are determined for a desirable level of
security.

Challenges: A main issue is that encrypted implementation may be
limited to only addition or multiplication over integers. Even for homo-
morphic encryption allowing both addition and multiplication, many
of them allow evaluating a limited number of multiplications only.
As a consequence, implementation of dynamic systems that iteratively
compute and update the state has been considered as a challenge,
and representing diverse nonlinear systems using only addition and
multiplication is currently an open problem.

Even for linear systems, dynamic systems implemented over en-
crypted data may be incapable of operating for an infinite time horizon.
This is because, based on homomorphic encryption only, multiplication

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.
Fig. 3. (a) Homomorphic encryption based controllers for static feedback. (b) Dynamic encrypted controller implementation using additional transmission lines for the state.
Fig. 4. Multiple encrypted linear controllers with switching function.

by non-integer numbers can be performed only a finite number of
times, so that the dynamic operation that multiplies the state by non-
integer numbers cannot be continued for an infinite time horizon
(see the example described in (32)). Fig. 3(b) describes a method for
dynamic controllers considered in initial studies, which uses additional
transmission lines for the state; assuming that the encrypted state of the
controller can be transmitted to the device having the decryption key,
the state can be decrypted and re-encrypted and transmitted back to the
controller. However, the limitation is that the system cannot continue
the operation without the presence of the decryption key, and the re-
encryption requires additional use of communication lines which may
be proportional to the dimension of the signal. Further discussions and
related methods can be found in Section 3.2.

2.2. Fully homomorphic encryption based methods

As introduced, homomorphic encryption supporting a finite number
of operations has limitations on its applicability. The first fully homo-
morphic encryption, with which one can perform arbitrary computation
without limitation, has been presented in Gentry (2009). Then, the
main concern has been reducing the computational cost, and follow-up
works have been proposed toward their practical use (Brakerski et al.,
2014; Cheon et al., 2017; Chillotti, Gama, Georgieva, & Izabachene,
2016; Ducas & Micciancio, 2015; Fan & Vercauteren, 2012), with
several library implementations. The crucial improvement from the pre-
vious homomorphic encryption (with limitations) is the introduction of
‘‘bootstrapping’’ procedure1 (Ducas & Micciancio, 2015; Gentry, Halevi,
& Smart, 2012) which refreshes (without a secret key) a ciphertext
into a new one with which one can continue the computation. Many
encryption schemes referred to in the previous section can be fully
homomorphic, by adding the bootstrapping procedure.

Thanks to the bootstrapping, any operation circuits in digital com-
puters can be implemented and run over encrypted data for an infinite
time horizon, since any logical functions with Boolean variables can
be represented using addition and multiplication. Nonetheless, the

1 Conceptually, it can be understood as an encrypted evaluation of the
decryption operation on the ciphertext, resulting in a new ciphertext having
the same message.
203
computational complexity of bootstrapping has been a critical issue, and
its requirement on the computation resource currently hinders it from
being used in practice.

The bootstrapping was first used for linear dynamic systems in Kim
et al. (2016). The latency time for bootstrapping may be larger than
the sampling period, but as described in Fig. 4, multiple identical
controllers are designed and the time for bootstrapping is scheduled in
a different way, so that the same output can be generated all the time
even when some of them are performing bootstrapping. Many homo-
morphic encryption based works (Alexandru et al., 2020; Fritz, Fauser,
& Zhang, 2019; Suh & Tanaka, 2021; Zhou et al., 2020) mentioned
in the previous section also claim that introduction of bootstrapping
enables the encrypted systems to update the state without interacting
with an entity holding the secret key.

Operation unit and attack model: Since fully homomorphic encryption
is simply a homomorphic encryption with further evaluation capa-
bilities, the operation model considered is the same as the case of
homomorphic encryption without use of bootstrapping. It also consid-
ers a single operation unit who should not learn any information from
the computation, while all the control data are kept encrypted so that it
is protected from external parties as well. A difference in practice is that
it should be able to use a large amount of computational or memory
resources, for bootstrapping.

Challenges: Main challenge of fully homomorphic encryptions is to
reduce the computational cost for bootstrapping. A couple of issues
regarding control operation can be listed; first, operations consisting
of addition, multiplication, and bootstrapping, may not be efficient for
non-polynomial functions, such as, comparison, if-else conditionals, or
transcendental functions, for which lots of arithmetic operations may
be required for the representation and result in impractical evaluation
cost. A countermeasure would be to represent the given operation
circuit to an ‘‘arithmetic-friendly form’’, so that the evaluation cost can
be reduced. And, since bootstrapping constitutes a major cost in fully
homomorphic encryption based schemes while it has been essentially
used, a momentous challenge will be to reduce the number of uses of
bootstrapping.

2.3. Secret sharing based schemes

Now, we describe another computation protocol based on secret
sharing, where private data are distributed in the form of ‘‘shares’’
to two or more parties so that an individual party cannot get any
information about the data. Still, each party can perform appropriate
computation on its share and generate the outcome from which the
owner of the data can reconstruct the computation outcome; in other
words, there is a homomorphic property on the shares, so that the
computation of control signals can be offloaded to outsourced operation
units, without disclosing any information on the input and output.

The most basic secret sharing with two computing parties, support-
ing additions, is described as follows. Let 𝑚 ∈ Z𝑞 be a message that
should be kept securely. A share for the first party is generated as
𝑐1 ∶= 𝑚 + 𝑟 mod 𝑞, where 𝑟 ∈ Z𝑞 is a random number sampled from
the uniform distribution over the set Z . And, the share for the other
𝑞

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.
Fig. 5. A basic example of secret sharing.
Fig. 6. Configuration of encrypted controller based on secret sharing with two operation units.
party is given by 𝑐2 ∶= −𝑟 mod 𝑞, so that 𝑚 = 𝑐1 + 𝑐2 mod 𝑞. By doing
so, the distribution of each share on each party follows the uniform
distribution over the set Z𝑞 , which means that referring to only one
share does not give any information about the message 𝑚. We note that
a new random number must be sampled whenever a message is split to
shares. See Fig. 5 for an example with Z𝑞 = Z5 = {0, 1, 2, 3, 4} and 𝑚 = 3.

The method itself is quite simple, but this scheme as a cryptosystem
is homomorphic with respect to addition and integer multiplication; let
two messages 𝑚 ∈ Z𝑞 and 𝑚′ ∈ Z𝑞 be split into two shares, as 𝑚 = 𝑐1+𝑐2
mod 𝑞 and 𝑚′ = 𝑐′1 + 𝑐′2 mod 𝑞, respectively. And, let the first shares
𝑐1 ∈ Z𝑞 and 𝑐′1 ∈ Z𝑞 be kept by the first operation unit and let the
other shares 𝑐′1 ∈ Z𝑞 and 𝑐′2 ∈ Z𝑞 be kept by the second operation unit.
Then, the addition operation (𝑚 + 𝑚′ mod 𝑞) can be performed by the
operation units in parallel, as

Operation unit 1 ∶ 𝑐𝖺𝖽𝖽1 = 𝑐1 + 𝑐′1 mod 𝑞

Operation unit 2 ∶ 𝑐𝖺𝖽𝖽2 = 𝑐2 + 𝑐′2 mod 𝑞

where the operation units cannot learn any information of 𝑚, 𝑚′, or 𝑚+
𝑚′ mod 𝑞. When the outcomes 𝑐𝖺𝖽𝖽1 and 𝑐𝖺𝖽𝖽2 as shares are collected from
both the units, then the plaintext outcome can be restored, because
(𝑚 + 𝑚′ mod 𝑞) = (𝑐𝖺𝖽𝖽1 + 𝑐𝖺𝖽𝖽2 mod 𝑞). And, for a vector �⃗� ∈ Z𝑛

𝑞 of 𝑛-
messages split as �⃗� = 𝑐1 + 𝑐2 mod 𝑞 by generating 𝑛-random numbers
in Z𝑞 , multiplication by (un-encrypted) integer matrices can also be
done by the operation units in parallel; for a matrix 𝐾 ∈ Z𝑚×𝑛, let the
operation units compute

Operation unit 1 ∶ 𝑐𝗆𝗎𝗅𝗍
1 = 𝐾 ⋅ 𝑐1 mod 𝑞

Operation unit 2 ∶ 𝑐𝗆𝗎𝗅𝗍
2 = 𝐾 ⋅ 𝑐2 mod 𝑞.

Then, it is easy to check that (𝐾 ⋅ �⃗� mod 𝑞) = (𝑐𝗆𝗎𝗅𝗍
1 + 𝑐𝗆𝗎𝗅𝗍

2 mod 𝑞). For
general schemes, one may refer to Shamir’s secret sharing (Shamir,
1979), and many extended results and methods can be found in lit-
erature (Beimel, 2011; Brickell, 1989; Karnin, Greene, & Hellman,
1983).

We have seen that secret sharing enables offloading linear opera-
tions without disclosing information, given that the computing parties
do not collude with others. Contrary to homomorphic encryptions
demanding a relatively large amount of storage and computational
resources on the operation device, secret sharing based methods can
be a good alternative for applications where computational resources
204

are limited but multiple operation units are available. For example,
it is proposed in Schulze Darup and Jager (2019) that the use of
secret sharing for encrypted control can reduce the time consumption
significantly, per each unit of operation (compared to homomorphic
encryption). Fig. 6 describes a linear controller based on secret sharing;
the sensor measurement 𝑦(𝑡) is distributed, as shares 𝑦1(𝑡) and 𝑦2(𝑡), to
two controllers, and each controller performs the linear operation and
sends the outcome to the actuator, respectively.

Secret sharing has also been employed for dealing with privacy
problems in distributed computation protocols, where multiple par-
ticipants collaboratively evaluate a common function of interest. For
example, average consensus can be considered as in Fig. 7(a), where the
participants compute the average of the individual values by communi-
cating with their neighbors. In terms of privacy, the goal is to perform
the computation while each individual value is not disclosed to other
parties. Methods based on differential privacy have been frequently
employed as in Mo and Murray (2016), Nozari, Tallapragada, and
Cortés (2017), where a trade-off between privacy and performance
is inevitable, depending on the size of injected noises. Then, the se-
cret sharing has been introduced for distributed systems; for example,
Fig. 7(b) describes a method proposed in Wang (2019) for privacy-
preserving average consensus. By splitting each individual value to two
shares, transmitting only one of them to the neighbors directly, and
reflecting the other share to the protocol ‘‘indirectly’’, the distributed
protocol can yield the same outcome without sacrificing the privacy of
each individual value. An advantage compared to differential privacy
is that there is no performance penalty for keeping the data private.

Operation unit and attack model: Secret sharing based control systems
introduce multiple operation units which perform the computation on
the distributed shares in parallel, and thus they consider an adversarial
model compromising some portion of the units. Specifically, ‘‘(𝑡,𝑁)-
threshold scheme’’ denotes that an adversary needs to get 𝑡-shares out
of the 𝑁-shares (distributed to the units) to recover the message. For
instance, the example described in Fig. 5 can be seen as (2,2)-threshold
secret sharing.

Challenges: Whereas secret sharing allows for efficient computation
between the shares of messages, the issue of possible collusion between
the units that reveals the value of the message is a main issue in this
framework. Furthermore, additional potential risk in practice would be
that, if there is an external party (not participating in the computation)
who succeeds in collecting the operation units’ information, then the

private data can also be exposed. Another challenge is that, analogous

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.
Fig. 7. (a) Conventional distributed protocol. (b) Distributed protocol based on secret sharing.
Fig. 8. (a) Configuration of two-party computation. (b) Encrypted multiplication based on two-party computation.
to methods solely based on homomorphic encryption, general nonlinear
functions over secret shares may be hard to implement and currently
they are limited. There is a trade-off between further operation abilities
on the shares and sacrifice of the security, so that it can be studied
and improved in the future; to perform operations other than addition,
interactions between the computing units or relaxation of the security
model is required. For example, in Schlor, Hertneck, Wildhagen, and
Allgöwer (2021), computation of polynomials of degree 𝑁 results in a
(2, 𝑁)-threshold secret sharing, where the private message is revealed
if any two of the shares are collected.

There are several works exploiting secret sharing to enhance the
privacy of control systems, where many of them also employ homo-
morphic encryption or other cryptographic schemes, together with use
of communication between the operation units. We refer to them as
‘‘multi-party computation’’ based schemes, which will be discussed in
the next subsection. In general, secret sharing is often regarded as a
sort of multi-party computation scheme, as it also utilizes multiple
parties for the computation. Nonetheless, for the sake of detailed
comparison and discussion in Section 2.5, we distinguish the secret
sharing algorithms from the multi-party computation; secret sharing
desirably does not utilize communication between the parties during
the computation, whereas for the multi-party computation, the parties
essentially communicate with other parties and collaborate for each
unit of computation.

2.4. Multi-party computation based control

Finally, we introduce approaches based on multi-party computa-
tion. The terminology multi-party computation is usually used broadly
and often includes the homomorphic encryption and secret sharing
based methods discussed in the previous subsections. Nonetheless, by
‘‘multi-party computation’’, throughout the article, we mean a nar-
rower framework employing homomorphic encryption, secret sharing,
and/or other cryptographic primitives, where the parties cooperate for
each unit of computation, by several interactions and communications
between them.
205
The scheme is to let multiple participants collaboratively evaluate
a function, where the inputs are given from the participants, but the
privacy of each input should be kept. That is, each participant’s input
should be used for the joint computation, but it should not be learned
by any other participant.2 See Fig. 8(a) describing a configuration of
two-party computation as a basic case; the two units jointly compute
the value of 𝑓 (𝑎, 𝑏) while the arguments 𝑎 and 𝑏 are not informed by
the other unit.

Fig. 8(b) shows a basic example of encrypted multiplication by
two-party computation. Let Unit 2 have two encrypted numbers, Unit
1 have the decryption key, and let the encryption 𝖤𝗇𝖼 be additively
homomorphic but not multiplicatively homomorphic. That is, Unit 2
can perform encrypted addition using the function ∗ as in (2), but it
cannot do the multiplication for the two encrypted messages 𝖤𝗇𝖼(𝑥1)
and 𝖤𝗇𝖼(𝑥2) directly, by itself. Then, the objective is to let Unit 2 obtain
the multiplication outcome of two messages as encrypted, with help of
Unit 1, while Unit 1 should not learn the values of 𝑥1 and 𝑥2, and Unit
2 should not obtain Unit 1’s decryption key.

Then, Fig. 9 shows how the two-party computation for encrypted
multiplication is performed. Essentially, Unit 2 will send the two mes-
sages to Unit 1, and Unit 1 will do the multiplication after decrypting
the received ciphertexts. Unit 1 should not know the message values,
so Unit 2 generates two random numbers 𝑟1 and 𝑟2 and add to 𝐱1
and 𝐱2 using the additively homomorphic property, and then transmit
the ‘‘masked’’ messages. Then, even though Unit 1 decrypts the mes-
sages, it cannot learn anything from the values (𝑥1 + 𝑟1 mod 𝑞) and (𝑥2
+ 𝑟2 mod 𝑞). Nevertheless, now Unit 1 can multiply the decrypted
messages, encrypt the outcome again, and send it back to Unit 2.
Finally, the transmitted ciphertext 𝐳 contains the message as (𝑥1 + 𝑟1)
(𝑥2 + 𝑟2) mod 𝑞, and since Unit 2 has the information of 𝑟1, 𝑟2, 𝖤𝗇𝖼(𝑥1),

2 The goal can be defined formally with a simulation paradigm which
comprises broader security guarantees such as detecting malicious behaviors
with data privacy (we refer to Lindell (2017)). In this article, we rather focus
on the data privacy aspects.

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.
Fig. 9. A basic method for two-party encrypted multiplication.
and 𝖤𝗇𝖼(𝑥2), it can cancel out the terms 𝑟1𝑥2, 𝑟2𝑥1, and 𝑟1𝑟2, over
encrypted data. As a consequence, Unit 2 obtains the outcome whose
decryption is equal to 𝑥1 × 𝑥2 mod 𝑞. It is also clear that Unit 2 does
not learn any additional information because it only computes over
encrypted messages during the process.

We have seen that two-party computation enables encrypted mul-
tiplication, despite that the ability of multiplication is not given from
the homomorphic cryptosystem. In general, a main advantage of multi-
party computation is that it can allow various functions other than ad-
dition and multiplication while exploiting additively homomorphic encryp-
tion only, by use of multiple parties and communication between them.
Many results have contributed for enabling various functions (Bogetoft
et al., 2009; Cramer, Damgård, et al., 2015; Dahl, Ning, & Toft, 2012;
Damgård, Fitzi, Kiltz, Nielsen, & Toft, 2006; Nishide & Ohta, 2007),
such as division by integers, inversion of encrypted matrices, and com-
parison or maximum operations. It is also notable that usually multi-
party computation does not make use of bootstrapping of fully homo-
morphic encryption so that the required amount of computational re-
sources is not exhaustively large, but it rather exploits communication
resources several times for each unit of arithmetic function.

Meanwhile, similarly to the framework of secret sharing, a crucial
assumption on multi-party computation is that the parties do not
collude with each other. For example, supposing that Units 1 and
2 in the algorithm in Fig. 9 are ‘‘outsourced computers’’ performing
the encrypted computation on client’s private data 𝑥1 and 𝑥2, the
information will be exposed once the units collude and Unit 1 decrypts
Unit 2’s encrypted data.

A basic configuration of the two-party computation based control
scheme is described in Fig. 10. It considers two collaborative operation
units consisting of an ‘‘encrypted controller’’ who stores encrypted
control data and performs arithmetic supported from the employed
homomorphic encryption, and a ‘‘computation assistant’’ who helps ad-
vanced operations that cannot be done with the homomorphic property
of cryptosystem solely, by use of two-party computation techniques.
In case the computation assistant is supposed to have the decryption
key of the cryptosystem, the actuator can take the role, assuming that
the communication between the actuator and the encrypted controller
can be bi-directional (for this case, the structure of system becomes
similar with that of Fig. 3(b), where additional communication is used
for ‘‘re-encrypting’’ the state).

Multi-party computation based control employs multiple operation
units, which are often regarded as ‘‘out-sourced’’ computers, who per-
forms the computation on behalf of the controller designer. Thanks
to its utility enabling further advanced arithmetic functions, it has
been applied to nonlinear controllers which need more than addi-
tion and multiplication for operating. For example, it has been used
for encrypted implementations of ‘‘implicit’’ model predictive con-
trollers where projection operation is needed for constrained opti-
mizations (Alexandru, Morari, & Pappas, 2018; Alexandru & Pappas,
206
2020), or extended Kalman filters where matrix inversions and com-
parison operations are required (Gonzalez-Serrano, Amor-Martın, &
Casamayon-Anton, 2014).

Attack model: Since more than one parties are involved, the adver-
sarial model for multi-party computation framework is similar to that
of secret sharing. It can be described similarly according to the number
of parties that the adversary is required to compromise to recover the
underlying messages. Usually, the security model also considers the
behavior that the adversary can carry on; ‘‘honest-but-curious’’ model
assumes that the adversary follows the protocol correctly (but tries
to infer useful information from the observation) whereas ‘‘malicious’’
model assumes that the adversary may not follow the protocol correctly
and perform an arbitrary behavior (for this case, the protocol aims to
enable other participants to detect such behaviors).

Challenges: Compared to fully homomorphic encryption (which
achieves a similar functionality), multi-party computation methods in
general require much less computational resources but exploit more
communication costs for each unit of arithmetic functions. Interest-
ingly, similarly to (fully) homomorphic encryption, evaluating non-
arithmetic functions such as division, transcendental functions, and
conditional expressions may require much more communications (and
computations) than arithmetic functions. While there are many spe-
cialized multi-party protocols for evaluating a unit of function, it often
requires combining them together to design an encrypted system. We
also remark that constructing a system based on multi-party compu-
tation protocol usually involves more complex security analysis and
proofs, even in the same honest-but curious model, than that based
on (fully) homomorphic encryption, due to the presence of multiple
parties and interactions between them where the adversary tries to
compromise.

2.5. Discussion and comparison

Finally, Table 1 puts all the discussed approaches and their features
together, and compares them with each other, where general trade-offs
between the encrypted control approaches are found. To this end, for
simplicity, let us abbreviate homomorphic encryption as ‘‘HE’’, fully
homomorphic encryption as ‘‘FHE’’, and secret sharing as ‘‘SS’’, in this
subsection. Multi-party computation protocols, utilizing homomorphic
encryption, are particularly denoted by ‘‘MPC-HE’’, so that they are
distinguished from secret sharing.

One natural observation is that ‘‘the more resources are utilized,
then the more operation abilities (over encrypted data) the scheme
obtains’’. Comparing HE and FHE, it can be seen that FHE utilizes
much more computational resources, but it guarantees that any sort
of operation circuit can be implemented. Comparing HE and MPC-
HE, on the other hand, it can be understood that additional use of
communication resources for MPC-HE schemes mitigates the limited
operation issue of HE; e.g., the ability of HE is limited to addition and

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.
Fig. 10. Configuration of encrypted controller based on two-party computation.
Table 1
Trade-offs between cryptographic tools (compared to HE).

HE FHE SS MPC-HE

Feature – Computation-
intensive

Operation without
homomorphic encryption

Communication-intensive

Operation unit Single Single Multiple Multiple

Strengths – No limitation
on operations

Computationally efficient Advanced operations
without bootstrapping

Weaknesses Limitation on
operations

High computational
complexity

Limitation on operations,
collusion issues

Communication delay,
collusion issues
Fig. 11. Comparison of encrypted control approaches and future research directions.

multiplication over integers, but MPC-HE can implement many more
advanced functions.

Another aspect in comparison is that ‘‘use of multiple operation
units’’ brings improvement of computational efficiency, but it also
brings possible security issues together. Comparing HE and MPC-HE
again, MPC-HE takes advantage of multiple parties so that it obtains
more operation abilities, and comparing HE and SS, SS also introduces
multiple operation units so that it improves computational efficiency
in the sense that it keeps the ability of linear operation still amenable,
despite that it does not use homomorphic encryption. However, a
main opportunity cost for utilizing multiple operation units is possible
security issues; it should be guaranteed that the participating units
never collude with the others, and it might also be vulnerable to
eavesdropping from external adversaries.

A similar observation can be made in a different way. Let Fig. 11
compare the four approaches, in terms of speed (operation amount per
unit of time), ability (enabled operations over encrypted data), and
security (mainly considers issues of collusion and external eavesdrop-
ping). In terms of ‘‘speed’’, SS may be a good option if the system can
be implemented using multiple computers. Regarding ‘‘ability’’, if the
encrypted controller design includes complicated nonlinear functions,
207
either FHE based method or MPC-HE based protocol can be considered,
with intensive use of computational or communication resources, re-
spectively. And, for applications in which use of multiple operation
units is not allowed because of security matters, use of HE or FHE
would be appropriate. In short, each encrypted control application
should consider its required sort of operations, available resources, and
appropriate security model, for choosing its approach.

Lastly, Fig. 11 also considers future research directions for the
approaches, which would be to deal with and improve on their re-
spective weaknesses. HE based schemes would aim for overcoming
the constraint of limited operation, and proposing practical bootstrap-
ping techniques would be of main interest for FHE based methods.
For the sake of control application, SS and MPC-HE based schemes
should resolve possible security issues due to collusion or external
eavesdropping. At the same time, developing nonlinear functions using
SS and reducing the communication overhead with MPC-HE would be
of challenges, respectively.

3. Introduction to linear dynamic systems using Learning With
Errors-based homomorphic encryption

So far we have discussed broad approaches on encrypted control
and current challenges. To handle those issues, new problems that have
not been considered in the control community are often formulated. In
this section, let us be more focused on the approach based on homo-
morphic encryption only, and introduce a specific problem and current
solutions, on implementation of dynamic systems over encrypted data.

Implementing an encrypted controller is to convert a ‘‘given’’ con-
troller over plaintext (described in Fig. 2(a)) to a system over ciphertext
(as Fig. 2(b)). Let a linear dynamic controller has been designed and
given as

𝑥(𝑡 + 1) = 𝐹𝑥(𝑡) + 𝐺𝑦(𝑡)

𝑢(𝑡) = 𝐻𝑥(𝑡) + 𝐽𝑦(𝑡)

𝑥(0) = 𝑥0

(4)

where 𝑥(𝑡) ∈ R𝓁 is the state, 𝑦(𝑡) ∈ R𝗉 is the sensor measurement
transmitted from the plant (input of the controller), 𝑢(𝑡) ∈ R𝗆 is
the actuation input fed back to the plant (output of the controller),
and the matrices {𝐹 ,𝐺,𝐻, 𝐽} and the initial state 𝑥 ∈ R𝓁 are given
0

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.

c

m

f

w
s
t
a
a
L
t
t
m
p

𝖤

w
n

m

as controller parameters. Throughout the paper, we assume that the
trajectories of the signals {𝑥(𝑡), 𝑦(𝑡), 𝑢(𝑡)}∞𝑡=0 are bounded.

Then, the implementation of the controller (4) over encrypted data
can be divided into two steps.

1. Conversion of given controller to operate over integers. As discussed
in Section 2.1, most homomorphic cryptosystems allow no more
than addition and multiplication over encrypted integers, un-
less bootstrapping (of fully homomorphic encryption) is used.
Thus, the given system (4) with the parameters {𝐹 ,𝐺,𝐻, 𝐽 , 𝑥0},
which are generally non-integers, should be converted to operate
over integers using addition and multiplication only. The input–
output relation (performance) of the re-constructed controller
should be equivalent to the given controller.

2. Choice of homomorphic cryptosystem and application to dynamic
operation. The employed cryptosystem should be appropriate to
the dynamic operation of the controller. If the implemented
controller is to perform recursive multiplication by an encrypted
parameter for each time iteration (just as in (4)), the cryp-
tosystem should be homomorphic with respect to such recursive
operation. To that end, it can be expected that the encryp-
tion should be homomorphic with respect to both addition and
multiplication, and it should allow recursive multiplication as
encrypted, for an unlimited number of times.

Let us begin with the second issue in the next subsection. We
introduce a Learning With Errors (LWE) based encryption called ‘‘GSW-
LWE’’ proposed in Chillotti et al. (2016), which can be understood as a
combination of ‘‘Gentry–Sahai–Waters (GSW)’’ encryption scheme (Gen-
try, Sahai, & Waters, 2013) and a basic LWE-based encryption (Lindner
& Peikert, 2011). Detailed explanations on the encryption scheme and
algorithms will be followed by a discussion on its benefits to dynamic
operation.

3.1. An Learning With Errors-based cryptosystem for encrypted recursive
multiplication

We first introduce a basic version of LWE-based cryptosystem.

3.1.1. Encryption method, security, and additively homomorphic prop-
erty (Lindner & Peikert, 2011; Regev, 2009)

Let the set Z𝑞 = {0, 1,… , 𝑞 − 1}, 𝑞 ∈ N, be the space of messages
for encryption. We have seen in Section 2.3 and Fig. 5 that ‘‘adding a
random number 𝑟 ∈ Z𝑞 and taking modulo operation by 𝑞’’ is an easy
way to conceal a message 𝑚 ∈ Z𝑞 . Though it is quite simple, it may be
impractical in the sense that the information of the number 𝑟 ∈ Z𝑞 is
required for restoring the message, which is newly sampled whenever
a message is encrypted.

To be a cryptosystem using the same ‘‘key’’ for each encryption,
LWE based schemes generate ‘‘random-like’’ numbers from a fixed
portion of data, called an encryption key; let a row vector 𝗌𝗄 =
[𝗌𝗄1, 𝗌𝗄2,… , 𝗌𝗄𝑛] ∈ Z𝑛, 𝑛 ∈ N, be chosen, which we will call the
encryption key or the secret key. Then, the idea of LWE-based schemes
is that the number 𝑐 ∈ Z𝑞 , generated as

𝑐 =
[

𝗌𝗄1 𝗌𝗄2 ⋯ 𝗌𝗄𝑛
]

⋅

⎡

⎢

⎢

⎢

⎢

⎣

𝑎1
𝑎2
⋮
𝑎𝑛

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝑒 mod 𝑞

= 𝗌𝗄 ⋅ 𝑎 + 𝑒 mod 𝑞,

(5)

looks ‘‘almost uniformly random’’ in the space Z𝑞 , where the compo-
nents of 𝑎 = [𝑎1, 𝑎2,… , 𝑎𝑛]⊤ are random numbers in Z𝑞 (i.e., sampled
from the uniform distribution over Z𝑞), and 𝑒 ∈ Z is a ‘‘small error’’
sampled from 𝑁(0, 𝜎), which denotes the zero-mean discrete Gaussian
208

distribution with standard deviation 𝜎 > 0. d
The claim that the method (5) generates ‘‘almost random’’ numbers
is in fact exactly what the Learning With Errors (LWE) problem con-
siders. Let a ‘‘sufficient’’ amount of samples {𝑐𝑖}𝑁𝑖=1 in Z𝑞 be generated
using the key 𝗌𝗄 ∈ Z𝑛, as

𝑐1 = 𝗌𝗄 ⋅ 𝑎1 + 𝑒1 mod 𝑞

𝑐2 = 𝗌𝗄 ⋅ 𝑎2 + 𝑒2 mod 𝑞

⋮

𝑐𝑁 = 𝗌𝗄 ⋅ 𝑎𝑁 + 𝑒𝑁 mod 𝑞,

(6)

where the components of 𝑎𝑖 ∈ Z𝑛
𝑞 are uniformly sampled from Z𝑞

and 𝑒𝑖 ∈ Z is sampled from the distribution 𝑁(0, 𝜎), for each 𝑖 =
1,… , 𝑁 . Then, given the information of {𝑐𝑖}𝑁𝑖=1 and {𝑎𝑖}𝑁𝑖=1, the LWE
problem is to find out if the data {𝑐𝑖}𝑁𝑖=1 are generated through the
process (6), or are just uniformly generated random numbers. If this
problem is hard to solve, it implies that the information of the secret
key 𝗌𝗄 is ‘‘secure’’ from unauthorized parties receiving or eavesdropping
{𝑎𝑖}𝑁𝑖=1 and {𝑐𝑖}𝑁𝑖=1 only. And, another version of LWE problem is to
solve Eq. (6) and find the value of the key 𝗌𝗄, from given data of {𝑐𝑖}𝑁𝑖=1
and {𝑎𝑖}𝑁𝑖=1.

Note that Eq. (6) is defined over the space Z𝑞 with modulo op-
eration, so that the problem is different from the simple least square
problem over real numbers. It has been known that the LWE-problems
are hard; for example, it has been proven in Regev (2009) that the latter
version of problem is hard as ‘‘worst-case lattice problems’’, and it has
also been known as ‘‘post-quantum cryptography’’ (Chen et al., 2016).

The level of ‘‘hardness’’ is determined by the parameters; the di-
mension 𝑛 for the key 𝗌𝗄 ∈ Z𝑛 and the vector 𝑎 ∈ Z𝑛

𝑞 , the modulus
𝑞, and the standard deviation 𝜎 for the error distribution 𝑁(0, 𝜎). For
example, in Lindner and Peikert (2011), it has been suggested to choose
the parameters to satisfy

𝑛 log 𝑞 ≥ 𝜆 + 110
7.2

⋅

(

log

(
√

2𝜋𝜎
𝑞

))2

, (7)

in order for ‘‘𝜆-bit security’’, which means more than 2𝜆-times of itera-
tions of a certain computation are required to solve the LWE problem.
Typically, to ensure a higher level of security, a larger dimension 𝑛 is
hosen for the key 𝗌𝗄 ∈ Z𝑛.

Then, thanks to the security guaranteed from the LWE problems, we
ay define an encrypted algorithm with the key3 𝗌𝗄 ∈ Z𝑛, as

or 𝑚 ∈ Z𝑞 , 𝖤𝗇𝖼(𝑚) ∶=
[

𝑚 + 𝗌𝗄 ⋅ 𝑎 + 𝑒
𝑎

]

mod 𝑞 ∈ Zn
𝑞 , n ∶= 𝑛 + 1,

(8)

here the components of the column vector 𝑎 ∈ Z𝑛
𝑞 are uniformly

ampled from Z𝑞 and the error 𝑒 ∈ Z is sampled from 𝑁(0, 𝜎) analogous
o (5). We omit the argument of the key 𝗌𝗄 from all the cryptosystem
lgorithms, for simplicity. Note that, the encryption outcome becomes
n (n = 𝑛 + 1)-dimensional vector consisting of elements in Z𝑞 ; as
WE problems suppose that the vector 𝑎 be public, so that it can be
reated as a part of encrypted message (it will be used for decryption,
o restore the message). It can be understood that every encrypted
essage consists of ‘‘message part’’, ‘‘random-like part’’, and ‘‘error
art’’, as

𝗇𝖼(𝑚) =
[

𝑚
0𝑛×1

]

+
[

𝗌𝗄 ⋅ 𝑎
𝑎

]

+
[

𝑒
0𝑛×1

]

mod 𝑞, (9)

here the information of the message is contained in the first compo-
ent.

As the encryption is to add a random-like number 𝗌𝗄 ⋅ 𝑎 to the
essage together with an error, it can be decrypted by simply canceling

3 Usually, the components of 𝗌𝗄 are generated by sampling from the
istribution 𝑁(0, 𝜎), the same distribution for the errors.

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.

w
f
i
e

𝐂

(
𝐜
t
w

𝖣

I
t
m
i
h
n
d
c
m

l
m
s
t
v

𝑘

w
s

out the same number 𝗌𝗄 ⋅ 𝑎; let the decryption for a ciphertext 𝐜 ∈ Zn
𝑞

be defined as

𝖣𝖾𝖼(𝐜) ∶=
[

1 −𝗌𝗄
]

⋅ 𝐜 mod 𝑞 ∈ Z𝑞 , (10)

considering that the ‘‘random-like term’’ [𝗌𝗄 ⋅ 𝑎, 𝑎⊤]⊤ in (9) as a column
vector will be canceled out whenever the secret key [1,−𝗌𝗄] is multi-
plied from the left, regardless of the random part 𝑎. Indeed, it is obvious
that

𝖣𝖾𝖼(𝖤𝗇𝖼(𝑚)) = 𝑚 + 𝑒 mod 𝑞 (11)

holds, when the ciphertext 𝑐 is simply a newly encrypted message. The
cryptosystem being described is ‘‘symmetric’’ as a basic case, where
the same key 𝗌𝗄 is used for both the encryption and decryption. For
a public-key LWE-based cryptosystem in which encryption is possi-
ble without knowledge of the key 𝗌𝗄, interested readers may refer
to Lindner and Peikert (2011).

It can be seen in (11) that the error 𝑒, ‘‘injected’’ during encryption
because of security, may perturb the decryption outcome not equal to
the original message. To negate the effect of errors, a scale factor can
be used for the messages; let us neglect the probability that a sample
from the distribution 𝑁(0, 𝜎) is larger than a particular multiple 𝑛0𝜎 of
𝜎, 𝑛0 ∈ N, and assume that every error 𝑒 sampled from 𝑁(0, 𝜎) is such
that |𝑒| ≤ 𝑛0𝜎. Then, by modifying the encryption as

𝖤𝗇𝖼𝖫(𝑚) ∶= 𝖤𝗇𝖼(𝖫𝑚 mod 𝑞), (12)

with some scale factor 𝖫 ∈ N such that 𝖫∕2 > 𝑛0𝜎, the message can be
restored without error as

𝖣𝖾𝖼(𝖤𝗇𝖼𝖫(𝑚)) = 𝖫𝑚 + 𝑒 mod 𝑞 ⟹

⌈

𝖫𝑚 + 𝑒 mod 𝑞
𝖫

⌋

= 𝑚, (13)

as long as 0 < 𝑚 < (𝑞∕𝖫) − (1∕2) so that 0 ≤ 𝖫𝑚 + 𝑒 < 𝑞.
As one of the simplest versions of LWE based schemes, it can be

easily seen that the encryption 𝖤𝗇𝖼 is homomorphic with respect to
addition. Let the addition of two encrypted messages be defined simply
by the component-wise modular addition as

𝐜1 ∈ Zn
𝑞 , 𝐜2 ∈ Zn

𝑞 ↦ 𝐜1 + 𝐜2 mod 𝑞 ∈ Zn
𝑞 .

Then, since the decryption 𝖣𝖾𝖼 is nothing but multiplying a row vector,
by the distributive law, it is obvious that

𝖣𝖾𝖼(𝐜1 + 𝐜2 mod 𝑞) =
[

1 −𝗌𝗄
]

⋅ (𝐜1 + 𝐜2) mod 𝑞

= 𝖣𝖾𝖼(𝐜1) + 𝖣𝖾𝖼(𝐜2) mod 𝑞
(14)

holds for every ciphertexts 𝐜1 ∈ Zn
𝑞 and 𝐜2 ∈ Zn

𝑞 . It means that the
modular addition for the messages in Z𝑞 can be performed as encrypted,
by the same (component-wise) modular addition over the ciphertext
space Zn

𝑞 , because the decryption of the computation outcome matches
to the addition of the plaintext messages 𝖣𝖾𝖼(𝐜1) and 𝖣𝖾𝖼(𝐜2).

Multiplication of a ciphertext 𝐜1 ∈ Zn
𝑞 by an un-encrypted integer

𝑘 ∈ Z can be done analogously, as

𝑘 ∈ Z, 𝐜1 ∈ Zn
𝑞 ↦ 𝑘 ⋅ 𝐜1 mod 𝑞 ∈ Zn

𝑞 , (15)

which is simply the component-wise modular multiplication by the
constant 𝑘. It is also clear that
𝖣𝖾𝖼(𝑘 ⋅ 𝐜1 mod 𝑞) =

[

1 −𝗌𝗄
]

⋅ (𝑘 ⋅ 𝐜1) mod 𝑞

= 𝑘 ⋅ 𝖣𝖾𝖼(𝐜1) mod 𝑞,
(16)

so the decryption outcome of integer multiplication for encrypted
messages matches to that over plaintexts.

In general, LWE-based cryptosystems are also multiplicatively ho-
momorphic, which means they allow multiplication by an encrypted
number to ciphertexts as well as by the un-encrypted integer multi-
plication as in (15). Nonetheless, in fact, there is no ‘‘trivial way’’ of
performing multiplication of a ciphertext 𝐜1 ∈ Zn

𝑞 to another ciphertext
𝐜2 ∈ Zn

𝑞 , since the component-wise multiplication over Zn
𝑞 would

not work (i.e., decryption outcome of component-wise multiplication
209

would not match with multiplication between the messages), and it 𝗑
seems there is no other ‘‘intuitive way’’ of multiplying two vectors in
Zn
𝑞 yielding the same form in Zn

𝑞 . In this regard, a separate encryp-
tion method as well as an encrypted multiplication method proposed
in Chillotti et al. (2016) and Gentry et al. (2013) is introduced in the
next subsection.

3.1.2. Gentry-Sahai-Waters (GSW) scheme and encrypted recursive multi-
plication (Chillotti et al., 2016; Gentry et al., 2013)

An idea for multiplication by an encrypted message is to consider a
separate encryption method whose outcome is a matrix in Zn×n

𝑞 , so that
it can be multiplied to the ciphertexts of column vectors in Zn

𝑞 from the
left naturally; consider a ‘‘multiplier’’ 𝑘 ∈ Z𝑞 encrypted as

𝑘 ∈ Z𝑞 ↦ 𝐂 = 𝑘 ⋅ 𝐼n +
[

𝗌𝗄 ⋅ 𝑎1 𝗌𝗄 ⋅ 𝑎2 ⋯ 𝗌𝗄 ⋅ 𝑎n
𝑎1 𝑎2 ⋯ 𝑎n

]

+
[

𝑒1 𝑒2 ⋯ 𝑒n
0𝑛×1 0𝑛×1 ⋯ 0𝑛×1

]

mod 𝑞 ∈ Zn×n
𝑞

(17)

here 𝑎𝑖 ∈ Z𝑛
𝑞 is a uniformly random vector and 𝑒𝑖 is an error sampled

rom 𝑁(0, 𝜎) for each 𝑖 = 1,… n, respectively. The message part 𝑘 ⋅ 𝐼n
n (17) is added by a matrix consisting of ‘‘random-like’’ vectors plus
rrors analogous to (9), so obviously it is also an LWE-based encryption.

Then, it can be checked if the multiplication outcome of

∈ Zn×n
𝑞 , 𝐜 ∈ Zn

𝑞 ↦ 𝐂 ⋅ 𝐜 mod 𝑞 ∈ Zn
𝑞 (18)

multiplication of the matrix 𝐂 ∈ Zn×n
𝑞 from (17) to a ciphertext vector

∈ Zn
𝑞) has the message parts multiplied with each other; let us decrypt

he outcome (18) by multiplying [1,−𝗌𝗄] from the left (just as in (10)),
hich yields

𝖾𝖼(𝐂 ⋅ 𝐜 mod 𝑞)

=
[

1 −𝗌𝗄
]

⋅
(

𝑘 ⋅ 𝐼n +
[

𝗌𝗄 ⋅ 𝑎1 ⋯ 𝗌𝗄 ⋅ 𝑎n
𝑎1 ⋯ 𝑎n

]

+
[

𝑒1 ⋯ 𝑒n
0𝑛×1 ⋯ 0𝑛×1

])

⋅ 𝐜 mod 𝑞

=
[

1 −𝗌𝗄
]

⋅
(

𝑘 ⋅ 𝐼n +
[

𝑒1 ⋯ 𝑒n
0𝑛×1 ⋯ 0𝑛×1

])

⋅ 𝐜 mod 𝑞

= 𝑘 ⋅ 𝖣𝖾𝖼(𝐜) +
[

𝑒1 ⋯ 𝑒n
]

⋅ 𝐜 mod 𝑞.

t can be seen that the encryption is homomorphic with respect to
he multiplication, in the sense that the decryption outcome has the
essage 𝖣𝖾𝖼(𝐜) multiplied by 𝑘. However, it can be found that the

njected errors [𝑒1,… , 𝑒n], whose components were smaller than 𝑛0𝜎,
ave been multiplied by the ciphertext 𝐜 ∈ Zn

𝑞 consisting of large
umbers. Then, the size of the error ‘‘grows’’ too large and it will even
ominate the message part, so that the computation result will not be
orrect at all. Thus, the described method cannot be applied as it is, so
odified as follows.

Considering that the problem of the method (18) was due to the
arge size of the ‘‘multiplicand’’ 𝐜 ∈ Zn

𝑞 amplifying the errors, the
ethod in Gentry et al. (2013) called ‘‘Gentry–Sahai–Waters (GSW)’’

cheme suggests that the multiplication be done in a different manner,
o reduce the size of the multiplicand; consider multiplication of a
ector 𝗑 ∈ Zn

𝑞 by 𝑘 ∈ Z𝑞 , represented as

⋅ 𝗑 = 𝑘 ⋅

(𝑑−1
∑

𝑖=0
𝜈𝑖 ⋅ 𝗑𝑖

)

= 𝑘 ⋅
[

𝐼n 𝜈 ⋅ 𝐼n ⋯ 𝜈𝑑−1 ⋅ 𝐼n
]

⋅

⎡

⎢

⎢

⎢

⎢

⎣

𝗑0
𝗑1
⋮

𝗑𝑑−1

⎤

⎥

⎥

⎥

⎥

⎦

, (19)

here 𝜈 ∈ N is a base chosen such that 𝜈𝑑−1 < 𝑞 ≤ 𝜈𝑑 with some 𝑑 ∈ N,
o that the vector 𝗑 ∈ Zn

𝑞 is represented by ‘‘𝜈-ary numeral system’’ as
∑𝑑−1 𝑖 𝑑−1
= 𝑖=0 𝜈 ⋅ 𝗑𝑖 with some vectors {𝗑𝑖}𝑖=0 of non-negative integers such

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.

𝐺

a

𝑘

b

𝖤

m
e
𝖤

f

𝖣

f
c
c

𝖤

that ‖𝗑𝑖‖ < 𝜈, ∀𝑖. Then, by defining

∶=
[

𝐼n 𝜈 ⋅ 𝐼n ⋯ 𝜈𝑑−1 ⋅ 𝐼n
]

and 𝐷(𝗑) ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝗑0
𝗑1
⋮

𝗑𝑑−1

⎤

⎥

⎥

⎥

⎥

⎦

,

nd rewriting (19) as

⋅ 𝗑 = (𝑘 ⋅ 𝐺) ⋅𝐷(𝗑),

one can have the size of the multiplicand reduced as ‖𝐷(𝗑)‖ < 𝜈, thanks
to the ‘‘decomposition’’ function 𝐷. For example, consider the equation
77 = 7 × 11 re-written as

77 =
(

7 ×
[

20 21 22 23
])

×

⎡

⎢

⎢

⎢

⎢

⎣

1
1
0
1

⎤

⎥

⎥

⎥

⎥

⎦

with 𝑑 = 4, 𝜈 = 2. It can be seen that the norm of the multiplicand
(which was 11) is reduced.

From this observation, the GSW scheme slightly modifies the en-
cryption algorithm (17), as

𝖤𝗇𝖼′(𝑘) ∶= 𝑘 ⋅ 𝐺 +
[

𝗌𝗄 ⋅ 𝑎1 𝗌𝗄 ⋅ 𝑎2 ⋯ 𝗌𝗄 ⋅ 𝑎𝑑n
𝑎1 𝑎2 ⋯ 𝑎𝑑n

]

+
[

𝑒1 𝑒2 ⋯ 𝑒𝑑n
0𝑛×1 0𝑛×1 ⋯ 0𝑛×1

]

mod 𝑞 ∈ Zn×𝑑n
𝑞 ,

by substituting 𝐼n in (17) by the matrix 𝐺 and increasing the column
dimension 𝑑-times. Now, let the multiplication of a ciphertext 𝐜 ∈ Zn

𝑞
y an encrypted message 𝖤𝗇𝖼′(𝑘), be performed as

𝗇𝖼′(𝑘) ∈ Zn×𝑑n
𝑞 , 𝐜 ∈ Zn

𝑞 ↦ 𝖤𝗇𝖼′(𝑘) ⋅𝐷(𝐜) mod 𝑞 ∈ Zn
𝑞 , (20)

which enlarges the dimension of 𝐜 by the decomposition first and then
multiply to the encrypted multiplier. Then, let us decrypt the outcome
and check the multiplicatively homomorphic property and the growth
of the error again, as

𝖣𝖾𝖼(𝖤𝗇𝖼′(𝑘) ⋅𝐷(𝐜) mod 𝑞)

=
[

1 −𝗌𝗄
]

⋅
(

𝑘 ⋅ 𝐺 +
[

𝗌𝗄 ⋅ 𝑎1 ⋯ 𝗌𝗄 ⋅ 𝑎𝑑n
𝑎1 ⋯ 𝑎𝑑n

]

+
[

𝑒1 ⋯ 𝑒𝑑n
0𝑛×1 ⋯ 0𝑛×1

])

⋅𝐷(𝐜) mod 𝑞

=
[

1 −𝗌𝗄
]

⋅
(

𝑘 ⋅ 𝐺 +
[

𝑒1 ⋯ 𝑒𝑑n
0𝑛×1 ⋯ 0𝑛×1

])

⋅𝐷(𝐜) mod 𝑞

=
[

1 −𝗌𝗄
]

⋅ 𝑘 ⋅ 𝐜 +
[

𝑒1 ⋯ 𝑒𝑑n
]

⋅𝐷(𝐜) mod 𝑞

= 𝑘 ⋅ 𝖣𝖾𝖼(𝐜) +
[

𝑒1 ⋯ 𝑒𝑑n
]

⋅𝐷(𝐜) mod 𝑞.

It turns out that, thanks to the size of the multiplicand 𝐜 ∈ Zn
𝑞 reduced

by the decomposition 𝐷 as ‖𝐷(𝐜)‖ < 𝜈, the effect of the error becomes
bounded by a constant proportional to the parameter 𝜈 (recall that
the base 𝜈 can be chosen such that 𝜈 ≪ 𝑞). Putting all together, the
homomorphic properties of the described cryptosystem is listed as the
following proposition.

Proposition 1. The following holds.

1. For every 𝑚 ∈ Z𝑞 , it satisfies 𝖣𝖾𝖼(𝖤𝗇𝖼(𝑚)) = 𝑚+𝑒 mod 𝑞, with some
𝑒 ∈ Z such that |𝑒| ≤ 𝑛0𝜎.

2. For any ciphertexts 𝐜1 ∈ Zn
𝑞 and 𝐜2 ∈ Zn

𝑞 , they satisfy 𝖣𝖾𝖼(𝐜1 + 𝐜2
mod 𝑞) = 𝖣𝖾𝖼(𝐜1) + 𝖣𝖾𝖼(𝐜2) mod 𝑞.

3. For any 𝑘 ∈ Z and 𝐜 ∈ Zn
𝑞 , they satisfy 𝖣𝖾𝖼(𝑘 ⋅𝐜 mod 𝑞) = 𝑘 ⋅𝖣𝖾𝖼(𝐜)

mod 𝑞.
4. For any 𝑘 ∈ Z𝑞 and 𝐜 ∈ Zn

𝑞 , they satisfy 𝖣𝖾𝖼(𝖤𝗇𝖼′(𝑘) ⋅ 𝐷(𝐜)
mod 𝑞) = 𝑘 ⋅ 𝖣𝖾𝖼(𝐜) + 𝑒 mod 𝑞, with some 𝑒 ∈ Z such that |𝑒| ≤
𝛥 ∶= 𝑑n ⋅ 𝑛 𝜎 ⋅ 𝜈. □
210

𝖬𝗎𝗅𝗍 0
The homomorphic properties directly extended to matrix–vector
ultiplication over encrypted data, by considering component-wise

ncryption and operations; let us abuse the notation and the algorithms
𝗇𝖼 and 𝖣𝖾𝖼 be also applied to vector of messages component-wisely,

as

𝖤𝗇𝖼
(

�⃗�
)

∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝖤𝗇𝖼(𝑚1)
𝖤𝗇𝖼(𝑚2)

⋮
𝖤𝗇𝖼(𝑚𝑙)

⎤

⎥

⎥

⎥

⎥

⎦

∈ Z𝑙n
𝑞 , (21a)

or �⃗� = col{𝑚𝑖}𝑙𝑖=1 ∈ Z𝑙
𝑞 , and

𝖾𝖼(𝐜) ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝖣𝖾𝖼(𝐜1)
𝖣𝖾𝖼(𝐜2)

⋮
𝖣𝖾𝖼(𝐜𝑙)

⎤

⎥

⎥

⎥

⎥

⎦

∈ Z𝑙
𝑞 , (21b)

or 𝐜 = col{𝐜𝑖}𝑙𝑖=1 ∈ Z𝑙n
𝑞 , 𝐜𝑖 ∈ Zn

𝑞 , 𝑖 = 1,… , 𝑙. And, let matrices
onsisting of elements in Z𝑞 be encrypted using the encryption 𝖤𝗇𝖼′

omponent-wisely, as

𝗇𝖼′(𝖥) =

⎡

⎢

⎢

⎢

⎢

⎣

𝖤𝗇𝖼′(𝖥11) 𝖤𝗇𝖼′(𝖥12) ⋯ 𝖤𝗇𝖼′(𝖥1𝑙2)
𝖤𝗇𝖼′(𝖥21) 𝖤𝗇𝖼′(𝖥22) ⋯ 𝖤𝗇𝖼′(𝖥2𝑙2)

⋮ ⋮ ⋱ ⋮
𝖤𝗇𝖼′(𝖥𝑙11) 𝖤𝗇𝖼′(𝖥𝑙12) ⋯ 𝖤𝗇𝖼′(𝖥𝑙1𝑙2)

⎤

⎥

⎥

⎥

⎥

⎦

∈ Z(𝑙1n)×(𝑑𝑙2n)
𝑞 (21c)

for 𝖥 = [𝖥𝑖𝑗] ∈ Z𝑙1×𝑙2
𝑞 , and let the multiplication of a vector of encrypted

messages by an encrypted matrix be considered as

𝖤𝗇𝖼′(𝖥) ∈ Z(𝑙1n)×(𝑑𝑙2n)
𝑞 , 𝐜 ∈ Z𝑙2n

𝑞 ↦ 𝖤𝗇𝖼′(𝖥) ⋅𝐷(𝐜) mod 𝑞, (21d)

where we also let the decomposition 𝐷 be applied to a vector of
encrypted messages component-wisely as 𝐷(𝐜) ∶= col{𝐷(𝐜𝑖)}

𝑙2
𝑖=1 ∈ Z𝑙2𝑑n

𝑞 .
Then, it is easy to verify that the following proposition holds.

Proposition 2. For any matrix 𝖥 ∈ Z𝑙1×𝑙2
𝑞 and a ciphertext of encrypted

messages 𝐜 ∈ Z𝑙2n
𝑞 , they satisfy4

𝖣𝖾𝖼(𝖤𝗇𝖼′(𝖥) ⋅𝐷(𝐜) mod 𝑞) = 𝖥 ⋅ 𝖣𝖾𝖼(𝐜) + 𝑒 mod 𝑞, (22)

with some 𝑒 ∈ Z𝑙1 such that ‖𝑒‖ ≤ 𝑙2𝛥𝖬𝗎𝗅𝗍. □

Note that the multiplication of an ‘‘LWE type’’ ciphertext by a ‘‘GSW
type’’ encrypted matrix yields an ‘‘LWE type’’ ciphertext. The encryp-
tion method of 𝖤𝗇𝖼′ has been introduced in Gentry et al. (2013) where
multiplication between GSW type ciphertexts has been presented, and
the multiplication of an LWE type ciphertext by a GSW type ciphertext
has been considered in Chillotti et al. (2016).

Now, we further discuss homomorphic property with respect to
‘‘recursive’’ operation. Let us compare the following two types of ho-
momorphic properties:

Property 1 ∶ 𝖣𝖾𝖼(𝖤𝗇𝖼(𝗑1) ∗ 𝖤𝗇𝖼(𝗑2)) = 𝗑1 ⋅ 𝗑2 mod 𝑞,

∀𝗑1 ∈ Z𝑞 , 𝗑2 ∈ Z𝑞 (plaintexts)
Property 2 ∶ 𝖣𝖾𝖼(𝐜1 ∗ 𝐜2) = 𝖣𝖾𝖼(𝐜1) ⋅ 𝖣𝖾𝖼(𝐜2) mod 𝑞,

∀𝐜1 ∈ Zn
𝑞 , 𝐜2 ∈ Zn

𝑞 (ciphertexts)

where ∗ denotes a certain operation over encrypted data that matches
to the multiplication over plaintexts. Each of the properties implies an
ability of multiplication over encrypted data, but it can be observed that
Property 2 implies Property 1, but Property 1 does not imply Property
2 conversely, in general; this is because Property 1 can be applied to
‘‘newly’’ encrypted messages only, whereas Property 2 can be applied
to any ciphertexts. For example, for a ciphertext 𝐜 ∈ Zn

𝑞 which is a
computation outcome as 𝐜 = 𝖤𝗇𝖼(𝗑1) ∗ 𝖤𝗇𝖼(𝗑2) mod 𝑞 with some 𝗑1 ∈ Z𝑞
and 𝗑2 ∈ Z𝑞 , it is clear that the property of multiplication is applicable

4 Note that 𝛥 is defined from Proposition 1. 4.
𝖬𝗎𝗅𝗍

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.

a
g
t
t
t
f

n
e
d

𝗓

w
i
o
d

𝐳

w
Z

I
t
r

C
s

𝗓

w
(

s
I
‘
s

G
t
m
(
l

to 𝐜 if the cryptosystem satisfies Property 2, whereas the multiplication
may not be applicable to 𝐜 even if the cryptosystem satisfies Property
1, because there is no guarantee that there exists a message 𝗑′ ∈ Z𝑞
such that 𝐜 = 𝖤𝗇𝖼(𝗑′).

Keeping this observation in mind, let us revisit the property (22)
that we obtained. In the left hand side where the encrypted multiplica-
tion is performed, the argument of left multiplier considers GSW type
ciphertext 𝖤𝗇𝖼′(𝖥) as newly encrypted message only, but the argument
of the right multiplicand considers any LWE type ciphertext, regardless
if is a newly encrypted message or it was used for certain encrypted
operations. Since the outcome of the multiplication is also an LWE type
ciphertext, the property (22) implies that the encrypted multiplication
is applicable to LWE type ciphertexts recursively, unlimited number of
times. Meanwhile, since an error 𝑒 is added to the encrypted message
whenever the multiplication is performed, it is notable that the ‘‘growth
of error’’ can be accumulated under recursive operation. In the next
subsection, when the LWE based cryptosystem is applied to dynamic
control operations, it will be seen that the growth of error accumulated
in LWE type ciphertexts under recursive operation can be ‘‘controlled’’
under stability.

The effect of error can be reduced by using a scale factor for the LWE
type encryption, as seen in (13); for instance, let the property (22) be
rewritten with respect to the encryption (12), as

𝖣𝖾𝖼(𝖤𝗇𝖼′(𝖥) ⋅𝐷(𝖤𝗇𝖼𝖫(𝗑)) mod 𝑞) = 𝖥(𝖫 ⋅ 𝗑 + 𝑒1) + 𝑒2 mod 𝑞,

where 𝗑 ∈ Z𝑙2
𝑞 , the error 𝑒1 ∈ Z𝑙2

𝑞 from the encryption 𝖤𝗇𝖼𝖫 is such that
‖𝑒1‖ ≤ 𝑛0𝜎, and the error 𝑒2 ∈ Z𝑙1

𝑞 from the multiplication is such that
‖𝑒2‖ ≤ 𝑙2𝛥𝖬𝗎𝗅𝗍. Then, by choosing the parameter 𝖫 considering the size
of grown error such that 𝖫∕2 > ‖𝖥‖ ⋅𝑛0𝜎+ 𝑙2𝛥𝖬𝗎𝗅𝗍, the expected outcome
𝖥 ⋅ 𝗑 can be obtained without the error, as
⌈

𝖥 ⋅ (𝖫𝗑 + 𝑒1) + 𝑒2 mod 𝑞
𝖫

⌋

= 𝖥 ⋅ 𝗑, (23)

s long as all the components of 𝖥 ⋅ 𝗑 is less than (𝑞∕𝖫) − (1∕2) and
reater than 0 so that the modulo operation in (23) does nothing about
he argument value. Note that the scale factor 𝖫 is used for the LWE
ype encryption only and not used for GSW type encryption, so that
he scaled LWE type messages are not multiplied with another scale
actor through the multiplication by GSW type encrypted messages.

As a result of the enabled recursive multiplication, a class of dy-
amic systems, which can be implemented to run over encrypted data
xploiting the homomorphic properties, is specified. Consider a system
efined over the space Z𝑞 written as

(𝑡 + 1) = 𝖥 ⋅ 𝗓(𝑡) + 𝖦 ⋅ 𝗒(𝑡) mod 𝑞

𝗎(𝑡) = 𝖧 ⋅ 𝗓(𝑡) + 𝖩 ⋅ 𝗒(𝑡) mod 𝑞

𝗓(0) = 𝗓0 ∈ Z𝓁
𝑞 ,

(24)

here 𝗓(𝑡) ∈ Z𝓁
𝑞 is the state with the initial value 𝗓0, 𝗒(𝑡) ∈ Z𝗉

𝑞 is the
nput, 𝗎(𝑡) ∈ Z𝗆

𝑞 is the output, and {𝖥,𝖦,𝖧, 𝖩} are matrices consisting
f elements in Z𝑞 . Then, an implication of Proposition 2 is that the
ynamic operation of (24) can be performed over encrypted data, as

(𝑡 + 1) = 𝐅 ⋅𝐷(𝐳(𝑡)) +𝐆 ⋅𝐷(𝖤𝗇𝖼(𝗒(𝑡))) mod 𝑞

𝐮(𝑡) = 𝐇 ⋅𝐷(𝐳(𝑡)) + 𝐉 ⋅𝐷(𝖤𝗇𝖼(𝗒(𝑡))) mod 𝑞

𝐳(0) = 𝖤𝗇𝖼(𝗓0),

(25)

here 𝐳(𝑡) ∈ Z𝓁n
𝑞 is the state with the initial value 𝖤𝗇𝖼(𝗓0), 𝖤𝗇𝖼(𝗒(𝑡)) ∈

𝗉n
𝑞 is the input, 𝐮(𝑡) ∈ Z𝗆n

𝑞 is the output, and {𝐅,𝐆,𝐇, 𝐉} are the
encryptions of the matrices from (24), as

𝐅 = 𝖤𝗇𝖼′(𝖥), 𝐆 = 𝖤𝗇𝖼′(𝖦), 𝐇 = 𝖤𝗇𝖼′(𝖧), 𝐉 = 𝖤𝗇𝖼′(𝖩).

As the configuration of an encrypted system described in Fig. 2(b), it
stores the encrypted parameters {𝐅,𝐆,𝐇, 𝐉, 𝐳0}, receives the input 𝗒(𝑡)
as an LWE type newly encrypted signal, and computes the next state
𝐳(𝑡 + 1) and the output 𝐮(𝑡), respectively, using the GSW-LWE matrix
211

s

multiplication and the addition between LWE type ciphertexts. The
performance of the system (25) can be analyzed, by decrypting the
signals 𝐳(𝑡) and 𝐮(𝑡) and comparing to that of the un-encrypted model
(24), as the following proposition.

Proposition 3. Consider the messages �̃�(𝑡) ∶= 𝖣𝖾𝖼(𝐳(𝑡)) ∈ Z𝓁
𝑞 and

�̃�(𝑡) ∶= 𝖣𝖾𝖼(𝐮(𝑡)) ∈ Z𝗆
𝑞 of the encrypted trajectories of (25). They obey

�̃�(𝑡 + 1) = 𝖥 ⋅ �̃�(𝑡) + 𝖦 ⋅ (𝗒(𝑡) + 𝛥𝗒(𝑡)) + 𝛥𝗓(𝑡) mod 𝑞

�̃�(𝑡) = 𝖧 ⋅ �̃�(𝑡) + 𝖩 ⋅ (𝗒(𝑡) + 𝛥𝗒(𝑡)) + 𝛥𝗎(𝑡) mod 𝑞

�̃�(0) = 𝗓0 + 𝛥0 mod 𝑞,

(26)

with some 𝛥𝗒(𝑡) ∈ Z𝗉, 𝛥𝗓(𝑡) ∈ Z𝓁 , 𝛥𝗎(𝑡) ∈ Z𝗆, and 𝛥0 ∈ Z𝓁 such that

‖𝛥𝗒(𝑡)‖ ≤ 𝑛0𝜎, ‖𝛥𝗓(𝑡)‖ ≤ (𝓁 + 𝗉)𝛥𝖬𝗎𝗅𝗍,

‖𝛥𝗎(𝑡)‖ ≤ (𝓁 + 𝗉)𝛥𝖬𝗎𝗅𝗍, ‖𝛥0‖ ≤ 𝑛0𝜎, (27)

respectively. □

Proof. By Propositions 2 and 1. 1, it is obvious that
[

�̃�(𝑡 + 1)
�̃�(𝑡)

]

= 𝖣𝖾𝖼

([

𝐳(𝑡 + 1)
𝐮(𝑡)

])

= 𝖣𝖾𝖼

([

𝐅 𝐆
𝐇 𝐉

]

⋅𝐷
([

𝐳(𝑡)
𝖤𝗇𝖼(𝗒(𝑡))

]))

=
[

𝖥 𝖦
𝖧 𝖩

]

⋅
[

�̃�(𝑡)
𝗒(𝑡) + 𝛥𝗒(𝑡)

]

+
[

𝛥𝗓(𝑡)
𝛥𝗎(𝑡)

]

mod 𝑞

and 𝖣𝖾𝖼(𝐳(0)) = 𝖣𝖾𝖼(𝖤𝗇𝖼(𝗓0)) = 𝗓0 + 𝛥0 hold, with some {𝛥𝗒(𝑡), 𝛥𝗓(𝑡),
𝛥𝗎(𝑡), 𝛥0} satisfying (27). ■

Proposition 3 shows that the performance of the encrypted system
(25) is equivalent to the system (26), which has the same parameters
{𝖥,𝖦,𝖧, 𝖩, 𝗓0} with that of (24). It is found that the effect of the errors
is denoted by {𝛥𝗓(𝑡), 𝛥𝗎(𝑡), 𝛥0}, which can be seen as disturbances or
perturbations bounded as (27).

In order to have the error effect relatively small, the encryption 𝖤𝗇𝖼𝖫
with the scale factor 𝖫 can be used for the input 𝗒(𝑡) and the state 𝗓(𝑡),
as
𝐳(𝑡 + 1) = 𝐅 ⋅𝐷(𝐳(𝑡)) +𝐆 ⋅𝐷(𝖤𝗇𝖼𝖫(𝗒(𝑡))) mod 𝑞

𝐮(𝑡) = 𝐇 ⋅𝐷(𝐳(𝑡)) + 𝐉 ⋅𝐷(𝖤𝗇𝖼𝖫(𝗒(𝑡))) mod 𝑞

𝐳(0) = 𝖤𝗇𝖼𝖫(𝗓0).

(28)

n the following corollary, it can be observed that only the messages in
he dynamics are scaled by the factor 𝖫, while the bound for the errors
emains the same.

orollary 1. The messages �̃�(𝑡) = 𝖣𝖾𝖼(𝐳(𝑡)) and �̃�(𝑡) = 𝖣𝖾𝖼(𝐮(𝑡)) of the
ystem (28) obey

̃(𝑡 + 1) = 𝖥 ⋅ �̃�(𝑡) + 𝖦 ⋅ (𝖫 ⋅ 𝗒(𝑡) + 𝛥𝗒(𝑡)) + 𝛥𝗓(𝑡) mod 𝑞

�̃�(𝑡) = 𝖧 ⋅ �̃�(𝑡) + 𝖩 ⋅ (𝖫 ⋅ 𝗒(𝑡) + 𝛥𝗒(𝑡)) + 𝛥𝗎(𝑡) mod 𝑞

�̃�(0) = 𝖫 ⋅ 𝗓0 + 𝛥0 mod 𝑞,

(29)

here the errors 𝛥𝗒(𝑡) ∈ Z𝗉, 𝛥𝗓(𝑡) ∈ Z𝓁 , 𝛥𝗎(𝑡) ∈ Z𝗆, and 𝛥0 ∈ Z𝓁 satisfy
27). □

We defer the discussion about the error effect in the closed-loop
ystem of the plant and the encrypted controller to the next subsection.
t will be seen that if the closed-loop system is stable with respect to
‘perturbations’’, then the effect of the errors can be made arbitrarily
mall by an appropriate choice of the parameter 𝖫.

In the remaining, we discuss the strengths and weaknesses of the
SW-LWE encryption scheme. Compared to other LWE-based cryp-

osystems, an opportunity cost of using the GSW scheme is that it
ay require a large amount of storage; for example, if the parameters

𝑞, 𝜎0, 𝑑) are chosen as (𝑞, 𝜎0, 𝑑) = (248, 10, 3) and the desired bit-security
evel is 𝜆 = 80, then the estimation (7) suggest that the dimension 𝑛
hould be chosen larger than 𝑛 = 7.16 × 102. It means that a scalar

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.

w
d
e
t

P
a

∀

p
e

𝑥

b
t
t
a

t
𝐹
t
1
t
t
t
g

s
r
p
s

3

k
t
b
𝑧

Table 2
Computation times for GSW-LWE algorithms for a scalar variable, tested with MATLAB
using an Intel i5 processor with 16 GB RAM.
(n, 𝑞, 𝑑) (50, 248 , 3) (1000, 248 , 3)
𝖤𝗇𝖼∕𝖣𝖾𝖼 0.2 ms 2.6 ms
𝖤𝗇𝖼′ 15 ms 120 ms
GSW-LWE multiplication 0.7 ms 19.9 ms

message encrypted by GSW scheme turns into (𝑑n2 ≈ 1.54 × 106)-
dimensional 48-bit numbers. Instead, besides the abilities of addition,
multiplication, and recursive operation, another benefit of GSW-LWE
scheme is that its implementation is simple and easy; in contrast to the
cryptosystems requiring the modulus 𝑞 chosen as a large odd number,
there is no such restriction on the choice of the modulus 𝑞 with the
GSW-LWE scheme. Then, once choosing the modulus 𝑞 and the base 𝜈
chosen as powers of 2, it can be found that the encrypted addition and
multiplication, and the algorithms 𝖤𝗇𝖼 and 𝖣𝖾𝖼 can be implemented
with simple modular matrix multiplication, where the operations such
as (⋅ mod 𝑞) or 𝐷(⋅) can be easily performed using binary bit operations.

An example of computation times consumed for each encrypted
operation is shown in Table 2. In spite of a conservative choice of
parameters to ensure the security, the operations 𝖤𝗇𝖼, 𝖣𝖾𝖼, and the
multiplication turn out to be relatively fast. The encryption 𝖤𝗇𝖼′ takes
a relatively long time, but considering that it will be used for encrypt-
ing the control parameters, it can be performed off-line, while the
controller is initialized. The component-wise encryption and operation
described in (21) would require a multiple of operation times as many
as the size of the dimension, but a ‘‘packing method’’ (Genise, Gentry,
Halevi, Li, & Micciancio, 2019) for the GSW-LWE scheme that encrypts
a vector or a matrix into a ‘‘single ciphertext’’ can be used for reducing
the computation time in practice.

3.2. Conversion of linear controllers to operate over Z𝑞

The previous section showed that the dynamic operation of (24)
can be implemented as (25) with all the parameters and the signals
encrypted with the GSW-LWE scheme. Thus, the remaining task for the
encrypted dynamic control implementation is to convert the ‘‘given’’
dynamic controller (4) over R (which is supposed to be designed in
advance) to a system of the form (24) so that it can operate over the
space Z𝑞 based on the modular arithmetic.

Let the system (24) be rewritten as

𝗓(𝑡 + 1) = 𝖥 ⋅ 𝗓(𝑡) + 𝖦 ⋅𝑄(𝑦(𝑡)) mod 𝑞

𝗎(𝑡) = 𝖧 ⋅ 𝗓(𝑡) + 𝖩 ⋅𝑄(𝑦(𝑡)) mod 𝑞

𝗓(0) = 𝗓0 ∈ Z𝓁
𝑞 ,

(30)

where 𝑄 ∶ R𝗉 → Z𝗉
𝑞 is a quantization function so that the input

𝑦(𝑡) ∈ R𝗉 of the given controller (4) can be regarded as the input of
the system (30) as well. Now, given the controller (4), the problem
of interest is to design the parameters {𝖥,𝖦,𝖧, 𝖩, 𝗓0} of (30), so that
the performance of the system (30) over Z𝑞 is ‘‘practically equivalent’’
to that of the controller (4) over R. The problem is more specifically
stated, as follows.

Problem 1. Given the parameters {𝐹 ,𝐺,𝐻, 𝐽 , 𝑥0} of the system (4)
consisting of real numbers together with a positive number 𝜖 > 0, find
parameters {𝖥,𝖦,𝖧, 𝖩, 𝗓0} of integers and a function 𝑄 for the system
(30), and find a function 𝑔 ∶ Z𝗆

𝑞 → R𝗆, such that ‖𝑢(𝑡) − 𝑔(𝗎(𝑡))‖ ≤ 𝜖 for
all 𝑡 ≥ 0. □

It is desirable that, as in Fig. 2(b), only the encrypted signal of the
plant output 𝑦(𝑡) is received at the controller, and only the encrypted
output of 𝑢(𝑡) is transmitted back to the plant. Nonetheless, from the
rationale that the output of the system is supposed to be decrypted
at the actuator, an additional assumption can be considered that the
212
decrypted signal of 𝑢(𝑡) can be re-encrypted and transmitted back to
the controller again; let the system (30) be replaced with the following
form
𝗓(𝑡 + 1) = 𝖥 ⋅ 𝗓(𝑡) + 𝖦 ⋅𝑄(𝑦(𝑡)) + 𝖱 ⋅𝑄′(𝗎(𝑡)) mod 𝑞

𝗎(𝑡) = 𝖧 ⋅ 𝗓(𝑡) + 𝖩 ⋅𝑄(𝑦(𝑡)) mod 𝑞

𝗓(0) = 𝗓0 ∈ Z𝓁
𝑞

(31)

here a (nonlinear) function 𝑄′ ∶ Z𝗆
𝑞 → Z𝗆

𝑞 can be applied to the
ecrypted output before it is re-encrypted. See Fig. 12 describing the
ncrypted implementation of (31). Then, a relaxed problem assuming
he ‘‘output re-encryption’’ can be reformulated as follows.

roblem 2. Given the parameters {𝐹 ,𝐺,𝐻, 𝐽 , 𝑥0} of (4) and 𝜖 > 0, find
set of parameters {𝖥,𝖦,𝖧, 𝖩, 𝗓0,𝖱} of integers and functions {𝑄,𝑄′} for

the system (31) over Z𝑞 , and a function 𝑔, such that ‖𝑔(𝗎(𝑡))− 𝑢(𝑡)‖ ≤ 𝜖,
𝑡 ≥ 0. □

Regarding the stated problems, we note that simply ‘‘scaling up’’ the
arameters {𝐹 ,𝐺,𝐻, 𝐽 , 𝑥0} cannot be a solution. Consider the following
xample

(𝑡 + 1) = −0.25 × 𝑥(𝑡) + 1

𝑢(𝑡) = 𝑥(𝑡)

𝑥(0) = 1

→

𝑢(1) = 0.75,

𝑢(2) = 0.8125,

𝑢(3) = 0.796875,

𝑢(4) = 0.80078125.

(32a)

To keep the precision of the parameter 0.25 that is recursively multi-
plied with the state 𝑥(𝑡), let it be scaled by 100 and stored as an integer
and the system is represented as

𝗓(𝑡 + 1) = −25 × 𝗓(𝑡) + 100𝑡+1

𝗎(𝑡) = 𝗓(𝑡)

𝗓(0) = 1

→

𝗎(1) = 75,

𝗎(2) = 8125,

𝗎(3) = 7 96875,

𝗎(4) = 8 00 78125,

(32b)

so that the output 𝑢(𝑡) is recovered as 𝑢(𝑡) = 𝗎(𝑡)∕100𝑡. However, it can
e seen that the size |𝗎(𝑡)| of the output increases (exponentially) as
ime goes by, so that no matter how large the modulus 𝑞 is chosen for
he underlying space Z𝑞 for the system (30), there will be an overflow
nd the output will be incorrect, in a finite time.

In general, a major issue related to the problem is recursive mul-
iplication of the state matrix consisting of non-integers; the state matrix

of the given controller in (4), which is recursively multiplied with
he state 𝑥(𝑡), should not be kept as ⌈𝐹∕𝗌⌋ ∈ Z𝓁×𝓁 with a scale factor
∕𝗌 > 1 to keep the precision of the decimal part. If so, the state 𝗓(𝑡) of
he implemented system will be multiplied by the scaled matrix ⌈𝐹∕𝗌⌋
ogether with the factor 1∕𝗌 > 1, so that the size of 𝗓(𝑡) (equivalently,
he number of decimal places of the state 𝑥(𝑡)) will increase as time
oes by, even if the norm ‖𝑥(𝑡)‖ of the state is bounded.

In this regard, from the following subsection, we first convert the
tate matrix to integers without use of scaling, and then convert the
est part of the system to integers. The methods to be introduced are
resented in Kim, Shim, and Han (2022), which will be seen as a
olution to Problem 2.

.2.1. Conversion of state matrix to integers
A simple way of changing the parameters of a linear system while

eeping the same input–output relation is the ‘‘similarity transforma-
ion’’. With an invertible matrix 𝑇 ∈ Z𝓁×𝓁 , let the given controller (4)
e transformed as
(𝑡 + 1) = 𝑇𝐹𝑇 −1𝑧(𝑡) + 𝑇𝐺𝑦(𝑡)

𝑢(𝑡) = 𝐻𝑇 −1𝑧(𝑡) + 𝐽𝑦(𝑡) (33)

𝑧(0) = 𝑇𝑥0

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.
Fig. 12. (a) Block diagram of the system (30). (b) Encrypted implementation of (30) with output re-encryption.
which has the same input–output relation with the relation 𝑧(𝑡) = 𝑇𝑥(𝑡).
Then, to convert the given state matrix 𝐹 to integers, one may try to
find a transformation matrix 𝑇 such that the state matrix 𝐹 ∈ R𝓁×𝓁

consisting of non-integers is turned into integers; i.e., 𝑇𝐹𝑇 −1 ∈ Z𝓁×𝓁 .
However, this attempt will not be successful in general, due to

the invariant characteristics of the linear systems. If there exists a
transformation 𝑇 such that 𝑇𝐹𝑇 −1 ∈ Z𝓁×𝓁 , then it is obvious that the
characteristic polynomial det(𝑠𝐼𝓁 − 𝑇𝐹𝑇 −1) of the matrix 𝑇𝐹𝑇 −1 has
the coefficients as integers. Thus, from the invariance that det(𝑠𝐼𝓁 −
𝑇𝐹𝑇 −1) = det(𝑠𝐼𝓁 −𝐹) no matter what the transform 𝑇 is chosen, there
does not exist a transformation 𝑇 such that 𝑇𝐹𝑇 −1 ∈ Z𝓁×𝓁 as long
as the given state matrix 𝐹 is such that its characteristic polynomial
det(𝑠𝐼𝓁 − 𝐹) does not have integer coefficients.

Then, considering that the objective of Problem 2 is to convert the
given controller into the form (31) where the output of the system can
be treated as an ‘‘auxiliary input’’ at the same time, we first change the
state matrix using the auxiliary input and then try to transform it to
integers; let us observe that the system (4) can be rewritten as

𝑥(𝑡 + 1) = (𝐹 − 𝑅𝐻)𝑥(𝑡) + (𝐺 − 𝑅𝐽)𝑦(𝑡) + 𝑅𝑢(𝑡)

𝑢(𝑡) = 𝐻𝑥(𝑡) + 𝐽𝑦(𝑡)

𝑥(0) = 𝑥0

(34)

which has the same relation from the input 𝑦(𝑡) to the output 𝑢(𝑡),
regardless of the choice of the matrix 𝑅 ∈ R𝓁×𝗆. Now, we consider
the similarity transformation for the system (34), as

𝑧(𝑡 + 1) = 𝑇 (𝐹 − 𝑅𝐻)𝑇 −1𝑧(𝑡) + 𝑇 (𝐺 − 𝑅𝐽)𝑦(𝑡) + 𝑇𝑅𝑢(𝑡) (35a)

𝑢(𝑡) = 𝐻𝑇 −1𝑧(𝑡) + 𝐽𝑦(𝑡) (35b)

𝑧(0) = 𝑇𝑥0 (35c)

and try to find a transformation matrix 𝑇 such that the ‘‘converted’’
state matrix consists of integers; that is,

𝑇 (𝐹 − 𝑅𝐻)𝑇 −1 ∈ Z𝓁×𝓁 .

In what follows, it is proposed that the system of the form (34)
can always be converted to have the state matrix as integers. First,
without loss of generality, we can assume that the pair (𝐹 ,𝐻) of the
given controller (4) is observable, i.e.,

rank

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

𝐻
𝐻𝐹
⋮

𝐻𝐹 𝓁−1

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

= 𝓁.

If it is not, ‘‘Kalman observable decomposition’’ can be considered so
that the pair (𝐹 ,𝐻) can be reduced to an observable pair; an invertible
matrix 𝑊 = [𝑊 ⊤

1 ,𝑊 ⊤
2]⊤ ∈ R𝓁×𝓁 can always be found such that, with

𝑧1(𝑡) = 𝑊1𝑥(𝑡) ∈ R𝓁′ and 𝑧2(𝑡) = 𝑊2𝑥(𝑡) ∈ R𝓁−𝓁′ with some 𝓁′ ≤ 𝓁, the
controller (4) can be transformed into the form

𝑧 (𝑡 + 1) = 𝐹 𝑧 (𝑡) +𝑊 𝐺𝑦(𝑡) (36a)
213

1 11 1 1
𝑧2(𝑡 + 1) = 𝐹21𝑧1(𝑡) + 𝐹22𝑧2(𝑡) +𝑊2𝐺𝑦(𝑡) (36b)

𝑢(𝑡) = 𝐻1𝑧1(𝑡) + 𝐽𝑦(𝑡) (36c)

with

𝑊𝐹𝑊 −1 =
[

𝐹11 0𝓁′×(𝓁−𝓁′)
𝐹21 𝐹22

]

and 𝐻𝑊 −1 =
[

𝐻1 0𝗆×(𝓁−𝓁′)
]

,

where the reduced pair (𝐹11,𝐻1) becomes observable. Then, since the
sub-state 𝑧2(𝑡) of the unobservable part does not affect the value of the
output 𝑢(𝑡) in (36c), it suffices to reduce the given controller (4) to the
subsystem (36a) with (36c) only, which is observable and has the same
input–output relation.

Now, based on the observability of the pair (𝐹 ,𝐻), it is proposed
that, the matrices 𝑅 and 𝑇 can always be found such that the converted
system (35) has the state matrix as integers; let the matrix 𝑅 be found
such that the eigenvalues {𝜆𝑖}𝓁𝑖=1 of the matrix 𝐹 − 𝑅𝐻 are distinct
integers, for example. Then, by choosing the transformation matrix 𝑇
that diagonalizes the matrix 𝐹 − 𝑅𝐻 , we obtain

𝑇 (𝐹 − 𝑅𝐻)𝑇 −1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝓁

⎤

⎥

⎥

⎥

⎥

⎦

∈ Z𝓁×𝓁 ,

which is clearly a matrix consisting of integers. As a result, we have the
following lemma.

Lemma 1. For any observable pair 𝐹 ∈ R𝓁×𝓁 and 𝐻 ∈ R𝗆×𝓁 , there exist
matrices 𝑅 ∈ R𝓁×𝗆 and 𝑇 ∈ R𝓁×𝓁 such that 𝑇 (𝐹 − 𝑅𝐻)𝑇 −1 ∈ Z𝓁×𝓁 . □

If the controller (4) is an observable single-output system, the
observable canonical form of the system can be simply used for the
conversion. Indeed, let 𝐻 ∈ R1×𝓁 , and let the transform matrix 𝑇 be
found such that the pair (𝐹 ,𝐻) is transformed into the form

𝑇𝐹𝑇 −1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 ⋯ 0 𝑎1
1 0 ⋯ 0 𝑎2
0 1 ⋯ 0 𝑎3
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 𝑎𝓁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝓁×𝓁 ,

𝐻𝑇 −1 =
[

0 ⋯ 0 1
]

∈ R1×𝓁 .

Then obviously, any matrix 𝑅 ∈ R𝓁×1, given by

𝑅 = 𝑇 −1

⎡

⎢

⎢

⎢

⎢

⎣

𝑎1 − 𝑘1
𝑎2 − 𝑘2

⋮
𝑎𝓁 − 𝑘𝓁

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑘𝑖 ∈ Z, 𝑖 = 0,… ,𝓁,

will yield the converted state matrix as integers, as

𝑇 (𝐹 − 𝑅𝐻)𝑇 −1 =

⎡

⎢

⎢

⎢

⎢

⎢

0 0 ⋯ 0 𝑘1
1 0 ⋯ 0 𝑘2
0 1 ⋯ 0 𝑘3
⋮ ⋮ ⋱ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

∈ Z𝓁×𝓁 .
⎣
0 0 ⋯ 1 𝑘𝓁⎦

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.

w

w

(

s
f
L
s

t
f
o

w

𝑒

C
n
∀
o

𝑥

c
a
t
p
a
a
p
c

A
s
a

‖

t

m
B
h
s
a
t
i
w
I

3.2.2. Conversion to system over Z
So far, we have converted the given controller (4) to the form

(35), where the matrices 𝑇 and 𝑅 are found such that the state matrix
𝑇 (𝐹 − 𝑅𝐻)𝑇 −1 consists of integers. Now, recalling that the overflow
problem described in the example (32) was due to the state matrix 𝐹
consisting of non-integers and due to the recursive multiplication of the
state matrix ⌈𝐹∕𝗌⌋ ∈ Z𝓁×𝓁 scaled by 1∕𝗌 > 1, it can be expected that
such problem would not be found because now the converted system
(35) will keep the state matrix 𝑇 (𝐹 − 𝑅𝐻)𝑇 −1 as integers without a
scaling factor (that is, 1∕𝗌 = 1). In this subsection, we show how to
implement the system having the state matrix as integers, to operate
over the space Z using addition and multiplication.

The task is to convert all the signals and the parameters of the
system (35) to integers using scale factors, except the state matrix
which is already of integers. Note that, any matrix 𝐺 ∈ R𝓁×𝗉 (or any
vector or scalar) can be stored as integers with arbitrary precision, as
⌈𝐺∕𝗌⌋ ∈ Z𝓁×𝗉, 1∕𝗌 > 0, because the error due to rounding can be
arbitrary small as the scale factor 1∕𝗌 tends to infinity (as 𝗌 tends to
zero), as
‖

‖

‖

‖

𝐺 − 𝗌
⌈𝐺
𝗌

⌋

‖

‖

‖

‖

≤
𝗉

2
⋅ 𝗌. (37)

Thus, to keep the performance of the system (35) while scaling up the
non-integer numbers therein, let 1∕𝗋 > 0, 1∕𝗌 > 0, and 𝖫 ∈ N be scale
factors, and let the factor 𝖫∕(𝗋𝗌) be multiplied to the both sides of the
Eqs. (35a) and (35c), and the factor 𝖫∕(𝗋𝗌2) be multiplied to the both
sides of Eq. (35b), as
𝖫 ⋅ 𝑧(𝑡 + 1)

𝗋𝗌
= 𝑇 (𝐹 − 𝑅𝐻)𝑇 −1 ⋅

𝖫 ⋅ 𝑧(𝑡)
𝗋𝗌

+
𝑇 (𝐺 − 𝑅𝐽)

𝗌
⋅
𝖫 ⋅ 𝑦(𝑡)

𝗋

+ 𝑇𝑅
𝗌

⋅
𝖫 ⋅ 𝑢(𝑡)

𝗋
𝖫 ⋅ 𝑢(𝑡)
𝗋𝗌2

= 𝐻𝑇 −1

𝗌
⋅
𝖫 ⋅ 𝑧(𝑡)

𝗋𝗌
+ 𝐽

𝗌2
⋅
𝖫 ⋅ 𝑦(𝑡)

𝗋
𝖫 ⋅ 𝑧(0)

𝗋𝗌
= 𝖫 ⋅

𝑇𝑥0
𝗋𝗌

.

(38)

Next, we take the rounding operation to the parameters and signals
so that we consider the following system

𝑧(𝑡 + 1) = 𝐹 ⋅ 𝑧(𝑡) + 𝐺 ⋅ 𝑦(𝑡) + 𝑅 ⋅ 𝖫 ⋅
⌈

𝗌2

𝖫
⋅ 𝑢(𝑡)

⌋

, (39a)

𝑢(𝑡) = 𝐻 ⋅ 𝑧(𝑡) + 𝐽 ⋅ 𝑦(𝑡) (39b)

𝑧(0) = 𝑧0,

ith

𝐹 ∶= 𝑇 (𝐹 − 𝑅𝐻)𝑇 −1, 𝐺 ∶=
⌈

𝑇 (𝐺 − 𝑅𝐽)
𝗌

⌋

, 𝑅 ∶=
⌈𝑇𝑅

𝗌

⌋

,

𝐻 ∶=
⌈

𝐻𝑇 −1

𝗌

⌋

, 𝐽 ∶=
⌈

𝐽
𝗌2

⌋

, 𝑦(𝑡) ∶= 𝖫 ⋅
⌈

𝑦(𝑡)
𝗋

⌋

, 𝑧0 ∶= 𝖫 ⋅
⌈

𝑇𝑥0
𝗋𝗌

⌋

,

(40)

here the state 𝑧(𝑡) ∈ Z𝓁 , the input 𝑦(𝑡) ∈ Z𝗉, and the output 𝑢(𝑡) ∈
Z𝗆 will keep approximate values of the state 𝖫 ⋅ 𝑧(𝑡)∕(𝗋𝗌), the input
𝖫 ⋅ 𝑦(𝑡)∕𝗋, and the output 𝖫 ⋅ 𝑢(𝑡)∕(𝗋𝗌2) in (38), respectively. Note that,
the constructed system (39) is defined over integers and operates using
only addition and multiplication, except the operation 𝖫 ⋅ ⌈(𝗌2∕𝖫) ⋅ ()⌋
which ‘‘divides’’ the value of 𝑢(𝑡) by the factor 1∕𝗌2.

Next, we consider the performance of the system (39). Define �̃�(𝑡) ∶=
𝗋𝗌∕𝖫) ⋅ 𝑧(𝑡) and �̃�(𝑡) ∶= (𝗋𝗌2∕𝖫) ⋅ 𝑢(𝑡). Then, the system (39) can be

rewritten as

�̃�(𝑡 + 1) = 𝑇 (𝐹 − 𝑅𝐻)𝑇 −1�̃�(𝑡) + 𝑇 (𝐺 − 𝑅𝐽)𝑦(𝑡) + 𝑇𝑅�̃�(𝑡) + 𝑒𝑧(𝑡)

�̃�(𝑡) = 𝐻𝑇 −1�̃�(𝑡) + 𝐽𝑦(𝑡) + 𝑒𝑢(𝑡) (41)
214

�̃�(0) = 𝑇𝑥0 + 𝑒𝑧,0 v
where 𝑒𝑧(𝑡) ∈ R𝓁 , 𝑒𝑢(𝑡) ∈ R𝗆, and 𝑒𝑧,0 ∈ R𝓁 denote the error due to the
rounding (quantization), given by

𝑒𝑧(𝑡) =
(

𝑇 (𝐺 − 𝑅𝐽)𝑦(𝑡) −
(

𝗌

⌈

𝑇 (𝐺 − 𝑅𝐽)
𝗌

⌋)

⋅
(

𝗋

⌈

𝑦(𝑡)
𝗋

⌋))

+
(

𝑇𝑅�̃�(𝑡) −
(

𝗌
⌈𝑇𝑅

𝗌

⌋)

⋅
(

𝗋

⌈

�̃�(𝑡)
𝗋

⌋))

𝑒𝑢(𝑡) =
(

𝐻𝑇 −1 − 𝗌

⌈

𝐻𝑇 −1

𝗌

⌋)

⋅ �̃�(𝑡) +
(

𝐽𝑦(𝑡) −
(

𝗌2
⌈

𝐽
𝗌2

⌋)

⋅
(

𝗋

⌈

𝑦(𝑡)
𝗋

⌋))

𝑒𝑧,0 = 𝑇𝑥0 − 𝗋𝗌

⌈

𝑇𝑥0
𝗋𝗌

⌋

.

(42)

We note that the factor 𝖫 does not affect the values of {𝑒𝑧(𝑡), 𝑒𝑢(𝑡), 𝑒𝑧,0},
o does nothing about the performance of (41); as an auxiliary scale
actor, it will be used in Section 3.3, to deal with ‘‘error growth’’ of the
WE-based cryptosystem. One may suppose 𝖫 = 1 in this subsection for
implicity.

Then, the performance of the implemented system (39) can be iden-
ified with the given controller model (4) with presence of perturbation;
rom (41), it can be easily verified that the state �̃�(𝑡) ∶= 𝑇 −1�̃�(𝑡) and the
utput �̃�(𝑡) obey

�̃�(𝑡 + 1) = 𝐹 �̃�(𝑡) + 𝐺𝑦(𝑡) + 𝑒𝑥(𝑡)

�̃�(𝑡) = 𝐻�̃�(𝑡) + 𝐽𝑦(𝑡) + 𝑒𝑢(𝑡)

�̃�(0) = 𝑥0 + 𝑒0,

(43)

here the errors 𝑒𝑥(𝑡) ∈ R𝓁 and 𝑒0 ∈ R𝓁 are given by

𝑥(𝑡) = 𝑇 −1𝑒𝑧(𝑡) + 𝑇𝑅𝑒𝑢(𝑡), 𝑒0 = 𝑇 −1𝑒𝑧,0. (44)

ompared to the given controller (4) without considering the errors,
ote that �̃�(𝑡) = 𝑥(𝑡) and �̃�(𝑡) = 𝑢(𝑡), ∀𝑡 ≥ 0, if 𝑒0 = 0, 𝑒𝑥(𝑡) = 0, and 𝑒𝑢(𝑡),
𝑡 ≥ 0. The result is that the performance of (39) is equivalent to that
f (43), with the relation

̃(𝑡) = 𝗋𝗌
𝖫

⋅ 𝑇 −1𝑧(𝑡), �̃�(𝑡) = 𝗋𝗌2

𝖫
⋅ 𝑢(𝑡). (45)

In what follows, we discuss the effect of the perturbations
{𝑒𝑥(𝑡), 𝑒𝑢(𝑡), 𝑒0} on the performance of the systems (39) and (43). The
laim is that, if the sizes of the errors {𝑒𝑥(𝑡), 𝑒𝑢(𝑡), 𝑒0} can be made
rbitrarily small by appropriate choice of the parameters {𝗋, 𝗌}, and if
he trajectories �̃�(𝑡) and �̃�(𝑡) of (43) are ‘‘stable’’ with respect to the
erturbations {𝑒𝑥(𝑡), 𝑒𝑢(𝑡), 𝑒0}, then the difference of the trajectories �̃�(𝑡)
nd �̃�(𝑡) from those of the ‘‘ideal’’ trajectories 𝑥(𝑡) and 𝑢(𝑡) can be made
rbitrarily small by the choice of {𝗋, 𝗌}. And, this will ensure that the
erformance of the system (39) is ‘‘practically equivalent’’ to the given
ontroller (4). In this regard, we make the following assumption.

ssumption 1. Given the controller (4), the perturbed model (43)
atisfies the following: There exists a function 𝛿(𝜖) > 0 such that for
ny 𝜖 > 0, if

𝑒0‖ ≤ 𝛿(𝜖), ‖𝑒𝑥(𝑡)‖ ≤ 𝛿(𝜖), and ‖𝑒𝑢(𝑡)‖ ≤ 𝛿(𝜖), ∀𝑡 ≥ 0, (46)

hen ‖�̃�(𝑡) − 𝑥(𝑡)‖ ≤ 𝜖 and ‖�̃�(𝑡) − 𝑢(𝑡)‖ ≤ 𝜖 hold for all 𝑡 ≥ 0. □

Obviously, if the given controller (4) itself is stable (i.e., the state
atrix 𝐹 is Schur stable), then the condition of Assumption 1 is implied.
ut, we note that a system, in which the condition of Assumption 1
olds, may not be stable by itself (the matrix 𝐹 may not be Schur
table). Typically, if the system (43) is a part of a closed-loop system,
nd if it is stable with respect to the perturbations {𝑒𝑥(𝑡), 𝑒𝑢(𝑡), 𝑒0}, then
he condition of Assumption 1 will hold. In such cases, rigorously, the
nput 𝑦(𝑡) of the system may also be affected by the perturbations, but
e omit such arguments for simplicity (See Kim et al. (2022, Section

I.B)).
Finally, the following lemma states that the performance of the con-
erted controller (39) operating over integers is guaranteed, provided

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.

S
a

T

s
i
f
o

c

t

𝑞

d

𝑔

t

𝗓

w

that the trajectories of the given controller is stable with respect to the
quantization errors {𝑒𝑥(𝑡), 𝑒𝑢(𝑡), 𝑒0}. For a more rigorous proof under a
more general setting, see Kim et al. (2022, Proposition 6).

Lemma 2. For any 𝜖 > 0, under Assumption 1, there exist 𝗋′ > 0
and 𝗌′ > 0 such that for any 𝗋 < 𝗋′, 𝗌 < 𝗌′, and 𝖫 ∈ N, the controller
(39) implemented over Z guarantees that ‖(𝗋𝗌∕𝖫) ⋅ 𝑇 −1𝑧(𝑡) − 𝑥(𝑡)‖ ≤ 𝜖 and
‖(𝗋𝗌2∕𝖫) ⋅ 𝑢(𝑡) − 𝑢(𝑡)‖ ≤ 𝜖 hold, ∀𝑡 ≥ 0. □

ketch of Proof. Recall the relation (45) between the system (39)
nd (43), with the perturbations {𝑒𝑥(𝑡), 𝑒𝑢(𝑡), 𝑒0} determined by (42) and

(44). Given 𝜖 > 0 and 𝛿(𝜖), we show that 𝗋′ and 𝗌′ can be chosen such
that 𝗋 < 𝗋′ and 𝗌 < 𝗌′ ensure that (46) holds. Observe that, for any signal
𝑦(𝑡) ∈ R𝗉 and 𝐺 ∈ R𝓁×𝗉, some constants 𝜃1 and 𝜃2 can be found such
that
‖

‖

‖

‖

‖

𝐺𝑦(𝑡) −
(

𝗌
⌈𝐺
𝗌

⌋)

⋅
(

𝗋

⌈

𝑦(𝑡)
𝗋

⌋)

‖

‖

‖

‖

‖

≤ ‖𝐺‖

2
⋅ 𝗋 +

𝗉

2
⋅ ‖𝑦(𝑡)‖ ⋅ 𝗌 +

𝗉

4
⋅ 𝗋𝗌

≤ 𝜃1 ⋅max{‖𝑦(𝑡)‖, 𝜃2} ⋅max{𝗋, 𝗌, 𝗋𝗌}.

hen, from (42) and (44), it can be verified that

max{‖𝑒𝑥(𝑡)‖, ‖𝑒𝑢(𝑡)‖, ‖𝑒0‖}

≤ 𝜃′1 ⋅max{‖𝑦(𝑡)‖, ‖�̃�(𝑡)‖, ‖�̃�(𝑡)‖, 𝜃′2} ⋅max{𝗋, 𝗌, 𝗋𝗌, 𝗌2, 𝗋𝗌2}

=∶ 𝛼(‖𝑦(𝑡)‖, ‖�̃�(𝑡)‖, ‖�̃�(𝑡)‖, 𝗋, 𝗌) (47)

with some constants 𝜃′1 and 𝜃′2. From the boundedness of the signals of
(4), let max{‖𝑦(𝑡)‖, ‖𝑥(𝑡)‖, ‖𝑢(𝑡)‖} ≤ 𝑀 with some 𝑀 > 0. Then, since
𝗋 = 0 and 𝗌 = 0 implies 𝛼 = 0 in (47), we can choose 𝗋′ > 0 and 𝗌′ > 0
such that

𝛼(𝑀,𝑀 + 𝜖,𝑀 + 𝜖, 𝗋′, 𝗌′) ≤ 𝛿(𝜖).

As a consequence, by Assumption 1, it can be proved that any 𝗋 < 𝗋′

and 𝗌 < 𝗌′ ensure that

‖�̃�(𝑡) − 𝑥(𝑡)‖ ≤ 𝜖, ‖�̃�(𝑡) − 𝑢(𝑡)‖ ≤ 𝜖, ‖�̃�(𝑡)‖ ≤ 𝑀 + 𝜖, ‖�̃�(𝑡)‖ ≤ 𝑀 + 𝜖,

for all 𝑡 ≥ 0, using mathematical induction. It completes the proof. ■

3.2.3. Conversion to system over Z𝑞
All the parameters and the signals of the given controller (4) are

now converted to integers, in the controller (39). Recalling the goal
of Problem 2, we map the parameters and signals of (39) to the set
Z𝑞 = {0, 1,… , 𝑞 − 1} of messages for encryption, and further convert
the system (39) to the form (31), so that it can be directly encrypted
using the result of Proposition 3.

First of all, we note that, given any dynamic system of the form

𝑥(𝑡 + 1) = 𝐹
′
𝑥(𝑡) + 𝐺

′
𝑦(𝑡),

𝑢′(𝑡) = 𝐻
′
𝑥(𝑡) + 𝐽

′
𝑦(𝑡),

𝑥(0) = 𝑥0,

(48)

where all the signals and parameters are of integers, the conversion to
a system over Z𝑞 itself is simple; just by taking the modulo operation
to the parameters, the signals, and the computation outcomes of (48),
it can be converted as
𝗑(𝑡 + 1) = 𝖥′𝗑(𝑡) + 𝖦′𝗒(𝑡) mod 𝑞,

𝗎′(𝑡) = 𝖧′𝗑(𝑡) + 𝖩′𝗒(𝑡) mod 𝑞,

𝗑(0) = 𝗑0,

(49)

where

𝖥′ = 𝐹
′

mod 𝑞, 𝖦′ = 𝐺
′

mod 𝑞, 𝖧′ = 𝐻
′

mod 𝑞,

𝖩′ = 𝐽
′

mod 𝑞, 𝗒(𝑡) = 𝑦(𝑡) mod 𝑞, 𝗑0 = 𝑥0 mod 𝑞.
(50)

Since the modulo operation is compatible with addition and multipli-
cation, the conversion (49) ensures that

𝗎′(𝑡) = 𝑢′(𝑡) mod 𝑞, ∀𝑡 ≥ 0. (51)
215
Conversely, to recover the output 𝑢′(𝑡) of arbitrary integers from the
‘‘projected’’ output 𝗎′(𝑡) consisting of elements of Z𝑞 , the ‘‘size’’ 𝑞 of the
pace Z𝑞 should be chosen appropriately. A sufficient condition is given
n the following proposition; the original output 𝗎′(𝑡) can be recovered
rom 𝗎′(𝑡) using the biased modulo operation defined in (1), if the size
f the space Z𝑞 ‘‘covers’’ the range of the output 𝑢′(𝑡).

Proposition 4. Consider two systems (48) and (49) with (50). Suppose
that the output 𝑢′(𝑡) = col{𝑢′𝑖(𝑡)}

𝗆′

𝑖=1, 𝗆
′ ∈ N, of (48) be bounded as

𝑢min
𝑖 ≤ 𝑢′𝑖(𝑡) ≤ 𝑢max

𝑖 , ∀𝑡 ≥ 0, ∀𝑖 = 1,… ,𝗆′, (52)

with some constants {𝑢min
𝑖 }𝗆′

𝑖=1 and {𝑢max
𝑖 }𝗆′

𝑖=1. If

𝑞 ≥ 𝑢max
𝑖 − 𝑢min

𝑖 + 1, ∀𝑖 = 1,… ,𝗆′, (53)

then 𝑢′(𝑡) = 𝗎′(𝑡) mod (𝑞, col{𝑢min
𝑖 }𝗆′

𝑖=1) holds for all 𝑡 ≥ 0. □

Proof. Let the 𝑖th component of 𝗎′(𝑡) mod (𝑞, col{𝑢min
𝑖 }𝗆′

𝑖=1) be denoted
by 𝑢′′𝑖 (𝑡). Note that the operations mod 𝑞 and mod (𝑞, col{𝑢min

𝑖 }𝗆′

𝑖=1) add
some multiples of 𝑞 to the components only. Then, from (51), it is
lear that 𝑢′𝑖(𝑡) = 𝑢′′𝑖 (𝑡) + 𝑘𝑞 with some 𝑘 ∈ Z. Now, the definition (1)

ensures that 𝑢min
𝑖 ≤ 𝑢′′𝑖 (𝑡) < 𝑢min

𝑖 + 𝑞, and (52) and (53) ensure that
𝑢min
𝑖 ≤ 𝑢′𝑖(𝑡) < 𝑢min

𝑖 + 𝑞. Hence, 𝑘 = 0 and 𝑢′′𝑖 (𝑡) = 𝑢′𝑖(𝑡). It completes the
proof. ■

Based on this observation, we convert the system (39) to the form
(31) over Z𝑞 , and determine the parameters and functions therein, to
find a solution to Problem 2. To determine the modulus 𝑞 first, we
calculate the range of the output 𝑢(𝑡) of (39); from the boundedness
of the output 𝑢(𝑡) = col{𝑢𝑖(𝑡)}𝗆𝑖=1 of (4), let some constants {𝑢min

𝑖 }𝗆𝑖=1 and
{𝑢max

𝑖 }𝗆𝑖=1 be found such that

𝑢min
𝑖 ≤ 𝑢𝑖(𝑡) ≤ 𝑢max

𝑖 , ∀𝑖 = 1,… ,𝗆, ∀𝑡 ≥ 0. (54)

Then, given 𝜖 > 0 from Problem 2, the design of (39) is supposed to
ensure that the output 𝑢(𝑡) = col{𝑢𝑖(𝑡)}𝗆𝑖=1 is bounded as ‖(𝗋𝗌2∕𝖫) ⋅ 𝑢(𝑡) −
𝑢(𝑡)‖ ≤ 𝜖, which implies

𝖫 ⋅
𝑢min
𝑖 − 𝜖

𝗋𝗌2
≤ 𝑢𝑖(𝑡) ≤ 𝖫 ⋅

𝑢max
𝑖 + 𝜖

𝗋𝗌2
, ∀𝑖 = 1,… ,𝗆. (55)

Now, considering the condition (53), we choose the modulus 𝑞 such
hat

≥ max
𝑖=1,…,𝗆

{

𝖫 ⋅
𝑢max
𝑖 − 𝑢min

𝑖 + 2𝜖
𝗋𝗌2

}

+ 1. (56)

Then, even if the operation mod 𝑞 is taken to the output 𝑢(𝑡), as 𝗎′(𝑡) =
𝑢(𝑡) mod 𝑞, the value of 𝑢(𝑡) can be recovered from 𝗎′(𝑡), as

𝑢(𝑡) = 𝗎′(𝑡) mod

(

𝑞, col

{

𝖫 ⋅
𝑢min
𝑖 − 𝜖

𝗋𝗌2

}𝗆

𝑖=1

)

,

and a real-valued signal approximate to the real output 𝑢(𝑡) ≈ (𝗋𝗌2∕𝖫) ⋅
𝑢(𝑡) can also be computed from 𝗎′(𝑡), with a function 𝑔 ∶ Z𝗆

𝑞 → R𝗆

efined as

(𝗎′(𝑡)) ∶= 𝗋𝗌2

𝖫
⋅

(

𝗎′(𝑡) mod

(

𝑞, col

{

𝖫 ⋅
𝑢min
𝑖 − 𝜖

𝗋𝗌2

}𝗆

𝑖=1

))

.

Finally, we convert the system (39) to a system over Z𝑞 , by simply
aking the modulo operation, as

(𝑡 + 1) = 𝖥 ⋅ 𝗓(𝑡) + 𝖦 ⋅ 𝗒(𝑡) + 𝖱 ⋅𝑄′(𝗎(𝑡)) mod 𝑞 (57a)

𝗎(𝑡) = 𝖧 ⋅ 𝗓(𝑡) + 𝖩 ⋅ 𝗒(𝑡) mod 𝑞 (57b)

𝗓(0) = 𝗓0

ith

𝖥 = 𝐹 mod 𝑞, 𝖦 = 𝐺 mod 𝑞, 𝖱 = 𝑅 mod 𝑞, 𝗒(𝑡) = 𝑦(𝑡) mod 𝑞,
𝖧 = 𝐻 mod 𝑞, 𝖩 = 𝐽 mod 𝑞, 𝗓0 = 𝑧0 mod 𝑞,

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.

w

N

t
s

t
s
s
i

‖

P
t
t

N

f
t

m

a
h
o
h
e
L
k
t
c
t
t
t
g
m
o

i
{

3

t
S

w
G

𝐅

a
c
Z
c

𝐳

T

𝐳

w
r
𝐮

𝐮

N
t

c
C
i
t
b
s
l
t
d

𝗓

w
s

‖

‖

a

T
t

(58)

where the term 𝖫⋅⌈(𝗌2∕𝖫)⋅𝑢(𝑡)⌋ in (39) is replaced with the term 𝑄′(𝗎(𝑡)),
ith a function 𝑄′ ∶ Z𝗆

𝑞 → Z𝗆
𝑞 defined as

𝑄′(𝗎(𝑡))

∶= 𝖫 ⋅

⌈

𝗌2

𝖫
⋅

(

𝗎(𝑡) mod

(

𝑞, col

{

𝖫 ⋅
𝑢min
𝑖 − 𝜖

𝗋𝗌2

}𝗆

𝑖=1

))⌋

mod 𝑞. (59)

ote that, since the operation 𝖫 ⋅ ⌈(𝗌2∕𝖫) ⋅ 𝑢(𝑡)⌋ for 𝑢(𝑡) is not compatible
with the modulo operation, in (59), the value of 𝑢(𝑡) is first computed
from 𝗎(𝑡), and then the operation is applied. And, note that, with

𝗒(𝑡) = 𝑄(𝑦(𝑡)) ∶= 𝖫 ⋅
⌈

𝑦(𝑡)
𝗋

⌋

mod 𝑞,

he constructed system (57) takes the same form that Problem 2 con-
iders.

As the end result of Section 3.2, and as a solution to Problem 2,
he following theorem shows that the performance of the implemented
ystem (57), which operates based on modular arithmetic over the
pace Z𝑞 , can be arbitrarily close to that of the given system (4), by
ncreasing the scale factors 1∕𝗋 and 1∕𝗌, regardless of the factor 𝖫.

Theorem 1. Given any controller (4) and 𝜖 > 0, under Assumption 1,
there exist 𝗋′ > 0 and 𝗌′ > 0 such that for any 𝗋 < 𝗋′, 𝗌 < 𝗌′, and
𝖫 ∈ N, the controller (57) implemented over Z𝑞 with (56) guarantees
𝑔(𝗎(𝑡)) − 𝑢(𝑡)‖ ≤ 𝜖, ∀𝑡 ≥ 0. □

roof. Consider the system (39) over Z as an auxiliary system. Thanks
o Lemma 2, we choose 𝗋′ and 𝗌′ such that any 𝗋 < 𝗋′ and 𝗌 < 𝗌′ ensure
hat ‖(𝗋𝗌2∕𝖫) ⋅ 𝑢(𝑡) − 𝑢(𝑡)‖ ≤ 𝜖, ∀𝑡 ≥ 0. By the boundedness of the output
𝑢(𝑡) as (54) with the constants {𝑢min

𝑖 , 𝑢max
𝑖 }𝗆𝑖=1, it follows that (55) holds.

ow, it is enough to show that

𝑢(𝑡) =

(

𝗎(𝑡) mod

(

𝑞, col

{

𝖫 ⋅
𝑢min
𝑖 − 𝜖

𝗋𝗌2

}𝗆

𝑖=1

))

(60)

for all 𝑡 ≥ 0. Note that 𝗒(𝑡) = 𝑦(𝑡) mod 𝑞, ∀𝑡 ≥ 0, and 𝗓0 = 𝑧0 mod 𝑞, so,
rom (39b) and (57b), it follows that 𝗎(0) = 𝑢(0) mod 𝑞. Now, suppose
hat 𝗎(𝜏) = 𝑢(𝜏) mod 𝑞 for some 𝜏 ≥ 0. Then, the condition (56) ensures

that (60) holds for 𝑡 = 𝜏, which can be proved analogously to the proof
of Proposition 4. This is followed by 𝑄′(𝗎(𝜏)) = 𝖫⋅⌈(𝗌2∕𝖫)⋅(𝑢(𝜏))⌋, so that
it can be easily verified that 𝗓(𝜏+1) = 𝑧(𝜏+1) mod 𝑞, by comparing (39a)
and (57a). And, from (39b) and (57b), it is followed by 𝗎(𝜏+1) = 𝑢(𝜏+1)
od 𝑞. Hence, the proof is completed. ■

The result of Theorem 1 can be summarized as follows. First of
ll, from the example in (32), it has been observed that linear systems
aving the state matrix as non-integers cannot continue the encrypted
peration for an infinite time horizon, because of the limitation of
omomorphic encryption. Then, based on the assumption that the
ncrypted controller can receive a re-encrypted signal of its output,
emma 1 has converted the state matrix to integers in (35), while
eeping the same relation from the input 𝑦(𝑡) to the output 𝑢(𝑡). Next,
he quantization parameters 𝗋 and 𝗌 have been introduced for the rest
ontroller matrices and signals. And, Lemma 2 and Theorem 1 showed
hat linear systems having the state matrix as integers can be converted
o operate over Z𝑞 , based on modular addition and multiplication, so
hat they can be implemented over encrypted data. The performance is
uaranteed and its error can be made arbitrarily small, as long as the
odulus 𝑞 for the space Z𝑞 is chosen as (56), so that it covers the range

f the output.
A follow-up result proposing a solution to Problem 1 can be found

n Kim, Shim, Sandberg, and Johansson (2021), where the parameters
𝖥,𝖦,𝖧, 𝖩} are found as time-varying matrices consisting of integers.
216
.3. Encrypted dynamic system and controlled error growth

Finally, we combine the GSW-LWE cryptosystem (described in Sec-
ion 3.1) to the implemented controller (57) over Z𝑞 (constructed in
ection 3.2), and discuss the result.

Thanks to Proposition 3 and Theorem 1, the result is straightfor-
ard; let the matrices of the controller (57) be encrypted using the
SW encryption 𝖤𝗇𝖼′ ∶ Z𝑞 → Zn×𝑑n

𝑞 component-wisely, as

∶= 𝖤𝗇𝖼′(𝖥), 𝐆 ∶= 𝖤𝗇𝖼′(𝖦), 𝐑 ∶= 𝖤𝗇𝖼′(𝖱), 𝐇 ∶= 𝖤𝗇𝖼′(𝖧), 𝐉 ∶= 𝖤𝗇𝖼′(𝖩),

nd let the initial value 𝗓0 ∈ Z𝓁
𝑞 of the controller state and the

ontroller input 𝑦(𝑡) ∈ R𝗉 be quantized using the function 𝑄 ∶ R𝗉 →
𝗉
𝑞 and encrypted using the LWE-based encryption 𝖤𝗇𝖼 ∶ Z𝑞 → Zn

𝑞 ,
omponent-wisely, as

0 ∶= 𝖤𝗇𝖼(𝗓0), 𝐲(𝑡) ∶= 𝖤𝗇𝖼(𝑄(𝑦(𝑡))).

hen, the encrypted controller is constructed as

(𝑡 + 1) = 𝐅 ⋅𝐷(𝐳(𝑡)) +𝐆 ⋅𝐷(𝐲(𝑡)) + 𝐑 ⋅𝐷(𝐮′(𝑡)) mod 𝑞

𝐮(𝑡) = 𝐇 ⋅𝐷(𝐳(𝑡)) + 𝐉 ⋅𝐷(𝐲(𝑡)) mod 𝑞

𝐳(0) = 𝐳0

(61)

here 𝐳(𝑡) ∈ Z𝓁n
𝑞 and 𝐮(𝑡) ∈ Z𝗆n

𝑞 are the encrypted state and output,
espectively, and 𝐮′(𝑡) ∈ Z𝗆n

𝑞 is the re-encrypted signal of the output
(𝑡) with the function 𝑄′ ∶ Z𝗆

𝑞 → Z𝗆
𝑞 , defined as

′(𝑡) ∶= 𝖤𝗇𝖼(𝑄′(𝖣𝖾𝖼(𝐮(𝑡)))). (62)

ote that the operation of the encrypted controller (61) coincides with
he description of Fig. 12(b).

From now on, we discuss the effect of the ‘‘injected errors’’ of the
ryptosystem, which has been seen in Proposition 3. Recall that, in
orollary 1, the factor 𝖫 has been used for scaling up the messages,

n order to reduce the effect of the errors. For this purpose, in fact, all
he signals of the systems (39) and (57) have already been ‘‘scaled up
y 𝖫’’, although it did nothing about the performance in the previous
ubsection. Let us consider the performance of the controller (61);
et the decryption 𝖣𝖾𝖼 be taken to both sides of (61). Analogously
o Proposition 3, the decrypted state �̃�(𝑡) ∶= 𝖣𝖾𝖼(𝐳(𝑡)) ∈ Z𝓁

𝑞 and the
ecrypted output �̃�(𝑡) ∶= 𝖣𝖾𝖼(𝐮(𝑡)) will obey

̃(𝑡 + 1) = 𝖥 ⋅ �̃�(𝑡) + 𝖦 ⋅ (𝑄(𝑦(𝑡)) + 𝛥𝗒(𝑡))

+ 𝖱 ⋅ (𝑄′(�̃�(𝑡)) + 𝛥𝗎′ (𝑡)) + 𝛥𝗓(𝑡) mod 𝑞

�̃�(𝑡) = 𝖧 ⋅ �̃�(𝑡) + 𝖩(𝑄(𝑦(𝑡)) + 𝛥𝗒(𝑡)) + 𝛥𝗎(𝑡) mod 𝑞

�̃�(0) = 𝗓0 + 𝛥0 mod 𝑞

(63)

ith some 𝛥𝗒(𝑡) ∈ Z𝗉, 𝛥𝗎′ (𝑡) ∈ Z𝗆, 𝛥𝗓(𝑡) ∈ Z𝓁 , 𝛥𝗎(𝑡) ∈ Z𝗆, and 𝛥0 ∈ Z𝗆

uch that

𝛥𝗒(𝑡)‖ ≤ 𝑛0𝜎, ‖𝛥𝗎′ (𝑡)‖ ≤ 𝑛0𝜎, ‖𝛥𝗓(𝑡)‖ ≤ (𝓁 + 𝗉)𝛥𝖬𝗎𝗅𝗍,

𝛥𝗎(𝑡)‖ ≤ (𝓁 + 𝗉)𝛥𝖬𝗎𝗅𝗍, ‖𝛥0‖ ≤ 𝑛0𝜎.

To make use of the results of Theorem 1 and Lemma 2, we consider
n auxiliary system defined over Z, as

𝑧(𝑡 + 1) = 𝐹 ⋅ 𝑧(𝑡) + 𝐺 ⋅ (𝑦(𝑡) + 𝛥𝗒(𝑡))

+ 𝑅 ⋅
(

𝖫 ⋅
⌈

𝗌2

𝖫
⋅ 𝑢(𝑡)

⌋

+ 𝛥𝗎′ (𝑡)
)

+ 𝛥𝗓(𝑡)

𝑢(𝑡) = 𝐻 ⋅ 𝑧(𝑡) + 𝖩(𝑦(𝑡) + 𝛥𝗒(𝑡)) + 𝛥𝗎(𝑡)

𝑧(0) = 𝑧0 + 𝛥0.

(64)

hen, analogously to Lemma 2, it can be verified that the state �̃�(𝑡) and
he output �̃�(𝑡) defined as (45) will obey

�̃�(𝑡 + 1) = 𝐹 �̃�(𝑡) + 𝐺𝑦(𝑡) + 𝑒′𝑥(𝑡)

�̃�(𝑡) = 𝐻�̃�(𝑡) + 𝐽𝑦(𝑡) + 𝑒′𝑢(𝑡)
′

(65)

�̃�(0) = 𝑒0

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.

t
{

𝑔

h

b
s
t
h
i

t
o
t
c
b
A
e
c

o
l
t
u

v
t
A
h
b
b
e
c
e

s
m
w
s
c
t
p
i
i

4

o
i
t
c
w
o
c

b
h
f
m
l
w
c
i
b

D

A

b
o
F

R

A

A

A

A

B

B

where the errors {𝑒′𝑥(𝑡), 𝑒
′
𝑢(𝑡), 𝑒

′
0} are determined as

𝑒′𝑥(𝑡) = 𝑒𝑥(𝑡) + 𝛥𝖫
𝑥(𝑡) ∶= 𝑒𝑥(𝑡) +

𝗋𝗌 ⋅ 𝑇 −1 ⋅ (𝐺𝛥𝗒(𝑡) + 𝑅𝛥𝗎′ (𝑡) + 𝛥𝑧(𝑡))
𝖫

+
𝗋𝗌2 ⋅ 𝑇𝑅(𝐽𝛥𝗒(𝑡) + 𝛥𝗎(𝑡))

𝖫

𝑒′𝑢(𝑡) = 𝑒𝑢(𝑡) + 𝛥𝖫
𝑢 (𝑡) ∶= 𝑒𝑢(𝑡) +

𝗋𝗌2 ⋅ (𝐽𝛥𝗒(𝑡) + 𝛥𝗎(𝑡))
𝖫

𝑒′0 = 𝑒0 + 𝛥𝖫
0 ∶= 𝑒0 +

𝗋𝗌 ⋅ 𝑇 −1 ⋅ 𝛥0
𝖫

,

where {𝑒𝑥(𝑡), 𝑒𝑢(𝑡), 𝑒0} are the same quantization errors defined in (42)
and (44). Note that {𝛥𝖫

𝑥(𝑡), 𝛥
𝖫
𝑢 (𝑡), 𝛥

𝖫
0} are bounded as

max{‖𝛥𝖫
𝑥(𝑡)‖, ‖𝛥

𝖫
𝑢 (𝑡)‖, ‖𝛥

𝖫
0‖}

≤ 𝗋
𝖫
⋅max{‖𝑇 −1

‖, ‖𝑇𝑅‖, 1}

⋅ ((max{‖𝐺‖ + ‖𝑅‖, ‖𝐽‖} + 1)𝑛0𝜎 + (𝓁 + 𝗉)𝛥𝖬𝗎𝗅𝗍)

=∶ 𝛽(𝗋,𝖫)

Now, in the following theorem, we prove that the performance of
he controller (61) is the same with that of (65), where the errors
𝑒′𝑥(𝑡), 𝑒

′
𝑢(𝑡), 𝑒

′
0} consist of the errors {𝑒𝑥(𝑡), 𝑒𝑢(𝑡), 𝑒0} due to quantization,

and the rest due to error injection of the cryptosystem. Since only the
signals are scaled by 𝖫 ∈ N before encryption and the injected errors
are not, it can be understood that the effect of the cryptosystem errors
can be made arbitrarily small, by increasing the factor 𝖫.

Theorem 2. Given any controller (4) and 𝜖 > 0, under Assumption 1,
there exist 𝗋′ > 0, 𝗌′ > 0, and 𝖫′ ∈ N such that for any 𝗋 < 𝗋′, 𝗌 < 𝗌′, and 𝖫 >
𝖫′, the encrypted controller (61) with (56) ensures ‖𝑔(𝖣𝖾𝖼(𝐮(𝑡)))−𝑢(𝑡)‖ ≤ 𝜖,
∀𝑡 ≥ 0. □

Sketch of Proof. The proof is analogous to the proof of Theorem 1.
Given 𝛿(𝜖) > 0 from Assumption 1, analogously to Lemma 2 with (47),
we can choose 𝗋′, 𝗌′, and 𝖫′ such that

𝛼(𝑀,𝑀 + 𝜖,𝑀 + 𝜖, 𝗋′, 𝗌′) + 𝛽(𝗋′,𝖫′) ≤ 𝛿(𝜖).

This ensures that the auxiliary system (64) satisfies ‖(𝗋𝗌2∕𝖫)⋅𝑢(𝑡)−𝑢(𝑡)‖ ≤
𝜖, provided that Assumption 1 holds. Then, it follows that (55) holds,
so that analogously to the proofs of Proposition 4 and Theorem 1, the
condition (56) guarantees that (60) holds for all 𝑡 ≥ 0. It follows that

(𝖣𝖾𝖼(𝐮(𝑡))) = 𝑔(�̃�(𝑡)) = 𝗋𝗌2

𝖫
⋅ 𝑢(𝑡)

olds for all 𝑡 ≥ 0, so the proof is completed. ■

Finally, we review the implications of Theorem 2. There have
een two issues that hinder the unlimited operation of linear dynamic
ystems implemented over encrypted data; the first issue was due to
he recursive multiplication by non-integer numbers, and it has been
andled by the introduced method of converting the state matrix to
ntegers.

Then, the second issue was the ‘‘error growth’’ problem of the cryp-
osystems. Even though the given state matrix of the system consists of
nly integers, most homomorphic cryptosystems (that allow for both
he addition and multiplication) do not support the recursive multipli-
ation by the encrypted numbers for an infinite number of times, unless
ootstrapping techniques of fully homomorphic encryption is utilized.
nd, this is because of the error growth problem; once the injected
rrors exceed a certain bound, then the correct computation outcome
annot be expected.

To allow for the unlimited recursive multiplication, the benefit
f GSW-LWE cryptosystem has been first discussed. Considering that
inear systems only update the state (multiplicand) and does not update
he matrix (multiplier), it has been observed that the matrix encrypted
sing GSW scheme can be multiplied to the LWE-based encrypted
217
ectors for an infinite number of times, thanks to the structure of LWE-
ype ciphertexts where the errors are stored together with the messages.
nd, despite the recursive multiplication repeated unlimited times, it
as been shown that the growth of the injected errors does not tend to
e infinitely large, and its effect is suppressed and controlled, under sta-
ility. The effect of the errors can be identified with perturbations (or
xternal disturbances), and its size can be made small by appropriate
hoice of parameters, so that it can keep the performance as practically
quivalent to the given un-encrypted model.

Compared to the methods from cryptography utilizing the boot-
trapping techniques of fully homomorphic encryptions, the introduced
ethod exploits addition and multiplication over ciphertexts only,
hich does not require a substantial amount of computational re-

ources. A couple of related results are introduced; a guideline of
hoosing the cryptosystem parameters (𝑛, 𝑞, 𝜎0) and the control parame-
ers (𝗋, 𝗌,𝖫) that guarantees both the desired level of security and control
erformance is found in Kim, Shim, and Han (2020b). And, further
llustrative explanations using MATLAB example codes can be found
n Kim, Shim, and Han (2020a).

. Conclusion

We have introduced several approaches for encrypted control, based
n homomorphic encryption, multi-party computation, and secret shar-
ng. We have compared their benefits and weaknesses, and discussed
he trade-offs between them. It has been suggested that the encrypted
ontrol approach and the corresponding cryptosystem should be chosen
ith an engineering point of view, so that its security model, enabled
perations, and computation efficiency is suitable for the system under
onstruction.

Among the research directions struggling to overcome the trade-offs
etween security, computation efficiency, and the operation ability, we
ave introduced a homomorphic encryption based problem which aims
or implementing linear dynamic systems exploiting only addition and
ultiplication over integers. Then, it has been addressed that the prob-

ems from cryptography can be tackled with the control perspectives;
e have addressed that the error growth of the GSW-LWE cryptosystem

an be regarded as perturbations in control systems, and the issue of
ncapability of recursive multiplication by non-integer state matrix has
een resolved using a method based on pole-placement technique.

ata availability

Data will be made available on request.

cknowledgments

This study was supported in part by the Research Program funded
y the SeoulTech (Seoul National University of Science and Technol-
gy), Republic of Korea, and in part by the Knut and Alice Wallenberg
oundation, Sweden.

eferences

lexandru, A. B., Morari, M., & Pappas, G. J. (2018). Cloud-based MPC with encrypted
data. In 2018 IEEE conference on decision and control (CDC) (pp. 5014–5019). IEEE.

lexandru, A. B., & Pappas, G. J. (2020). Secure multi-party computation for
cloud-based control. In Privacy in dynamical systems (pp. 179–207). Springer.

lexandru, A. B., Tsiamis, A., & Pappas, G. J. (2020). Towards private data-driven
control. In 2020 59th IEEE conference on decision and control (CDC) (pp. 5449–5456).
IEEE.

min, S., Cárdenas, A. A., & Sastry, S. S. (2009). Safe and secure networked control
systems under denial-of-service attacks. In International workshop on hybrid systems:
computation and control (pp. 31–45). Springer.

eimel, A. (2011). Secret-sharing schemes: A survey. In International conference on coding
and cryptology (pp. 11–46). Springer.

ogetoft, P., Christensen, D. L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M.,
et al. (2009). Secure multiparty computation goes live. In International conference

on financial cryptography and data security (pp. 325–343). Springer.

http://refhub.elsevier.com/S1367-5788(22)00103-1/sb1
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb1
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb1
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb2
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb2
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb2
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb3
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb3
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb3
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb3
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb3
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb4
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb4
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb4
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb4
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb4
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb5
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb5
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb5
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb6
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb6
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb6
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb6
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb6

Annual Reviews in Control 54 (2022) 200–218J. Kim et al.

K

K

K

L

L

L

L

M

M

M

N

N

P

P

R

R

S

S

S

S

S

S
S

S

S

T

W

Z

Boneh, D., Goh, E.-J., & Nissim, K. (2005). Evaluating 2-DNF formulas on ciphertexts.
In Theory of cryptography conference (pp. 325–341). Springer.

Bourbakis, N., & Alexopoulos, C. (1992). Picture data encryption using scan patterns.
Pattern Recognition, 25(6), 567–581.

Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2014). (Leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT),
6(3), 1–36.

Brakerski, Z., & Vaikuntanathan, V. (2011). Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In Annual cryptology conference (pp.
505–524). Springer.

Brickell, E. F. (1989). Some ideal secret sharing schemes. In Workshop on the theory
and application of of cryptographic techniques (pp. 468–475). Springer.

Chen, L., Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., et al. (2016). Report on
post-quantum cryptography, Vol. 12. US Department of Commerce, National Institute
of Standards and Technology.

Cheon, J. H., Kim, A., Kim, M., & Song, Y. (2017). Homomorphic encryption for
arithmetic of approximate numbers. In International conference on the theory and
application of cryptology and information security (pp. 409–437). Springer.

Chillotti, I., Gama, N., Georgieva, M., & Izabachene, M. (2016). Faster fully homomor-
phic encryption: Bootstrapping in less than 0.1 seconds. In International conference
on the theory and application of cryptology and information security (pp. 3–33).
Springer.

Cramer, R., Damgård, I. B., et al. (2015). Secure multiparty computation. Cambridge
University Press.

Dahl, M., Ning, C., & Toft, T. (2012). On secure two-party integer division. In
International conference on financial cryptography and data security (pp. 164–178).
Springer.

Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J. B., & Toft, T. (2006). Unconditionally
secure constant-rounds multi-party computation for equality, comparison, bits and
exponentiation. In Theory of cryptography conference (pp. 285–304). Springer.

Dijk, M. v., Gentry, C., Halevi, S., & Vaikuntanathan, V. (2010). Fully homomorphic
encryption over the integers. In Annual international conference on the theory and
applications of cryptographic techniques (pp. 24–43). Springer.

Ducas, L., & Micciancio, D. (2015). FHEW: bootstrapping homomorphic encryption in
less than a second. In Annual international conference on the theory and applications
of cryptographic techniques (pp. 617–640). Springer.

Dwork, C. (2008). Differential privacy: A survey of results. In International conference
on theory and applications of models of computation (pp. 1–19). Springer.

Dwork, C., Roth, A., et al. (2014). The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3–4), 211–407.

ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4), 469–472.

Fan, J., & Vercauteren, F. (2012). Somewhat practical fully homomorphic encryption.
Cryptology EPrint Archive.

Farokhi, F., Shames, I., & Batterham, N. (2017). Secure and private control using
semi-homomorphic encryption. Control Engineering Practice, 67, 13–20.

Fritz, R., Fauser, M., & Zhang, P. (2019). Controller encryption for discrete event
systems. In 2019 American control conference (ACC) (pp. 5633–5638). IEEE.

Genise, N., Gentry, C., Halevi, S., Li, B., & Micciancio, D. (2019). Homomorphic en-
cryption for finite automata. In International conference on the theory and application
of cryptology and information security (pp. 473–502). Springer.

Gentry, C. (2009). Fully homomorphic encryption using ideal lattices. In Proceedings of
the forty-first annual ACM symposium on theory of computing (pp. 169–178).

Gentry, C., Halevi, S., & Smart, N. P. (2012). Better bootstrapping in fully homomorphic
encryption. In International workshop on public key cryptography (pp. 1–16). Springer.

Gentry, C., Sahai, A., & Waters, B. (2013). Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Annual
cryptology conference (pp. 75–92). Springer.

Gonzalez-Serrano, F. J., Amor-Martın, A., & Casamayon-Anton, J. (2014). State esti-
mation using an extended Kalman filter with privacy-protected observed inputs. In
2014 IEEE international workshop on information forensics and security (WIFS) (pp.
54–59). IEEE.

Karnin, E., Greene, J., & Hellman, M. (1983). On secret sharing systems. IEEE
Transactions on Information Theory, 29(1), 35–41.

Kim, J., Lee, C., Shim, H., Cheon, J. H., Kim, A., Kim, M., et al. (2016). Encrypting
controller using fully homomorphic encryption for security of cyber-physical
systems. IFAC-PapersOnLine, 49(22), 175–180.

im, J., Shim, H., & Han, K. (2020a). Comprehensive introduction to fully homomorphic
encryption for dynamic feedback controller via LWE-based cryptosystem. In Privacy
in dynamical systems (pp. 209–230). Springer.

im, J., Shim, H., & Han, K. (2020b). Design procedure for dynamic controllers based
on LWE-based homomorphic encryption to operate for infinite time horizon. In
2020 59th IEEE conference on decision and control (CDC) (pp. 5463–5468). IEEE.
218
Kim, J., Shim, H., & Han, K. (2022). Dynamic controller that operates over homomor-
phically encrypted data for infinite time horizon. IEEE Transactions on Automatic
Control.

im, J., Shim, H., Sandberg, H., & Johansson, K. H. (2021). Method for running dy-
namic systems over encrypted data for infinite time horizon without bootstrapping
and re-encryption. In 2021 60th IEEE conference on decision and control (CDC) (pp.
5614–5619). IEEE.

Kogiso, K., & Fujita, T. (2015). Cyber-security enhancement of networked control
systems using homomorphic encryption. In 2015 54th IEEE conference on decision
and control (CDC) (pp. 6836–6843). IEEE.

Langner, R. (2011). Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security & Privacy,
9(3), 49–51.

indell, Y. (2017). How to simulate it–a tutorial on the simulation proof technique.
Tutorials on the Foundations of Cryptography, 277–346.

indner, R., & Peikert, C. (2011). Better key sizes (and attacks) for LWE-based
encryption. In Cryptographers’ track at the RSA conference (pp. 319–339). Springer.

iu, Y., Ning, P., & Reiter, M. K. (2011). False data injection attacks against state
estimation in electric power grids. ACM Transactions on Information and System
Security, 14(1), 1–33.

yubashevsky, V., Peikert, C., & Regev, O. (2010). On ideal lattices and learning with
errors over rings. In Annual international conference on the theory and applications of
cryptographic techniques (pp. 1–23). Springer.

atthews, R. (1989). On the derivation of a ‘‘chaotic’’ encryption algorithm. Cryptologia,
13(1), 29–42.

o, Y., & Murray, R. M. (2016). Privacy preserving average consensus. IEEE Transactions
on Automatic Control, 62(2), 753–765.

o, Y., & Sinopoli, B. (2009). Secure control against replay attacks. In 2009 47th
annual allerton conference on communication, control, and computing (Allerton) (pp.
911–918). IEEE.

ishide, T., & Ohta, K. (2007). Multiparty computation for interval, equality, and
comparison without bit-decomposition protocol. In International workshop on public
key cryptography (pp. 343–360). Springer.

ozari, E., Tallapragada, P., & Cortés, J. (2017). Differentially private average con-
sensus: Obstructions, trade-offs, and optimal algorithm design. Automatica, 81,
221–231.

aillier, P. (1999). Public-key cryptosystems based on composite degree residuosity
classes. In International conference on the theory and applications of cryptographic
techniques (pp. 223–238). Springer.

asqualetti, F., Dörfler, F., & Bullo, F. (2013). Attack detection and identification in
cyber-physical systems. IEEE Transactions on Automatic Control, 58(11), 2715–2729.

egev, O. (2009). On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM, 56(6), 1–40.

ivest, R. L., Adleman, L., Dertouzos, M. L., et al. (1978). On data banks and privacy
homomorphisms. Foundations of Secure Computation, 4(11), 169–180.

andberg, H., Amin, S., & Johansson, K. H. (2015). Cyberphysical security in networked
control systems: An introduction to the issue. IEEE Control Systems Magazine, 35(1),
20–23.

chlor, S., Hertneck, M., Wildhagen, S., & Allgöwer, F. (2021). Multi-party computation
enables secure polynomial control based solely on secret-sharing. In 2021 60th IEEE
conference on decision and control (CDC) (pp. 4882–4887). IEEE.

chulze Darup, M., Alexandru, A. B., Quevedo, D. E., & Pappas, G. J. (2021). Encrypted
control for networked systems: An illustrative introduction and current challenges.
IEEE Control Systems Magazine, 41(3), 58–78.

chulze Darup, M., & Jager, T. (2019). Encrypted cloud-based control using secret
sharing with one-time pads. In 2019 IEEE 58th conference on decision and control
(CDC) (pp. 7215–7221). IEEE.

chulze Darup, M., Redder, A., Shames, I., Farokhi, F., & Quevedo, D. (2017). Towards
encrypted MPC for linear constrained systems. IEEE Control Systems Letters, 2(2),
195–200.

hamir, A. (1979). How to share a secret. Communications of the ACM, 22(11), 612–613.
lay, J., & Miller, M. (2007). Lessons learned from the maroochy water breach. In
International conference on critical infrastructure protection (pp. 73–82). Springer.

mith, R. S. (2015). Covert misappropriation of networked control systems: Presenting
a feedback structure. IEEE Control Systems Magazine, 35(1), 82–92.

uh, J., & Tanaka, T. (2021). Encrypted value iteration and temporal difference learning
over leveled homomorphic encryption. In 2021 American control conference (ACC)
(pp. 2555–2561). IEEE.

eixeira, A., Shames, I., Sandberg, H., & Johansson, K. H. (2015). A secure control
framework for resource-limited adversaries. Automatica, 51, 135–148.

ang, Y. (2019). Privacy-preserving average consensus via state decomposition. IEEE
Transactions on Automatic Control, 64(11), 4711–4716.

hou, S., Yu, Z., Nasr, E. S. A., Mahmoud, H. A., Awwad, E. M., & Wu, N. (2020).
Homomorphic encryption of supervisory control systems using automata. IEEE
Access, 8, 147185–147198.

http://refhub.elsevier.com/S1367-5788(22)00103-1/sb7
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb7
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb7
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb8
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb8
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb8
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb9
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb9
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb9
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb9
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb9
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb10
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb10
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb10
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb10
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb10
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb11
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb11
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb11
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb12
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb12
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb12
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb12
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb12
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb13
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb13
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb13
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb13
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb13
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb14
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb14
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb14
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb14
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb14
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb14
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb14
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb15
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb15
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb15
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb16
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb16
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb16
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb16
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb16
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb17
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb17
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb17
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb17
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb17
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb18
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb18
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb18
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb18
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb18
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb19
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb19
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb19
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb19
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb19
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb20
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb20
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb20
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb21
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb21
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb21
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb22
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb22
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb22
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb23
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb23
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb23
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb24
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb24
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb24
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb25
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb25
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb25
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb26
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb26
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb26
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb26
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb26
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb27
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb27
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb27
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb28
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb28
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb28
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb29
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb29
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb29
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb29
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb29
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb30
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb30
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb30
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb30
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb30
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb30
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb30
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb31
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb31
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb31
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb32
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb32
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb32
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb32
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb32
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb33
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb33
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb33
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb33
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb33
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb34
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb34
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb34
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb34
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb34
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb35
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb35
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb35
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb35
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb35
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb36
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb36
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb36
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb36
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb36
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb36
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb36
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb37
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb37
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb37
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb37
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb37
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb38
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb38
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb38
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb39
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb39
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb39
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb40
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb40
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb40
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb41
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb41
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb41
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb41
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb41
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb42
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb42
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb42
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb42
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb42
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb43
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb43
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb43
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb44
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb44
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb44
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb45
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb45
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb45
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb45
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb45
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb46
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb46
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb46
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb46
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb46
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb47
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb47
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb47
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb47
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb47
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb48
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb48
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb48
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb48
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb48
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb49
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb49
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb49
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb50
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb50
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb50
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb51
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb51
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb51
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb52
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb52
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb52
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb52
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb52
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb53
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb53
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb53
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb53
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb53
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb54
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb54
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb54
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb54
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb54
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb55
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb55
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb55
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb55
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb55
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb56
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb56
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb56
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb56
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb56
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb57
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb58
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb58
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb58
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb59
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb59
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb59
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb60
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb60
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb60
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb60
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb60
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb61
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb61
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb61
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb62
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb62
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb62
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb63
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb63
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb63
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb63
http://refhub.elsevier.com/S1367-5788(22)00103-1/sb63

	Comparison of encrypted control approaches and tutorial on dynamic systems using Learning With Errors-based homomorphic encryption
	Introduction
	Encrypted control approaches
	Homomorphic encryption based control
	Fully homomorphic encryption based methods
	Secret sharing based schemes
	Multi-party computation based control
	Discussion and comparison

	Introduction to linear dynamic systems using Learning With Errors-based homomorphic encryption
	An Learning With Errors-based cryptosystem for encrypted recursive multiplication
	Encryption method, security, and additively homomorphic property ??
	Gentry-Sahai-Waters (GSW) scheme and encrypted recursive multiplication ??

	Conversion of linear controllers to operate over Zq
	Conversion of state matrix to integers
	Conversion to system over Z
	Conversion to system over Zq

	Encrypted dynamic system and controlled error growth

	Conclusion
	Data availability
	Acknowledgments
	References

