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Abstract— This paper studies the sensor placement problem
in a networked control system for improving its security against
cyber-physical attacks. The problem is formulated as a zero-
sum game between an attacker and a detector. The attacker’s
decision is to select f nodes of the network to attack whereas the
detector’s decision is to place f sensors to detect the presence of
the attack signals. In our formulation, the attacker minimizes its
visibility, defined as the system L2 gain from the attack signals
to the deployed sensors’ outputs, and the detector maximizes
the visibility of the attack signals. The equilibrium strategy of
the game determines the optimal locations of the sensors. The
existence of Nash equilibrium for the attacker-detector game is
studied when the underlying connectivity graph is a directed
or an undirected tree. When the game does not admit a Nash
equilibrium, it is shown that the Stackelberg equilibrium of the
game, with the detector as the game leader, can be computed
efficiently. Our results show that, under the optimal sensor
placement strategy, an undirected topology provides a higher
security level for a networked control system compared with
its corresponding directed topology.

I. INTRODUCTION

A. Motivation

Applications of distributed control systems, ranging from
power grids and smart buildings to intelligent transportation
systems, have had a considerable growth. In this direction,
the need to do a rigorous research on the control-theoretic
approaches to the security of these systems against fail-
ures and attacks, considering the physical limitations of the
system, is seriously felt [1]. Several approaches have been
proposed in the literature to tackle this issue [2]–[7] which
are based on the system specifications and the attack strategy.
An active line of research in this area is to consider the
defense mechanism in the control system as a game between
the attacker and the defender and optimize the actions of the
defender against possible attack strategies. In this direction,
the game objective can be the effect of the attack on the
system in which the defender tries to minimize. However,
one can use such game-theoretic approaches to increase the
visibility and awareness of the attacker’s actions, which the
defender tries to maximize, and the problem introduced in
this paper is of this kind. To improve such an awareness
against cyber-physical attacks, typically a set of monitoring
sensors are deployed in the network and their outputs are
used to monitor the security status of the system.
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In a networked control system, the system designer deter-
mines the location of the monitoring sensors (or detectors).
However, the security level not only depends on the sensors’
locations but also on the nodes selected by the attacker
to inject the attack signals. These decisions are made by
different entities with conflicting objectives. In this paper, the
sensor/attack placement problem is posed as a game between
an attacker and a detector and the equilibrium solution of
the game is used to determine the location of the sensors.
This allows the system designer to anticipate the behavior
of the attacker and decides the location of sensors such that
the impact of the attacker’s decision on the security level is
minimized.

B. Related Work

There is a vast literature on game-theoretic approaches
to the security and resilience of control systems in the past
decade; see [8] and references therein. These approaches vary
depending on the structure of the cyber-physical system or
the specific type of malicious action acting on the cyber layer.
In these earlier approaches, at each layer (physical and cyber)
a particular game is defined and the concept of games-in-
games that reflects two interconnected games emerges where
the payoff of each game affects the result of the other one
[9], [10]. In other approaches, depending on the type of the
adversarial behavior (active or passive), appropriate game
strategy, e.g., Nash or Stackelberg, was discussed [11]–[13].
In addition to those studies, the evolution of some network
control systems are modeled as cooperative games [14] and
the resilience of these cooperative games to the actions of
adversarial agents or communication failures are investigated
[15]–[17].

C. Contributions

In this paper, we study the sensor placement problem in
a leader-follower networked dynamical system1 for improv-
ing its security against cyber-physical attacks. The sensors
placement problem is posed as a zero-sum game between a
detector and an attacker. The detector’s strategy is to place f
sensors in f nodes of the network to maximize the visibility
of the attacker’s action. The attacker strategy is to select f
nodes to inject its attack signal with minimum visibility to
the sensors. The objective of each player is defined as the L2

gain of the system from the injected signals to the sensors’

1Leader-follower systems have diverse applications from multi-agent
formation control and vehicle platooning [18] to opinion dynamics in social
networks [19].
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outputs. The equilibrium strategy of the detector determines
the location of the sensors.

Our main contributions can be summarized as follows:

• We characterize the pure Nash equilibrium (NE) strat-
egy of the attacker-detector game for f = 1 when the
underlying connectivity graph is a directed/undirected
tree.

• It is shown that this game may not admit a NE for f >
1, and instead Stackelberg game between the attacker
and detector is analyzed when the detector acts as the
game leader. A low complexity algorithm for computing
the Stackelberg equilibrium of the game is proposed for
both directed and undirected trees.

Our results indicate that the value of the attacker-detector
game over a directed tree is at most equal to that over its
corresponding undirected tree. This observation signifies the
importance of two-way communication links in improving
the security of networked control systems against cyber-
physical attacks.

Remark 1: Our analytically results are established by de-
riving a closed-form expression for the system L2 gain of a
networked control system, via graph-theoretic interpretations
of its underlying connectivity graph, for both directed and
undirected trees.

D. Notation and Definitions

We use Gu = {V, E} to denote an unweighted undirected
graph where V is the set of vertices (or nodes) and E is
the set of undirected edges where (vi, vj) ∈ E if an only if
there exists an undirected edge between vi and vj . Moreover
Gd = {V, E} denotes an unweighted directed graph where
E is the set of directed edges, i.e., (vi, vj) ∈ E if an only
if there exists a directed edge from vi to vj . In this paper,
directed graphs only have unidirectional edges, i.e., if there
exists a direct edge from vi to vj in Gd, then there is no direct
edge from vj to vi. Let |V| = n and define the adjacency
matrix for Gd, denoted by An×n, to be a binary matrix where
Aij = 1 if and only if there is an edge from vj to vi in Gd
(the adjacency matrix will be a symmetric matrix when the
graph is undirected). The neighbors of vertex vi ∈ V in the
graph Gd are denoted by the set Ni = {vj ∈ V | (vj , vi) ∈
E}. We define the in-degree (or just degree for undirected
network) for node vi as di =

∑
vj∈Ni

Aij . The Laplacian
matrix of an undirected graph is denoted by L = D − A,
where D = diag(d1, d2, ..., dn). We use ei to indicate the
i-th vector of the canonical basis.

E. Organization Of The Paper

The structure of the paper is as follows. In Section II
we introduce the mathematical formulation of the attacker-
detector game in a leader-follower consensus dynamics. We
then analyze equlibriums for this game when the underlying
network is an undirected tree, Section III, or a directed tree,
Section IV. Section V concludes the paper.

II. PROBLEM DEFINITION

In this section, we propose a game-theoretic approach to
the security of a leader-follower networked control system.
Consider a connected network G = {V, E} comprised of
a leader (or reference) agent, denoted by v`, and a set of
follower agents denoted by F . The state of each follower
agent vj ∈ F evolves based on the interactions with its
neighbors as

ẋj(t) =
∑

vi∈Nj

(xi(t)− xj(t)). (1)

The state of the leader (which should be tracked by the
followers) evolves with an exogenous reference signal u(t)
as

x`(t) = u(t). (2)

If the graph is connected, the states of the follower agents
will track the reference signal u(t) [20]. We assume without
loss of generality that the leader agent is placed last in the
ordering of the agents. The updating rule of each agent is
prone to an intrusion (or attack).2 More particularly, there
exists an attacker which chooses f nodes in the network
to inject the attack signals to.3 Hence, if the dynamics of
follower vj is influenced by an attacker, it will be in the
following form

ẋj(t) =
∑

vi∈Nj

(xi(t)− xj(t)) + wj(t), (3)

where wj(t) > 0 represents the attack signal. To detect the
presence of the attackers, a defender deploys f dedicated
sensors (or detectors) at f specific follower nodes, denoted
by D. Thus we have

yi(t) = xi(t) if vi ∈ D. (4)

where yi(t) is the output of the sensor (detector) deployed
at follower vi. Aggregating the states of all followers into a
vector xF (t) ∈ Rn−1, and aggregating the attack signals to
w(t), equations (1) and (2) along with the output measure-
ment yield the following dynamics[
ẋF (t)

ẋ`(t)

]
= −

[
Lg L12

0 0

]
︸ ︷︷ ︸

L

[
xF (t)

x`(t)

]
+

[
0

1

]
u̇(t) +

[
B

0

]
w(t),

y(t) = CxF (t), (5)

where Lg is called the grounded Laplacian matrix (formed
by removing the row and the column corresponding to the
leader), the submatrix L12 of the graph Laplacian captures
the influence of the leader on the followers, Bn×f =
[e1, e2, ..., ef ], and Cf×n = [eT1 ; eT2 ; ...; eTf ]. In words, for
matrices B and C which specify the actions of the attacker
and the detector, respectively, there is a single 1 in the i-
th row (column) of matrix B (C) if the i-th node is under

2We assume that the leader is not affected by the attacks.
3The number of nodes under attack in practice is unknown and we can

assume f is an upper bound for the number of attacks.
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Fig. 1: An Example of an attacker-detector game with f = 2.

attack (has a sensor).4 We assume that there exists at least
one attack to the system, i.e., f ≥ 1. When the graph G
is connected, Lg is nonsingular and L−1

g is nonnegative
elementwise [21]. An example of the dynamics in (5) is
shown in Fig. 1. In this example, a 2×2 submatrix is chosen
by the attacker and the detector from L−1

g which is shown
in bold. Based on (5), the dynamics of the follower agents
are given by

ẋF (t) = −LgxF (t) + L12u(t) +Bw(t),

y(t) = CxF (t). (6)

The following theorem characterizes the system L2 gain from
the attack signal to the output measurement of (6).

Theorem 1 ( [20]): The system L2 gain from the attack
signal to the output measurement of (6) is given by

sup
||w||2 6=0

||y||2
||w||2

= σmax(G(0)) = σmax(CL−1
g B) (7)

where σmax is the maximum singular value of matrix G(0)
and the L2 norm of signal u is ||u||22 ,

∫∞
0

uTudt.
Based on Theorem 1, the attacker-detector game is defined

as follows:

Attacker-Detector Game: We model the interaction
between the attacker and the detector as a zero-sum
security game. In this game, the attacker’s decision
is the location of each attack signal, i.e., the matrix
B and the detector’s decision is the location of
sensors, i.e., matrix C. The attacker’s objective is
to reduce the visibility of the attack signal at the
output by minimizing the system L2 gain (7) whereas
the detector’s objective is to increase the visibility of
the attack signal at the output by maximizing the L2

gain.

Based on the definition above, the attacker-detector game
is a matrix game. For the case f = 1, the well-known matrix
game is formed with the payoff matrix equal to [L−1

g ]ij ≥ 0.
When f > 1, the payoff will be the largest singular value of
the nonnegative matrix CL−1

g B.
Remark 2: The reason of choosing L2 gain (7) as the

game payoff is that the attacker desires to be as stealthy
as possible by minimizing the largest system norm (worst
case gain from its perspective) over all frequencies. Having

4Note that the action of the attacker is to choose matrix B and the value
of the attack signal w(t) is not a decision variable.

this attitude from the attacker, the detector tries to maximize
this payoff.

Next lemma states a property of the non-negative matrices
which is helpful in the equilibrium analysis of the attacker-
detector game.

Lemma 1 ( [22]): The largest singular value of a nonneg-
ative matrix M is a non-decreasing function of its entries.
Moreover, if M is irreducible, its singular value is strictly
increasing with its entries.

III. EQUILIBRIUM ANALYSIS OF THE
ATTACKER-DETECTOR GAME: UNDIRECTED TREES

In this section, we analyze the equilibrium of the attacker-
detector game on undirected trees. We first provide an
explicit characterization of L−1

g , for undirected trees, in
terms of the properties of its underlying connectivity graph.
This result is helpful in our equilibrium analysis and allows
us to investigate the game value. The proof of this result is
presented in Appendix A.

Lemma 2: Suppose that Gu is an undirected tree and let
Pi` be the set of nodes involved in the (unique) path from
the leader node v` to vi (including vi). Then we have

[L−1
g ]ij = |Pi` ∩ Pj`|. (8)

According to this lemma, the (i, j)th element of L−1
g is

equal to the number of common edges between the path from
the leader to the node vi and the path from the leader to the
node vj . As an example, |P3` ∩ P6`| = 1 for nodes 3 and 6
and |P3` ∩ P4`| = 2 for nodes 3 and 4 in Fig. 2 (a).

A. Equilibrium Analysis: f = 1

In the single attacker-detector case, i.e., B = ej and C =
eTi for some 1 ≤ i, j ≤ n, the system L2 gain will become

eTi L
−1
g ej = [L−1

g ]ij , (9)

where [L−1
g ]ij is the ij-th element of L−1

g .
The following theorem establishes the existence of NE for

the attacker-detector game with f = 1.
Theorem 2: Let Gu be an undirected tree and v` be the

leader node. Then, for f = 1,
(i) The attacker-detector game admits at least one NE if v`

is not a cut vertex and the game value is 1 for all NE
in this case.

(ii) The game does not admit any NE if v` is a cut vertex.

Proof: For part (i), the NE belongs to the case where the
attacker (the minimizer) chooses the column corresponding
to the leader’s neighbor. According to Lemma 2 since all
elements of this column are all 1, then, regardless of the ac-
tions of the detector, the game payoff will be 1. Moreover, if
the attacker chooses a node other than the leader’s neighbor,
the payoff will be at least 1. Hence, not the attacker, nor the
detector have an incentive to change their strategy. For part
(ii), if the leader is removed, the graph will be splitted into
two parts and the resulting grounded Laplacian matrix, and
consequently L−1

g , become block diagonalized. Assume that
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Fig. 2: (a) An undirected tree with its three paths to leader
v`, (b) An undirected tree where v` is a cut vertex, (c) An
undirected tree which does not admit NE for f = 2, (d) n
undirected tree with a NE for f = 2, (e) A directed tree with
NE for f = 2, (f) A directed tree which does not admit NE
for f = 2.

a NE exists in this case and let (i∗, j∗) denote the equilibrium
strategies of the attacker and detector. Thus, we should have

[L−1
g ]ij∗ ≤ [L−1

g ]i∗j∗ ≤ [L−1
g ]i∗j (10)

for all i 6= i∗ and j 6= j∗. If element [L−1
g ]i∗j∗ is in one of the

zero blocks, as shown in Fig. 2 (b), then the left inequality
will be violated and if it is in one of the nonzero blocks, the
right inequality will be violated.

B. Equilibrium Analysis: f > 1

For f > 1, the attacker-detector game deos not admit
a Nash equilibrium in general as shown in the following
example.

Example 1: In Fig. 2 (c) for the case of f = 2, it is
clear, according to Lemma 1, that one of the choices of the
attacker is node 1. Then for the second choice, both attacker
and detector should choose from the blocks of all 1 or the
red blocks. Thus, similar to the proof of part (ii) of Theorem
2, there would be no NE for the game. In Fig. 2 (d) there
exists a NE for f = 2.

C. Stackelberg Game Approach f > 1

According to the Example 1, a NE may not exist for
general trees. More formally, the following equality does not
hold in general

min
B

max
C

σmax(CL−1
g B) = max

C
min
B

σmax(CL−1
g B).

In this case, we study the Stackelberg equilibrium strategy
of the attacker-detector game when the detector acts as
the game leader and the attacker acts as the follower. In
the Stackelberg game formulation, the leader solves the
following optimization problem

J∗(C) = max
C

σmax

(
CL−1

g B∗(C)
)
. (11)

where B∗(C) is the best response of the attacker when the
strategy of the detector is C, i.e., B∗(C) is the solution of

the following optimization problem

B∗(C) = argmin
B

σmax

(
CL−1

g B
)
. (12)

In particular, for a given strategy of the detector, i.e., C,
the attacker finds its best response strategy to the detector’s
decision, which is given by minB CL−1

g B. Then, the detec-
tor optimizes its decision based on all possible best response
strategies of the attacker. Unlike the NE, a Stackelberg game
always admits an equilibrium strategy.

In general, the computation complexity of solving (11)
is O

((
n
f

)2)
. That is, the attacker needs to solve (12) for

all possible choice of f victim nodes. Then, the detector
selects the sensor placement strategy which maximizes (12).
However, based on properties of the grounded Laplacian
matrix, we propose an algorithm for finding the Stackelberg
equilibrium with much less computational cost. This algo-
rithm, in a nutshell, is that both attacker and detector identify
all m leader-rooted paths5 in G. Then for each partition
of f into m nonnegative values f1, f2, ..., fm, the detector
(attacker) places fi sensors (attacks) to fi farthest (closest)
nodes to the leader in the i-th leader rooted path (i.e., there
is no computational cost for the placement of attacks and
detectors for a given partitioning). The proposed algorithm
for solving the Stackelberg game is shown in Algorithm 1.
As it will be shown in Theorem 3, the complexity of this
algorithm does not scale with the network size.

Algorithm 1 Stackelberg Attacker-Detector Game on Undi-
rected Trees.
// Inputs: G(V, E), f
J∗ ← 0Sf,m

, where Sf,m is the number of solutions of
(13).
for i = 1 : Sf,m do

for j = 1 : Sf,m do
B∗(Ci) = argminBj σmax(CiL

−1
g Bj)

end for
J∗
i = σmax

(
CiL

−1
g B∗(Ci)

)
end for

// Output: C∗ = argmaxCi
J∗
i

Theorem 3: Consider the Stackelberg attacker-detector
game, with the detector as the game leader, over the con-
nected tree Gu with leader node v` and m leader rooted paths.
Then, Algorithm 1 finds the Stackelberg equilibrium of the
game. Moreover, its computational complexity is O

(
S2f,m

)
,

where Sf,m is the number of constrained partitions of f into
m nonnegative integers, i.e., the integer solutions of

f =

m∑
i=1

fi, 0 ≤ fi ≤ `i, (13)

where `i is the length of the i-th leader rooted path.
Proof: Without loss of generality, we label the nodes

in a tree in the following form. We start labeling the nodes a

5A leader-rooted path in a tree is a unique path starting from the leader
and ends at a node with degree 1.
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leader rooted path from the leader neighbor, node 1, to a leaf,
called `1. Then we continue from another leader rooted path
which has maximum sharing nodes with the previous leader
rooted path can label that from `1 + 1 to the leaf called `2.
We continue labeling until all nodes are labeled and the leaf
of the last leader rooted path is called `m. For the proof, it is
sufficient to show that fi attackers (fi detectors) have to be
placed in the first (last) fi columns (fi rows) of partition i.
We prove this by contradiction for placing the attack signals
and the detector case it follows the same discussion. Let’s
denote Ci to be the set of columns from `i + 1 to `i+1. By
contradiction, suppose there exists at least one column Cj

i of
Ci where j < fi which is not chosen by an attacker. Since
in this case there exists another column Ch

i , h > j which
is chosen by an attacker and, as a consequence of Lemma
2, each elements of Cj

i is smaller than or equal to Ch
i , this

contradicts the optimal strategy of the attacker and the proof
is complete.

IV. EQUILIBRIUM ANALYSIS OF THE
ATTACKER-DETECTOR GAME: DIRECTED TREES

In this section, we investigate the existence of equilibrium
for the attacker-detector game, when the underlying network
is a directed tree. We present the following assumption.
Assumption 1: In directed tree Gd each follower vi can be
reached through a directed path from leader v`.

Similar to Lemma 2, we derive a closed-from expression
for the inverse of grounded Laplacian matrix L−1

g for the
directed case. This result is presented in the next lemma and
its proof is presented in Appendix B.

Lemma 3: Suppose that Gd is a directed tree with the
leader node v` satisfying Assumption 1. Then, the entries
of the matrix L−1

g are given by

[L−1
g ]ij =

{
1 if there is a directed path from j to i,

0 if there is no directed path from j to i.
(14)

A. Equilibrium Analysis: f = 1

The following theorem discusses the existence of NE for
the attacker-detector game with dynamics (6) on directed
trees when f is equal to 1.

Theorem 4: Suppose that Gd is a directed tree with the
leader node v` satisfying Assumption 1. Then, the attacker-
detector game does not accept a NE f = 1 except when Gd
is a directed path.

Proof: We know that L−1
g is a lower triangular matrix

with diagonal elements equal to 1, due to the fact that
the diagonal elements of L−1

g in this case are the inverses
of the in-degrees of the nodes and the in-degree of each
node is 1. Thus, there exists at least one element 1 in each
row and column of L−1

g . Moreover, based on Lemma 3,
L−1
g is a binary matrix. A NE state should satisfy (10). If

[L−1
g ]i∗j∗ = 0 then the left inequality in (10) will be violated

and if [L−1
g ]i∗j∗ = 1 the right inequality is violated unless

the elements in the i∗-th row are all 1. This means, based
on Lemma 3, that there must be a directed path from any

node to node vj∗ and this means that vj∗ is at the end of a
directed path graph which yields the result.

B. Equilibrium Analysis: f > 1

Similar to the case of undirected trees, for directed trees
when f > 1 we may or may not have NE in general, as
shown in the following example.

Example 2: It can be easily checked that the attacker-
detector game over the directed tree with f = 2 shown in
Fig. 2 (e) has a NE, whereas it does not admit a NE over
the graph in Fig. 2 (f). It is because of the fact that the
attackers chooses its target nodes from nodes 2, 3, 4, since
the first column of L−1

g is all 1 and choosing it will result in
a larger payoff (Lemma 1). As the detector tries to maximize
the payoff, it will also choose from these three nodes. Thus
the corresponding block in L−1

g is an identity matrix which
does not admit a NE.

C. Stackelberg Game Approach f > 1

Although for many directed trees there is no NE, similar
to the case of undirected trees, we can show that performing
the Stackelberg max-min game does not cost much compu-
tational effort.

Theorem 5: Let Gd be a directed tree with leader node v`
and m leader rooted paths satisfying Assumption 1. Then the
objective function (12) can be solved within S2f,m iterations,
where Sf,m is the number of constrained partitions of f into
m nonnegative integers, i.e., the integer solutions of (13).

Proof: The procedure of the proof is similar to that of
Theorem 3. However, in this case the attackers or detectors
selected for each partition i, called fi, are placed in the end
of the partition.

The following theorem compares the value of the attacker-
detector game when the underlying networks are directed
and undirected trees. The proof is straightforward based on
Lemmas 2 and 3 as well as the monotonicity of the largest
singular value, mentioned in Lemma 1.

Theorem 6: Let Gd be a directed tree with leader node v`
and Gu be its corresponding undirected graph (by removing
directions from the edges). Let the value of the Stackelberg
game between f attackers and detectors on Gd and Gu be Jd
and Ju, respectively. Then we have Jd ≤ Ju.

V. CONCLUSION

An attacker-detector game on a leader-follower network
control system was studied, in which the attacker tries to
minimize its visibility and the detector aims to maximize
it. The game payoff was the system L2 gain from the
attack signal to the measurable outputs. Several conditions
for the existence and the value of Nash equilibrium on both
directed and undirected trees were studied. Moreover, the
problem was studied under the Stackelberg game framework
and it was shown that this game can be solved with low
computational cost for large scale networks. Our results
show that, under the optimal sensor placement strategy, an
undirected topology provides a higher security level (in terms
of attack detection) for a networked control system compared
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with its corresponding directed topology. A rich avenue
for further studies is to extend these results from trees to
more general topologies and heterogeneous communication
weights. Extensions of these results to non-positive systems
is another direction for future works.

APPENDIX

A. Proof of Lemma 2

Before proving Lemma 2 we need some preliminary
definitions.

A extension of the above theorem was presented in [23].
Before that, we have the following definition.

Definition 1: A spanning subgraph of a graph G is called
a 2-tree of G, if and only if, it has two components each of
which is a tree. In other words, a 2-tree of G consists of two
trees with disjoint vertices which together span G. One (or
both) of the components may consist of an isolated node. We
refer to tab,cd as a 2-tree where vertices a and b are in one
component of the 2-tree, and vertices c and d in the other.

Based on the above definition, we prove Lemma 2.
Proof: From [24] we know that any first order cofactor

(principal minor) of the Laplacian matrix L is equal to
the number of different spanning trees of the connected
graph G. Moreover, from [23] we know that the second
order cofactor cof(L)ij,`,` of the Laplacian matrix L is the
number of different 2-trees tij,`` in the connected graph G.
We know that [L−1

g ]ij =
cof(L)ij,`,`
det(Lg)

. and since G is a tree
(with one spanning tree) we have det(Lg) = 1 which yields
[L−1

g ]ij = cof(L)ij,`,`. Moreover, in G as a tree, the number
of 2-trees tij,`` is equal to the number of trees which contain
vi and vj and do not contain v` and that is equal to |Pi`∩Pj`|
which proves the claim.

B. Proof of Lemma 3

Proof: Let Lgd and Lgu be grounded Laplacian ma-
trices of a directed tree and its undirected counterpart,
respectively. The proof is based on the fact that for a directed
tree with one leader node v` we have LT

gd
Lgd = Lgu (proved

in [25]) which results in L−1
gd

L−T
gd

= L−1
gu . Based on Lemma

2, we have [L−1
gu ]ij = |Pi` ∩ Pj`| which gives

[L−1
gu ]ij = |Pi` ∩ Pj`| = [L−1

gd
]i[L

−1
gd

]Tj (15)

where [L−1
gd

]i is the i-th row of L−1
gd

. Now consider another
node vk in G. If there is a directed path from vk to vi for
some vk ∈ V , we set the k-th element of [L−1

gd
]i equal to 1

and zero otherwise and doing the same work for row [L−1
gd

]j .
If vk ∈ Pi` ∩ Pj` in the undirected graph, then the k-th
elements of both [L−1

gd
]i and [L−1

gd
]j are 1 and likewise if we

consider all elements of Pi`∩Pj`, then equality (15) will be
satisfied and since it should hold for all i, j = 1, 2, ..., n−1,
this solution will be unique.
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