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Abstract: Structural robustness of limit cycles in relay feedback systems is studied.
Motivated by a recent discovery of a novel class of bifurcations in these systems, it
is illustrated through numerical simulation that small relay perturbations may change
the appearance of closed orbits dramatically. It is shown analytically that certain stable
periodic solutions in relay feedback systems are robust to relay perturbations.
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1. INTRODUCTION

Relay feedback systems and, in general, nonsmooth
feedback systems tend to self-oscillate (Tsypkin, 1984).
Namely, the system evolution tends asymptotically
towards stable periodic orbits or limit cycles. Re-
cently, it has been shown that such solutions can un-
dergo abrupt transitions when the system parameters
are varied. This led to the discovery of an entirely
novel class of bifurcations, involving the interaction
between periodic solutions of the system and its dis-
continuity sets. Despite their widespread use in appli-
cations (Flügge–Lotz, 1953; Andronov et al., 1965;
Tsypkin, 1984; Åström and Hägglund, 1995; Nor-
sworthy et al., 1997), there are few analytical tools
to characterize oscillations in relay feedback systems.
For example, methods to assess their existence and
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stability properties are still the subject of much ongo-
ing research (Åström, 1995; Megretski, 1996; Johans-
son et al., 1997; Johansson et al., 1999; di Bernardo et
al., 2000; Georgiou and Smith, 2000; Varigonda and
Georgiou, 2001; Gonçalves et al., 2001).

An interesting issue for the considered class of nons-
mooth dynamical systems is the robustness properties
of the solutions. Due to the discontinuous vector field,
classical continuity results for smooth systems are not
applicable. Still, it is important in applications to un-
derstand if a given solution is robust to unmodeled
dynamics, external perturbations, and noise. While
there are many results dealing with the robustness of
smooth dynamical systems (e.g.,(Wiggins, 1990; Mur-
dock, 1991; Kokotović et al., 1999)), few papers seem
to address this issue in the case of systems with
nonsmooth vector fields. In the case of relay feed-
back systems, the available results deal with a quite



restrictive class of systems where the transfer func-
tion is either close to an integrator (Georgiou and
Smith, 2000) or to a second-order nonminimum phase
system (Megretski, 1996). Singular perturbations for
the smooth part of the system have also been stud-
ied (Fridman and Levant, 1996).

In this paper we are interested in the robustness of
periodic solutions in relay feedback systems. In partic-
ular, we study the case when a system with an ideal re-
lay exhibits an asymptotically stable periodic solution.
Then we ask the question if a system with an imperfect
implementation of the relay (modeled by a parameter
ε � 0) will also have an asymptotically stable peri-
odic solution. The considered relay implementations
include relay with hysteresis, with finite gain (satura-
tion), and with delayed switching. The problem is not
trivial, especially, due to the nonsmooth characteristic
of the relay. As an illustration, consider the approach,
often suggested in the literature, of analyzing relay
systems by approximating the relay by a continuous
function. There are subtleties when taking the limit as
the function tends to the characteristics of the relay.
It was recently shown (Johansson et al., 1999) that
erroneous results have been derived in the literature
when this limit is not dealt with properly.

The paper is outlined as follows. Relay feedback sys-
tems and the perturbations studied in the paper are
introduced in Section 2. A motivating example is dis-
cussed in Section 3, where it is shown that several
interesting bifurcation scenarios appear due to sudden
loss of structural stability. Section 4 presents results on
perturbations of relay feedback systems. It is shown
that if a nominal system exhibits a stable periodic
solution, then so will an ε-perturbed system under cer-
tain structures of the perturbation. Some concluding
remarks and a discussion on future work are presented
in Section 5.

2. RELAY FEEDBACK SYSTEMS

Consider a nominal relay feedback system

Σ0 :

��� �� ẋ � Ax � Bu

y � Cx

u ��� sgny 	
where 
 A 	 B 	 C � defines a SISO linear time-invariant
system of order n � 1. The relay, defined by the
sign function, allows for sliding modes by the set-
valued assignment sgn0 
�� � 1 	 1 � and the interpreta-
tion of solutions (trajectories) in the sense of Filip-
pov (Filippov, 1988). A solution x : � 0 	 ∞ ����� n of
Σ0 is periodic if there exists a (smallest) period time
T
� 0 such that x 
 t � T ��� x 
 t � for all t

� 0. It is
called symmetric if x 
 t � T � 2 ����� x 
 t � for all t � 0.
The switching plane is defined as

S ��� x 
�� n : Cx � 0 ���

A periodic solution x is called simple if the closed
orbit ��� � z 
!� n : " t � 0 	 z � x 
 t �#� (i) intersects
S only twice and (ii) is transversal to S at the inter-
section points. Note that the condition on transversal
intersections is not fulfilled for so called sliding or-
bits (di Bernardo et al., 2000). The following result
gives conditions for existence and stability of peri-
odic solutions (Åström, 1995; Varigonda and Geor-
giou, 2001). Note that stability refers to exponential
stability throughout the paper.

Lemma 2.1. The system Σ0 has a simple symmetric
periodic solution with half-period t

�
if and only if

f 
 t � � 0 	 0 $ t $ t
�

f 
 t � �%� 0 	 d f
dt

 0 � � 0 	 d f

dt

 t � ��$ 0 	

where

f 
 t �%� CeAtx
� � CA & 1 
 eAt � I � B

x
� �'
 eAt ( � I �)& 1A & 1 
 eAt ( � I � B �

Moreover, it is stable if all eigenvalues of the Jacobian

W �+* I � wC
Cw , eAt ( 	 w �'
 eAt ( � I � & 1eAt ( B

are in the open unit disc.

Note that the point x
�

is the intersection point with the
switching plane. Extensions of the result are discussed
in (Johansson et al., 1997; Johansson et al., 1999; di
Bernardo et al., 2000; Varigonda and Georgiou, 2001).

Next we introduce the three alternative relay pertur-
bations that we study in the paper. A relay feedback
system with hysteresis ε � 0 is denoted

ΣH
ε :

��� �� ẋ � Ax � Bu

y � Cx

u ��� sgnH
ε y 	

where the relay is defined as

u 
 t �-��� sgnH
ε y 
 t �� . � 1 	 y 
 t � � ε or /0� ε $ y 
 t �1$ ε 	 u 
 t �2�3��� 1 4

1 	 y 
 t ��$5� ε or /�� ε $ y 
 t �1$ ε 	 u 
 t �2�-� 1 46�
A relay feedback system with the relay replaced by a
saturation with steep slope 1 � ε � 0 is given by

ΣS
ε :

��� �� ẋ � Ax � Bu

y � Cx

u ��� sgnS
ε y 	

where the relay is defined as

u 
 t �-��� sgnS
ε y 
 t �-� ��� �� � 1 	 if y 
 t � � ε� y 
 t �)� ε 	 if � ε $ y 
 t �1$ ε

1 	 if y 
 t �1$5� ε �
A relay feedback system with switching delayed ε � 0
amount of time is defined as
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Fig. 1. Oscillations of the third-order relay systems
Σ0 (a and b) and ΣH

ε (c and d). The parameter
values are ζ � 0 � 05 	 λ � ρ � � σ � 1 and (a)
ω � 10 � 3, ε � 0, (b) ω � 12, ε � 0, (c) ω � 10 � 3,
ε � 1 � 1000, (d) ω � 10 � 3, ε � 1 � 100.

ΣD
ε :

��� �� ẋ � Ax � Bu

y � Cx

u ��� sgnD
ε y 	

where the relay is simply

u 
 t �-��� sgnD
ε y 
 t �-��� sgny 
 t � ε � �

It should be noticed that the definitions for periodic
solutions for Σ0 directly generalize to the perturbed
systems ΣD

ε , ΣH
ε , and ΣS

ε .

3. MOTIVATING EXAMPLES

A third-order relay feedback system recently stud-
ied in (di Bernardo et al., 2000; Kowalczyk and di
Bernardo, 2001a; Kowalczyk and di Bernardo, 2001b)
is now used as a representative example. The linear
dynamics is given by

A � �� � 
 2ζω � λ � 1 0� 
 2ζωλ � ω2 � 0 1� λω2 0 0

�� 	 B � ��
1

2σρ
ρ2

��

C � / 1 0 0 43	
which corresponds to the transfer function

C 
 sI � A �)& 1B � s2 � 2σρs � ρ2
 s2 � 2ζωs � ω2 � 
 s � λ � �
This system has been shown to undergo several bi-
furcation phenomena, which can lead to the occur-
rence of deterministic chaos (see (Kowalczyk and di
Bernardo, 2001b) for a complete description of the
bifurcation diagram). This would seem to indicate that
periodic solutions of relay systems are sensitive to
parameter variations and external disturbances.

In the simplest case, a change in the topology of the
solution of Σ0 can be observed as the parameters are
varied. An example is shown in Figs. 1(a)–(b), where
the transition is depicted from a periodic solution
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Fig. 2. Oscillations of perturbed third-order relay sys-
tem ΣS

ε with the same parameters as in Fig. 1.
The perturbation is (a) ε � 0, (b) ε � 1 � 500, (c)
ε � 1 � 250, (d) ε � 1 � 100.

characterized by two segments of sliding motion each
half-period to one containing three sections of sliding.
More complex scenarios are also possible correspond-
ing to a sudden loss of structural stability. The system
can for example exhibit so-called period-doubling cas-
cades to chaos (Kowalczyk and di Bernardo, 2001b)
or in some cases an abrupt transition from regular to
chaotic motion (Verghese and Banerjee, 2001). The
occurrence of these phenomena has been recently
explained in the literature as due to the occurrence
of new bifurcations, unique to nonsmooth systems.
The formation of periodic solutions with sliding (or
sliding orbits), for example, has been explained by
identifying so-called sliding bifurcations (di Bernardo
et al., 2000). These are due to interactions between
periodic orbits of the system and regions on the dis-
continuity set where sliding is possible. The existence
of unexpected transitions involving self-oscillations of
relay feedback systems motivates the study of how
persistent periodic solutions are. We restrict our atten-
tion to the effects of perturbations to the relay charac-
teristics.

Our numerics seem to suggest that oscillations in relay
feedback systems are unexpectedly robust to perturba-
tions of the relay characteristic. Fig. 1(c) shows, for
instance, that the orbit characterized by two sections
of sliding motion for Σ0 depicted in Fig. 1(a) is robust
to a small hysteresis (ΣH

ε with ε � 1 � 1000). We see,
though, that as the perturbation is increased the effects
of the hysteresis cannot be neglected (Fig. 1(d)). Nev-
ertheless, the influence of the underlying unperturbed
orbit remains clearly visible.

Similar effects as in Fig. 1 are shown in Fig. 2 but for
ΣS

ε , in which case the system is perturbed by substi-
tuting the relay element with a finite gain saturation.
Again we see that for relatively small value of the
perturbation (high value of the gain), the perturbed
orbits (Fig. 2(b)–(c)) stay close to the unperturbed one
(Fig. 2(a)). Lower values of the gain though cause the
transition to the different orbit depicted in Fig. 2(d).
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Fig. 3. Oscillations of the delayed relay system ΣD
ε for

the same parameter values as in Fig. 1. (a) ε � 0,
(b) ε � 1 � 200, (c) ε � 1 � 125, (d) ε � 1 � 100.
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Fig. 4. Oscillations of perturbed third-order relay
system ΣS

ε with parameters ζ � � 0 � 07 	 λ �
0 � 05 	 ρ � � σ � 1 and ω � 10. (a) ε � 0, (b)
ε � 1 � 200, (c) ε � 1 � 100, (d) ε � 1 � 50.

Note that the persistence observed in the system is
quite remarkable. Substituting the relay with a satu-
ration prevents the occurrence of sliding mode with-
out causing a destruction of the unperturbed solution
structure.

This structural robustness is also observed in the case
of ΣD

ε , where the relay is perturbed by adding a small
delay. Fig. 3 shows how the periodic orbit under
investigation varies as the delay is increased. Despite
the onset of high-frequency oscillations, the structure
of the unperturbed orbit is still preserved.

More dramatic effects are observed when the robust-
ness of a more complex dynamical behavior is inves-
tigated. When the chaotic attractor shown in Fig. 4(a)
is perturbed by substitution of the relay with a high
gain saturation, its topology changes to the one shown
in Fig. 4(b) (characterized by a lower number of
lobes). Further variation of the gain, causes a further
reduction of the lobes (Fig. 4(c)) followed by the
appearance of a stable asymmetric periodic solution
(Fig. 4(d)).
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Fig. 5. Oscillations of the hysteresis perturbed relay
system ΣH

ε for the same parameter values as in
Fig. 4, but with (a) ε � 0, (b) ε � 1 � 100, (c)
ε � 1 � 20, (d) ε � 1 � 10.

The effects of a small hysteresis on the same chaotic
attractor are even more evident as shown in Fig. 5,
where ΣH

ε . Here we see the attractor structure chang-
ing rapidly as the perturbation is increased.

The simulations reported above highlight the need for
appropriate theoretical tools to systematically carry
out the robustness analysis of oscillations in relay
systems. In what follows, perturbation analysis of so-
called simple periodic solutions is discussed. These in-
tersect the switching plane transversally, which make
them easier to analyze using classical Poincaré tech-
niques. Note that it seems that tangential intersections
plays an important role in some of the bifurcation
phenomena illustrated above, cf., bifurcation analysis
in (di Bernardo et al., 2000). The robustness analysis
of periodic solution that hits or leaves the switching
plan tangentially will be studied in future work.

4. PERTURBATION ANALYSIS

In this section we study different perturbations of
the nominal relay feedback system Σ0. Given some
rather non-restrictive assumptions, we will see that
a stable periodic solution of Σ0 is persistent, in the
sense that the perturbed system ΣP

ε also has a stable
periodic solution regardless of the perturbation P.
The following theorem summarizes the result of the
section.

Theorem 4.1. Suppose the relay feedback system Σ0
has a simple symmetric periodic solution with a
strictly stable Jacobian (as defined in Lemma 2.1).
Then, there exists ε0

� 0 such that for each ε 
 
 0 	 ε0 �
the perturbed relay feedback systems ΣH

ε , ΣS
ε , and ΣD

ε
all have simple symmetric stable periodic solutions.

The proof is rather straightforward and follows from
the lemmas below, where each relay perturbation is
treated separately. The proof is based on techniques



used in the recent literature on relay feedback sys-
tems, e.g., (Åström, 1995). Throughout the section, we
make the following standing assumption.

Assumption 4.1. The relay feedback system Σ0 has a
simple symmetric periodic solution with half-period
t
�

. Moreover, all eigenvalues of W (defined in Lemma 2.1)
are inside the unit disk.

Consider the relay feedback system with hysteresis
ΣH

ε . We note that with a straightforward modification
of Lemma 2.1 the following result holds, cf., (Åström,
1995).

Lemma 4.1. The system ΣH
ε has a stable simple sym-

metric periodic solution with half-period τ if (i)

f H 
 t 	 ε � � 0 	 0 $ t $ τ

f H 
 τ 	 ε �1� 0 	 d f H

dt

 0 	 ε � � 0 	 d f H

dt

 τ 	 ε � $ 0

where

f H 
 t 	 ε �%� CeAtz
� � CA & 1 
 eAt � I � B � ε

z
� �'
 eAτ � I �)& 1A & 1 
 eAτ � I � B 	

and (ii) all eigenvalues of the Jacobian

W H 
 ε �%�+* I � wHC
CwH , eAτ

wH 
 ε �%�'
 eAτ � I � & 1eAτ B

are in the open unit disc.

If the nominal system Σ0 generates a closed orbit
as specified in Lemma 2.1, one may ask if also ΣH

ε
generates one. Next we prove that this is the case if
ε � 0 is small.

Lemma 4.2. There exists ε0
� 0 such that for each

ε 
�
 0 	 ε0 � the system ΣH
ε has a simple symmetric

stable periodic solution.

Proof: By Assumption 4.1 and Lemma 2.1, we have
that f 
 t � � � 0, or, equivalently, that f H 
 t � 	 0 � � 0.
Since

∂ f H

∂ t

 t � 	 0 �%� ∂ f

∂ t

 t � ���� 0

from the assumption on transversal intersections, it
follows from the Implicit Function Theorem that
there exists ε1

� 0 and a unique τ 
 ε � such that
f H 
 τ 
 ε � 	 ε � � 0 for all ε 
 
 0 	 ε1 � . The assumption
on transversal intersections also leads to that the in-
equality assumptions in Lemma 4.1 hold. Stability is
guaranteed from that W H in Lemma 4.1 is identical to
the matrix W in Lemma 2.1, but with t

�
replaced by

τ . Hence, by continuity and the assumption that the
eigenvalues of W are strictly inside the unit disk, there
thus exists ε0 
 
 0 	 ε1 � such that the result holds.

Consider the perturbed relay feedback system ΣS
ε ,

where the relay is replaced by a saturation with steep

slope. Introduce the notation φ � for the flow of ẋ �
Ax � B, φ & for the flow of ẋ � Ax � B, and φε for the
flow of ẋ ��
 A � BC � ε � x. The following result similar
to Lemma 2.1 then holds.

Lemma 4.3. The system ΣS
ε has a stable simple sym-

metric periodic solution with half-period τ1 � τ2 � τ3
if (i)

0 $ f S
1 
 t 	 ε ��$ ε 	 0 $ t $ τ1

ε $ f S
2 
 t 	 ε � 	 0 $ t $ τ2

0 $ f S
3 
 t 	 ε ��$ ε 	 0 $ t $ τ3

f S
1 
 τ1 	 ε �%� ε 	 f S

2 
 τ2 	 ε �%� ε 	 f S
3 
 τ3 	 ε �%� 0

d f S
1

dt

 0 	 ε � � 0 	 d f S

1

dt

 τ1 	 ε � � 0

d f S
2

dt

 0 	 ε � � 0 	 d f S

2

dt

 τ2 	 ε ��$ 0

d f S
3

dt

 0 	 ε ��$ 0 	 d f S

3

dt

 τ3 	 ε ��$ 0

where

f S
1 
 t 	 ε �%� Cφε 
 t 	 z � � 	 f S

2 
 t 	 ε �%� Cφ & 
 t 	 z �1 �
f S
3 
 t 	 ε �%� Cφε 
 t 	 z �2 �

z
� ��� φε 
 τ3 	 z �2 � 	 z �1 � φε 
 τ1 	 z � �

z
�

2 � φ & 
 τ2 	 z �1 � 	
and (ii) all eigenvalues of the Jacobian

W S 
 ε �%� W S
3 
 ε � W S

2 
 ε � W S
1 
 ε �

are in the open unit disc with

W S
1 
 ε �%�+* I � M1Az

�
C

CM1Az
� , M1

W S
2 
 ε �%�+* I � wSC

CwS , eAτ2

W S
3 
 ε �%�+* I � M3 
 Az

�

2 � BC � C
CM3 
 Az

�

2 � BC � , M3

M1 � e � A & BC � ε � τ1 	 M3 � e � A & BC � ε � τ3

wS 
 ε �%� eAτ2 
 Az
�

1 � B � �
Proof: Existence follows directly by the construc-
tion of a periodic solution, by considering a trajectory
starting in a point z

� 
 S, flowing to z
�

1 � φε 
 τ1 	 z � � ,
further to z

�

2 � φ & 
 τ2 	 z �1 � , and finally to φε 
 τ3 	 z �2 � �� z
�
. The existence of a closed orbit follows by sym-

metry. The Jacobian W S of the corresponding Poincaré
map is straightforward to derive. Stability of W S im-
plies stability of the periodic solution. The factors
W S

1 
 ε � and W S
2 
 ε � are worth some discussion. Let

us take W S
1 
 ε � for instance. It is the Jacobian of the

Poincaré map P1 : S � Sε � � x 
 � n : Cx � ε � defined
by P1 
 x � � φε 
 τ1 
 x � 	 x � , where τ1 
 x � is the transition
time. In particular, τ1 
 z � �1� τ1. A standard derivation
as in, e.g. (Åström, 1995), shows that

DP1 
 z � �%�+* I � M1 
 ε � 
 A � BC � ε � z � C
CM1 
 ε � 
 A � BC � ε � z � , M1 
 ε �



Since, z
� 
 S, we have Cz

� � 0 and hence 
 A �
BC � ε � z � Az

�
. This gives the expression for W S

1 
 ε � in
the statement of the lemma. Similarly, P3 : Sε � S
defined by P3 
 x � � φε 
 τ3 
 x � 	 x � , where τ3 
 z �2 � � τ3. We
get

DP3 
 z �2 �-�+* I � M3 
 ε � 
 A � BC � ε � z �2C

CM3 
 ε � 
 A � BC � ε � z �2 , M3 
 ε �
Using that z

�

2 
 Sε gives 
 A � BC � ε � x �2 � Az
�

2 � BC and
the expression for W S

3 
 ε � follows.

The robustness result is now as follows.

Lemma 4.4. There exists ε0
� 0 such that for each

ε 
'
 0 	 ε0 � the system ΣS
ε has a simple symmetric

stable periodic solution.

Proof: Consider x
� 
 S as given in Lemma 2.1. We

will show that there exists a contraction mapping for
ΣS

ε that maps a neighborhood of x
�

back to itself, when
ε � 0 is small. The trajectory of ΣS

ε passing through the
fixed point z

�
of that map will then be shown to fulfill

the conditions in Lemma 4.3.

Since the nominal system Σ0 has a simple periodic
solution by assumption, intersection with S is transver-
sal and thus there exists a neighborhood U � S of x

�

such that C 
 Ax � B � � 0 for all x 
 U . Define a map
P : U � U as P 
 x �1�'� φ & 
 τ 
 x � 	 x � , where τ 
 x � is the
time to first intersection with S for the trajectory of Σ0
passing through the point x 
 U .

Consider a point x0 � x
� � δ 
 U under the flow of ΣS

ε .
For small t

� 0,

φε 
 t 	 x0 �%� x0 � 
 A � BC � ε � x0t ��� 
 t2 �� x0 � Ax0t ��� 
 t2 � 	
since Cx0 � 0. The time τ1

� 0 at which the trajectory
for the first time intersects Sε ��� x 
�� n : Cx � ε � is
for small ε � 0 thus given by

τ1 � ε
CAx0

��� 
 ε2 � �
Note that CAx0

� 0, since C 
 Ax0 � B � � 0 and C 
 Ax0 �
B � � 0 due to the assumption of transversal flow in
U . This shows that x1 � φε 
 τ1 
 x0 � 	 x0 � � x0 ��� 
 ε � .
If x0 is close to x

�
then the dynamics of ΣS

ε maps
x1 �� x2 � φ & 
 τ2 
 x1 � 	 x1 � 
 Sε continuously and the
vector field intersects Sε transversally at x2. A similar
argument as above shows that x3 � φε 
 τ3 
 x2 � 	 x2 � �
x2 ��� 
 ε � . It follows that there exists a neighborhood
V � U of x

�
such that the map Pε : V � S given by

Pε 
 x0 � � � x3, with x3 specified above, is well defined,
smooth, and maps x

�
to x

� ��� 
 ε � . It is easy to show
that the Jacobian of the map x0 �� x1 � φε 
 τ1 
 x0 � 	 x0 �
is given by

W̃ S
1 
 ε ;x0 �%�+* I � M̃1Ax0C

CAM̃1x0 , M̃1 �
where M̃1 � e � A & BC � ε � τ1 � x0 � . The corresponding maps
x1 �� x2 � φ & 
 τ2 
 x1 � 	 x1 � and x2 �� x3 � φε 
 τ3 
 x2 � 	 x2 �

have Jacobians W̃ S
2 
 ε ;x1 � and W̃ S

3 
 ε ;x2 � , with expres-
sions similar to W S

2 and W S
3 in Lemma 4.3. Note that

all Jacobians are well defined for sufficiently small ε .

Let Br 
 x � ��� U be a ball with radius r
� 0 and center

in x
�
. For x0 � x

� � δ 
 Br 
 x � � , we have by series
expansion

Pε 
 x � � δ �3� x
� ��� 
 ε � � W̃S 
 ε ;x

� � δ ��� 
 δ 2 � 	 (1)

where W̃ S 
 ε ;x
� � � � W̃S

3 
 ε ;x
�

2 � W̃ S
2 
 ε ;x

�

1 � W̃ S
1 
 ε ;x

� � with
x
�

1 and x
�

2 being the corresponding intersection points
with Sε . Note that for small ε � 0, both W̃ S

1 
 ε ;x
� �

is approximately equal to the identity map on S (up
to � 
 ε � ). This follows since M̃1 � e � A & BC � ε � τ1 � x0 � �
e & BC � � CAx0 � ��� 
 ε � , and thus for δ 
 S, we have

W̃ S
1 
 ε ;x

� � δ �+* I � M̃1Ax0C

CAM̃1x0 , 
 e & BC � � CAx0 � ��� 
 ε � � δ�+* I � M̃1Ax0C

CAM̃1x0 , 
 δ ��� 
 ε � �-� δ ��� 
 ε � �
We can in a similar way show that W̃ S

1 
 ε ;x
�

2 � is
approximately equal to the identity map on S and
that W̃ S

2 
 ε ;x
�

1 � � W ��� 
 ε � . Hence, W̃ S 
 ε ;x
� � is sta-

ble for small enough ε , so that Equation (1) gives
Pε / Br 
 x � � 4�� Br 
 x � � if ε 	 r 	 1.

Next we show that Pε has a unique fixed point z
� 


Br 
 x � � if r is sufficiently small. Consider two points
x 	 x � δ 
 Br 
 x � � , and note that

Pε 
 x � δ �3� Pε 
 x � � W̃S 
 ε ;x � δ ��� 
 δ 2 � �
Since 
 δ 
 is small and W̃ S 
 ε ;x � is stable for all
x 
 Br 
 x � � , it holds that 
 W̃S 
 ε ;x � δ ��� 
 δ 2 ��
�$�
 δ 
 .
Hence, Pε is a contraction on Br 
 x � � if r is sufficiently
small. It thus follows that Pε has a unique fixed point
z
� 
 Br 
 x � � .

It remains to show that the trajectory of ΣS
ε passing

through z
�

fulfills the conditions of Lemma 4.3, and
hence generates a simple symmetric stable periodic
solution. The stability follows from that W S 
 ε ;z

� � is
stable as we argued above. The other conditions fol-
lows by a straightforward continuity argument, since
the flows φε and φ & are smooth and Σ0 has a simple
symmetric stable periodic solution.

Consider the perturbed relay feedback system ΣD
ε ,

where the switching is delayed a short amount of time.

Lemma 4.5. The system ΣD
ε has a stable simple sym-

metric periodic solution with half-period τ � ε if (i)

f D
1 
 t 	 ε � � 0 	 0 $ t $ ε

f D
2 
 t 	 ε � � 0 	 0 $ t $ τ

f D
2 
 τ 	 ε �1� 0 	 d f D

1

dt

 0 	 ε � � 0 	 d f D

2

dt

 τ 	 ε � $ 0 	

where

f D
1 
 t 	 ε �%� Cφ � 
 t 	 z � �

f D
2 
 t 	 ε �%� Cφ & 
 t 	 φ � 
 ε 	 z � � �

z
� �'
 eA � τ � ε � � I �)& 1A & 1 
 2eAτ � eA � τ � ε � � I � B 	



and (ii) all eigenvalues of the Jacobian

W D 
 ε �%� W D
2 
 ε � W D

1 
 ε �
are in the open unit disc with

W D
1 
 ε �1� eAε 	 W D

2 
 ε �%�+* I � wDC
CwD , eAτ

wD 
 ε �1� eAτ 
 Aφ � 
 ε 	 z � � � B � �
Proof: Existence follows by the construction of a
periodic solution starting in z

�
. Stability follows from

explicitly deriving W D, which is the Jacobian of the
corresponding Poincaré map.

The robustness result is now as follows.

Lemma 4.6. There exists ε0
� 0 such that for each

ε 
�
 0 	 ε0 � the system ΣD
ε has a simple symmetric

stable periodic solution.

Proof: Similar to the proof Lemma 4.4, but with
application of Lemma 4.5. Note that the Jacobian
W D 
 ε �-� W D

2 
 ε � W D
1 
 ε � tends to W as ε tends to zero.

5. CONCLUSIONS AND FUTURE WORK

Perturbation analysis in relay feedback systems was
discussed. It was shown that stable simple symmetric
periodic solutions are persistent under small varia-
tions in the relay characteristic. Simulations showed
that if the orbits are not simple (i.e., do not intersect
the switching plane transversally twice per period),
then sensitive solutions may appear. Examples of this
include so-called sliding orbits. Future work include
studying perturbations of sliding orbits in detail. The
analysis in the paper was straightforward and directly
extends techniques developed in (Åström, 1995; Jo-
hansson et al., 1999; Varigonda and Georgiou, 2001;
di Bernardo et al., 2000). The proof technique can be
extended to more general piecewise affine systems. It
is interesting to consider relay feedback systems with
other imperfections, such as model errors in the linear
dynamics and unmodeled dynamics. Note that it is
straightforward to extend Theorem 4.1 to a class of
system ΣM

ε , which has an ideal relay but the linear sys-
tem is replaced by smooth functions A 
 ε � 	 B 
 ε � 	 C 
 ε � ,
such that 
 A 
 0 � 	 B 
 0 � 	 C 
 0 � �%�'
 A 	 B 	 C � .
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