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Abstract— In this paper, we consider the optimal coordina-
tion problem for distributed energy resources (DERs) including
distributed generators and energy storage devices. We propose
an algorithm based on the push-sum and gradient method to
optimally coordinate distributed generators and storage devices
in a distributed manner. In the proposed algorithm, each DER
only maintains a set of variables and updates them through
information exchange with a few neighbors over a time-varying
directed communication network. We show that the proposed
distributed algorithm solves the optimal DER coordination
problem if the time-varying directed communication network is
uniformly jointly strongly connected, which is a mild condition
on the connectivity of communication topologies. The proposed
distributed algorithm is illustrated and validated by numerical
simulations.

I. INTRODUCTION

In the past decades, the power system has been undergoing
a transition from a system with conventional generation
power plants and inflexible loads to a system with a large
numbers of distributed generators, energy storages, and flex-
ible loads, often referred to as distributed energy resources
(DERs) [1]. DERs are smaller, highly flexible, and can
be aggregated to provide power necessary to meet regular
demand. As the electricity grid continues to modernize, DER
can help facilitate the transition to a smarter grid.

In order to achieve an effective deployment among DERs,
one needs to properly design the coordination among them.
One approach is through a completely centralized control
strategy, where a single control center accesses the entire
network’s information and provides control signals to the
entire system. This centralized control framework may not be
effective for large-scale power networks due to performance
limitations, such as a single point failure, high communica-
tion and computational burden, and limited flexibility.

Recently, an alternative distributed approach has been
proposed to overcome these limitations. In particular, each
DER makes a local decision based on the information
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received from a few neighboring DERs over the underly-
ing communication network. Most existing distributed DER
coordination studies focus on a single type of DERs. For
distributed generation (DG) coordination, various distributed
algorithms based on the consensus theory [3], [4] have
been proposed, see, e.g., [2], [5]–[13]. On the other hand,
cooperative management for a network of energy storages
(ESs) has been considered [14], [15].

However, only few works consider the distributed co-
ordination of both distributed generators and energy stor-
ages [16]–[18]. In [16], the authors proposed a distributed
algorithm based on the consensus and innovation method
to coordinate DGs and ESs over multiple time periods in
a microgrid. However, the charging/discharging efficiencies
are not modeled. As shown in [19] and other existing
studies, the optimal charging/discharging operation and the
corresponding benefits from a storage device could vary
significantly with its efficiencies. Therefore, in [17], [18],
we have developed distributed DER coordination strategies,
where charging/discharging losses are modeled.

Note that one common assumption in [16]–[18] is that
the communication network for information exchange among
DERs is undirected and time invariant. However, in practice,
the information exchange may be unidirectional due to
nonuniform communication powers and the communication
network topology may vary due to unexpected loss of
communication links. Thus, in this paper, we consider DER
coordination for the case where the communication network
is directed and time-varying. To handle these challenges,
we propose a distributed algorithm based on the push-
sum and gradient method [20] and show that the proposed
distributed algorithm solves the optimal DER coordination
problem if the time-varying directed communication network
is uniformly jointly strongly connected. Compared with
existing studies for undirected fixed connected topologies
[16]–[18], this requirement is much more general since the
communication links can be unidirectional and the network
can be disconnected at any time instant as long as the joint
graph over a period of time is strongly connected.

The remainder of the paper is organized as follows. In
Section II, we formulate the optimal DER coordination prob-
lem as a multi-step optimization problem, whose objective
function and various constraints are introduced. Section III
presents a centralized Lagrangian-based approach to solve
the optimal DER coordination problem, summarizes our
previously developed distributed algorithm for DER coordi-
nation, and motivates the study of this paper. In Section IV,
a fully distributed DER coordination algorithm is developed.
Section V presents case studies and simulation results. Con-



cluding remarks are offered in Section VI.

II. PROBLEM FORMULATION OF DER COORDINATION

In this paper, we consider a distribution network including
N distributed generators and M energy storage devices.
Without loss of generality, we assume that the first N devices
are distributed generators and the last M devices are energy
storages. The optimal coordination problem can be formu-
lated as a multi-step optimization problem consisting of an
objective function and various constraints, which will be
introduced in Section II-A and Section II-B, respectively. In
Section II-C, we formally present the multi-step optimization
problem formulation for optimal DER coordination.

A. Objective Function

The objective function is defined as the sum of generators’
costs over a number of time periods

T∑
t=1

N∑
i=1

Ci(pi,t), (1)

where T is the number of time periods, pi,t is the power of
DG i during period t, and Ci(pi,t) is the cost function of
DG i for period t and represented as a quadratic function of
power output [21], given by

Ci(pi,t) = aip
2
i,t + bipi,t + ci, (2)

with ai > 0.

B. Constraints

In this section, we will present various constraints.
1) System constraint: Power system operation requires

power balance between supply and demand, i.e., the power
from the DGs and ESs together need to meet a given demand
over a period of T . Such a requirement can be represented
by

N+M∑
i=1

pi,t −Dt = 0, ∀t ∈ T , (3)

where pi,t for i = N+1, . . . , N+M is the power of ES i, Dt

is the given total demand of period t, and T = {1, . . . , T}.
2) Constraints for DG: For each DG i ∈ N :=

{1, . . . , N}, there are two constraints due to physical limits.
The first one is the capacity limit on how much power DG
i can generate at each time period, denoted by

pmin
i ≤ pi,t ≤ pmax

i , ∀t ∈ T , ∀i ∈ N , (4)

where pmin
i , pmax

i for i ∈ N are the lower and upper bound
of the power limits of generator i, respectively.

The second one is ramping up/down constraints

∆p
i
≤ pi,t − pi,t−1 ≤ ∆pi, ∀t ∈ T , ∀i ∈ N , (5)

where ∆p
i
, ∆pi are the lower and upper bound of ramping

rates of generator i, respectively.

3) Constraints for ES: For each ES i ∈ M := {N +
1, . . . , N +M}, there are a few constraints due to physical
limits. The first one is due to the storage capacity

pmin
i ≤ pi,t ≤ pmax

i ∀t ∈ T , ∀i ∈M, (6)

where pmin
i , pmax

i for i ∈M are the lower and upper bound
of the power limits of ES i, respectively.

The second one expresses the rate of change of energy
stored in ES due to the charging/discharging efficiencies as
given below

pbatt
i,t =

{
pi,t

η+i
, if pi,t ≥ 0

pi,tη
−
i , if pi,t < 0

∀t ∈ T , ∀i ∈M, (7)

where pbatt
i,t is the rate of change of energy stored in ES i at

the end of period t, which is positive when ES is discharged,
and η+

i , η−i are discharging and charging efficiency of storage
device i, respectively.

The third one captures the dynamics of energy stored in
ES i. The energy stored in ES i evolves according to the
following dynamics

Ei,t = Ei,t−1 − pbatt
i,t ∆T ∀t ∈ T , ∀i ∈M, (8)

where Ei,t is the energy stored in ES i at the end of time
period t and ∆T is the size of time step.

The fourth constraint restricts the energy stored in ES i to
be between its lower and upper bounds

0 ≤ Ei,t ≤ Emax
i ∀t ∈ T , ∀i ∈M, (9)

where Emax
i is the energy capacity of ES i.

The last constraint specifies the energy stored in ES i at
the end of the scheduling period. It is set to be equal to the
initial energy state as shown in (10)

Ei,T = Ei,0 ∀i ∈M, (10)

but can be set to other feasible values.

C. Optimization Problem

With the objective function and various constraints, we
are now ready to formally present the optimization problem
formulation for DER coordination as the following multi-step
optimization problem:

P: min
pi,t,pbatt

i,t,Ei,t

T∑
t=1

N∑
i=1

Ci(pi,t), (11)

subject to (3)-(10). Note that the initial values pi,0 for i ∈
N and Ei,0 for i ∈ M are parameters in the optimization
problem and are given a prior.

Our goal is to design a distributed algorithm that drives
the network of DERs to an optimal solution of (11) over
time-varying directed communication topologies. However,
the optimization problem is difficult to solve even in a
centralized manner since the feasible set for the storage
device i ∈M, which is defined as

Ωpi := {pi ∈ RT |(6)− (10) are satisfied}



where
pi =

(
pi,1, pi,2, . . . , pi,T

)′
. (12)

is in general not convex due to non-convex constraint (7).
As shown in [18], when η+

i η
−
i < 1 (which holds for

all real world storage devices), we can convert the original
problem to its convex equivalency by defining

pi,t = p+
i,t − p−i,t, ∀t ∈ T , ∀i ∈M (13)

where

0 ≤ p+
i,t ≤ pmax

i , 0 ≤ p−i,t ≤ −pmin
i , t ∈ T , ∀i ∈M (14)

and replace constraint (7) by

pbatt
i,t =

1

η+
i

p+
i,t − η−i p−i,t . (15)

Hence, the original non-convex problem in (11) is equivalent
to

P′ : min
pi,t,p+i,t,p−i,t,pbatt

i,t,Ei,t

T∑
t=1

N∑
i=1

Ci(pi,t), (16)

subject to (3)-(5), (8)-(10), (14), and (15).

III. PRELIMINARY RESULTS

A. Lagrangian-based Approach

In order to develop a distributed coordination algorithm,
we dualize problem P′ with respect to constraint (3), which
couples the operation of all DERs. The other constraints are
not relaxed because there is no coupling among devices.

Let Ω̃M,i be the set of all p+
i , p

−
i ∈ RT for which (8)–

(10), (14), and (15) are satisfied, where i ∈M,

p+
i =

(
p+
i,1, p

+
i,2, . . . , p

+
i,T

)′
and

p−i =
(
p−i,1, p

−
i,2, . . . , p

−
i,T

)′
.

We also denote ΩN ,i as the set of all pi ∈ RT for which
(4) and (5) are satisfied, where i ∈ N and

pi =
(
pi,1, pi,2, . . . , pi,T

)′
.

Note that both Ω̃M,i and ΩN ,i are convex polytopes since
all constraints are linear. This together with the fact that
the objective function in (16) is convex with respect to the
power of each DG and the power of each storage and that
constraint (3) is affine, implies that if we dualize the problem
in (16) with respect to constraint (3), there is zero duality
gap. Moreover, the dual optimal set is nonempty [22]. We
can thus solve the primal problem in (16) by considering its
dual problem. With some algebra, the dual problem can be
decomposed into into N +M local optimization problems:

max
λ≥0

N+M∑
i=1

Φi(λ), (17)

where λ =
(
λ1, . . . , λT

)′
and λt, t = 1, . . . , T are Lagrange

multipliers associated with power balance constraints (3),

Φi(λ) = min
pi∈ΩN ,i

T∑
t=1

Ci(pi,t)− λ′(pi −Di), i ∈ N , (18)

Φi(λ) = min
{p+i ,p

−
i }∈Ω̃M,i

−λ′(p+
i − p−i −Di), i ∈M, (19)

and Di ∈ RT are virtual local demands at each agent for
all the periods such that

∑N+M
i=1 Di = D =

(
D1, . . . , DT

)′
.

Therefore, for any given λ, the minimizer pi for i ∈ N in
(18) and {p+

i , p
−
i } for i ∈ M in (19) can be obtained in a

distributed manner by solving a local optimization problem.

B. Previous Results and Motivation

In [18], we solve these N + M optimization problems
locally via a distributed algorithm. In the proposed algorithm,
each node runs a local optimization algorithm with an
estimate of the optimal dual variable λi. These estimates are
updated using the consensus and gradient strategy, where the
consensus part ensures that all estimates (consensus variables
λi) asymptotically approach the same value based on only
local information exchange, and the gradient part guarantees
that the power balance is satisfied.

Note that the proposed distributed algorithm is limited to
the case where the communication topology among DERs is
undirected and fixed. However, in practice, the information
exchange may be unidirectional and the communication
network topology may vary due to unexpected loss of
communication links. Therefore, it is desirable to develop
distributed algorithms for DER coordination over directed
and time-varying communication networks. This motivates
the study in this paper. In particular, in this paper, the
communication topology for DERs is modeled as a time-
varying directed graph G(k) = (V, E(k)), where the first N
agents correspond to distributed generators and the last M
agents correspond to storage devices, and the edge set models
communications among these DERs which may change over
time due to unexpected loss of communication links.

IV. MAIN RESULTS

In this section, we develop a distributed algorithm for op-
timal DER coordination over time-varying directed commu-
nication networks. In Section IV-A, we propose a distributed
algorithm based on the push-sum and gradient method [20]
for optimally coordinating DGs with energy storages. In Sec-
tion IV-B, we show that the proposed distributed algorithm
with appropriately chosen step-sizes is convergent if the
time-varying directed communication network is uniformly
jointly strongly connected.

A. Distributed Push-Sum and Gradient Based Algorithm

To handle the challenges of directed and time-varying
communication among DERs, we propose a distributed al-
gorithm based on the push-sum and gradient method [20]
developed recently for distributed optimization over time-
varying directed networks. The proposed algorithm is given
in Algorithm 1 and contains two stages. One needs to execute
the iterations in Stage I to get the optimal solution for
distributed generators and then use the obtained optimal
solution for DGs to run the iterations in Stage II to get the
optimal solution for energy storage devices.



In particular, in Stage I of Algorithm 1, at time step
k, each agent i ∈ V maintains T -dimensional variables
vi(k), wi(k), yi(k), λi(k), pi(k), where pi(k) and λi(k) are
estimates of the primal solution (optimal powers of DGs and
ESs) and dual optimal solution (optimal incremental cost),
respectively. For example, λi =

(
λi,1, . . . , λi,T

)′
, where

each λi,t for t = 1, . . . , T is the estimate of the optimal
incremental cost (marginal price) for period t. Note that
variables vi(k), wi(k) and yi(k) are the auxiliary variables.

At each time step k, each agent i ∈ V updates its variables
wi(k), yi(k) and λi(k) according to (20).

wi(k + 1) =
∑

j∈N in
i (k)∪{i}

vj(k)

dj(k) + 1
, (20a)

yi(k + 1) =
∑

j∈N in
i (k)∪{i}

yj(k)

dj(k) + 1
, (20b)

λi(k + 1) =
wi(k + 1)

yi(k + 1)
, (20c)

where N in
i (k) = {j ∈ V | (j, i) ∈ E(k)} is the in-neighbor

set of agent i, i.e., the set of all agents that can transmit
information to agent i directly at time instant k, and the
division in (20c) operates entry-wise.

Once the estimate of the optimal dual variable λi(k + 1)
is computed by an agent i ∈ V . If the agent is associated
with a distributed generator, i.e., i ∈ N , then it updates the
variables pi(k) by solving the following local optimization
problem, which is the minimization problem in (18) with λ
replaced by an estimate of the dual variable λi,

pi(k + 1) = arg min
pi∈ΩN ,i

T∑
t=1

Ci(pi,t)− λi(k + 1)′pi. (21)

If the agent is associated with an energy storage device, then
it updates the variables pi(k) by solving the following local
optimization problem, which is the minimization problem in
(19) with λ replaced by an estimate of the dual variable λi,

{p+
i (k + 1), p−i (k + 1)}

= arg min
{p+i ,p

−
i }∈Ω̃M,i

λi(k + 1)′
(
p−i − p+

i

)
,(22a)

pi(k + 1) = p+
i (k + 1)− p−i (k + 1). (22b)

Once the estimate of the optimal power pi(k + 1) is
obtained by an agent i ∈ V , it updates the variables vi(k)
according to (23)

vi(k + 1) = wi(k + 1)− αk+1(pi(k + 1)−Di). (23)

The step-size αk+1 satisfies the following conditions:
∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞,

αk ≤ αs for all k > s ≥ 1. (24)

The typical choice for a sequence αk satisfying (24) is αk =
a
k+b , where a > 0 and b ≥ 0.

In order to implement Algorithm 1, at time instant k ∈ Z+,
where Z+ is the set nonnegative integers, each agent i ∈ V

needs to know its out-degree di(k) and sends the quantities
vi(k)
di(k)+1 and yi(k)

di(k)+1 to all its out-neighbors j ∈ N out
i (k)

for the update. Based on the information received from in-
neighbors, each agent makes a local update (decision). For
example, in Stage I of Algorithm 1, based on the received
information, each agent i ∈ V first runs the update (20)
to obtain an estimate of dual variable λi(k + 1). Knowing
this value, the estimates of optimal powers are obtained by
solving N + M local optimization problems, i.e., (21) for
i ∈ N , and (22) for i ∈ M. Finally, each agent i ∈ V runs
the update (23). The above procedure is repeated until the
error is small enough, in the sense that ‖λi(k)−λi(k−1)‖ <
ε1 and maxi,j∈V ‖λi(k) − λj(k)‖ < ε2, where ε1 and ε2
are small constants depending on the desired accuracy. In
initialization, vi(0) is assigned with an arbitrary vector and
yi(0) = 1 for all i ∈ V , where 1 is the column vectors with
all entries being 1.

B. Convergence Result

In this section, we will show that Algorithm 1 with prop-
erly chosen step-sizes is capable to solve the optimal DER
coordination problem over a time-varying directed commu-
nication network which satisfies the following assumption.

Assumption 1. The time-varying directed communication
network G(k) is uniformly jointly strongly connected, i.e., the
jointly communication network G([k0, k0 + B))1is strongly
connected for any k0 ≥ 0 with some integer B > 0.

Theorem 1. Under Assumption 1, distributed Algorithm 1
with the step-size αk satisfying conditions in (24) solves
the optimization problem (16). In particular, Stage I yields
limk→∞ pi(k) = p∗i for all i ∈ N and Stage II yields
limm→∞ pi(m) = p∗i for all i ∈ M provided that psol

i = p∗i
for all i ∈ N , where p∗i for all i ∈ V is the centralized
optimal solution of the optimization problem (16).

Proof. The proof is omitted due to the space limitation.

Remark 1. Theorem 1 shows that the proposed distributed
Algorithm 1 solves the optimal DER coordination problem
over a time-varying directed communication network which
is uniformly jointly strongly connected. This is a mild condi-
tion on the connectivity of communication topologies, since
the network can be disconnected at any time instant as
long as the jointly graph over a period of time is strongly
connected. Therefore, the requirement on network topologies
is more general compared to the fixed undirected connected
topologies considered in the existing literature for distributed
DER coordination [16]–[18].

V. CASE STUDIES

In this section, various case studies are performed to
illustrate and validate the proposed algorithm for optimal
DER coordination. The IEEE 6-bus system used [18] is
adopted here, where Buses 1–4 are connected with dis-
tributed generators and Buses 5 and 6 are connected to

1The joint graph of G(k) in the time interval [k1, k2) with k1 < k2 ≤ ∞
is denoted as G([k1, k2)) = ∪k∈[k1,k2)G(k) = (V,∪k∈[k1,k2)E(k)).



Algorithm 1 Distributed DER coordination algorithm over
a time-varying directed communication network

1: Input: The time-varying graph G(k) = (V, E(k)), the
step-size αk, an arbitrarily assigned vi(0) ∈ RT , and
yi(0) = 1 ∈ RT for all i ∈ V .

2: Output: The optimal generation p∗i for i ∈ V .
3: Stage I
4: repeat
5: for i = 1 to N +M do
6: Run the update (20).
7: if i ∈ N then
8: Run the update (21).
9: else

10: Run the update (22).
11: end if
12: Run the update (23).
13: end for
14: Update k as k := k + 1.
15: until Error small enough
16: for i = 1 to N do
17: psol

i = pi(k − 1).
18: Return psol

i .
19: end for
20: Stage II
21: repeat
22: for i = 1 to N +M do
23: Run the update (20) with k replaced by m.
24: if i ∈ N then
25: Run the update pi(m+ 1) = psol

i .
26: else
27: Run the update

{p+
i (m+ 1), p−i (m+ 1)}

=arg min
{p+i ,p

−
i }∈Ω̃M,i

‖p+
i − p−i ‖2 − λi(m+ 1)′

(
p+
i − p−i

)
,(25a)

pi(m+ 1) = p+
i (m+ 1)− p−i (m+ 1). (25b)

28: end if
29: Run the update (23).
30: end for
31: Update m as m := m+ 1.
32: until Error small enough
33: for i = N + 1 to N +M do
34: psol

i = pi(m− 1).
35: Return psol

i .
36: end for

energy storage devices. We also use the same parameters
for DGs and ESs as those in [18]. This test system is
used to study the performance of the proposed algorithm
for both fixed directed communication networks and time-
varying directed communication networks.

A. Fixed Directed Networks

We first demonstrate the performance of Algorithm 1 for
the case where DERs exchange information over a fixed

2 3
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1 6

Fig. 1. Fixed directed communication network.
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Fig. 2. Native load vs. Net load.

directed network, shown in Fig. 1. The demand to be supplied
by these DERs is plotted in red in Fig. 2.

To coordinate four DGs with two storages over a 24-hour
period, we apply the proposed Algorithm 1 with the step-
size αk = 0.05

k and αk = 100
k0.55 for Stage I and Stage

II, respectively. The obtained solution is the same as the
centralized one. The blue curve in Fig. 2 is the resulting net
load (load minus storage), which agrees with the result in
[18]. Fig. 2 shows how two storage devices are coordinated
to cut the peak and fill the valley. In particular, they are
discharged during peak hours when the energy price is high
and charged during off-peak hours when energy price is low.

The power output and state of charge (SOC) for both
storages are provided in Fig. 3, which is also in consistent
with the result in [18].

B. Time-varying Directed Networks

We next consider the case where DERs exchange infor-
mation over a time-varying directed network G(k) switching
among three fixed topologies G1, G2 and G3 shown in Fig. 4
at each time instant. In particular,

G(k) =


G1, if k ∈ [0, 1) ∪ · · · ∪ [3s, 3s+ 1) · · · ,
G2, if k ∈ [1, 2) ∪ · · · ∪ [3s+ 1, 3s+ 2) · · · ,
G3, if k ∈ [2, 3) ∪ · · · ∪ [3s+ 2, 3s+ 3) · · · ,

where s ∈ Z+. It is easy to check that each of the fixed
topologies G1, G2 and G3 is not strongly connected. For
example, there is no directed path from agent 2 to agent
1 in G1. However, the time-varying directed graph G(k) is
uniformly jointly strongly connected since the joint graph
G([k0, k0 + B)) is strongly connected for any k0 ∈ Z+

with B = 3. Thus, Assumption 1 is satisfied with B = 3.
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Fig. 3. Charging (negative) and discharging (positive) power and state of
charge.
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Fig. 4. Time-varying directed communication network.

According to Theorem 1, the proposed Algorithm 1 solves
the optimal DER coordination problem.

By applying Algorithm 1 with the same step-sizes as those
for the fixed communication network case, we find that
the obtained solution agrees with the centralized one. The
resulting net load (load minus storage) and the operation
of storage devices are the same as those for the case of
fixed directed networks. However, we have noticed that the
convergence for this case is slower compared to the case of
directed fixed networks.

VI. CONCLUSIONS

In this paper, we considered the optimal coordination prob-
lem of DERs, including distributed generators and energy
storage devices. In the problem formulation, storage charg-
ing/discharging efficiencies were explicitly modeled. We
proposed a distributed algorithm based on the push-sum and
gradient method for optimal DER coordination. We showed
that the proposed algorithm with appropriately chosen step-
sizes solve the optimal DER coordination problem over time-
varying directed communication networks that are uniformly
jointly strongly connected. The performance of the proposed
algorithm has been tested by various case studies. One future

direction is to extend the proposed distributed algorithm
to accommodate other communication effects, such as time
delays and packet drops.
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