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Abstract—This paper considers distributed nonconvex opti-
mization with the cost functions being distributed over agents.
Noting that information compression is a key tool to reduce
the heavy communication load for distributed algorithms as
agents iteratively communicate with neighbors, we propose three
distributed primal-dual algorithms with compressed communi-
cation. The first two algorithms are applicable to a general
class of compressors with bounded relative compression error
and the third algorithm is suitable for two general classes
of compressors with bounded absolute compression error. We
show that the proposed distributed algorithms with compressed
communication have comparable convergence properties as state-
of-the-art algorithms with exact communication. Specifically,
we show that they can find first-order stationary points with
sublinear convergence rate O(1/7") when each local cost function
is smooth, where T is the total number of iterations, and find
global optima with linear convergence rate under an additional
condition that the global cost function satisfies the Polyak—
Lojasiewicz condition. Numerical simulations are provided to
illustrate the effectiveness of the theoretical results.

Index Terms—Communication compression, distributed opti-
mization, linear convergence, nonconvex optimization, Polyak—
Lojasiewicz condition

I. INTRODUCTION

We consider distributed nonconvex optimization. Specifi-
cally, consider a network of n agents, each of which has a
private local (possibly nonconvex) cost function f; : R% — R,
The whole network aims to solve the following optimization
problem

min £(x) i= 3" fi@) M)

zeRd

Throughout this paper we assume each f; is smooth. Note
that each agent alone cannot solve the above optimization
problem since it does not know other agents’ local cost
functions. Therefore, agents need to communicate with each
other through an underlying communication network. Dis-
tributed nonconvex optimization has wide applications, such
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as power allocation in wireless adhoc networks [1], distributed
clustering [2], dictionary learning [3], and empirical risk
minimization [4].

The problem (1) has been extensively studied in the litera-
ture, e.g., [S]-[11], just to name a few. Due to nonconvexity,
these studies typically showed that first-order stationary points
can be found at a sublinear convergence rate. For example,
[5]-[9] showed that first-order stationary points can be found
with an O(1/T) convergence rate, where T is the total
number of iterations. However, the algorithms proposed in
these studies require significant amount of data exchange as
agents iteratively communicate with neighbors. Noting that
communication bandwidth and power are limited, it is vital
to propose communication-efficient distributed algorithms. In
this paper, we propose distributed algorithms with compressed
communication to improve communication efficiency.

A. Related Works and Motivation

It is straightforward to combine existing distributed algo-
rithms and communication compression directly. However,
such a simple strategy does not converge to the accurate
solution due to the compression error, and even may lead
to divergence as the compression error would accumulate.
Examples have been provided in [12], [13] to illustrate this.
Therefore, communication compression in distributed algo-
rithms has gained considerable attention recently.

When each local cost function is convex, various distributed
algorithms with compressed communication have been pro-
posed. For example, [14], [15] used unbiased compressors
with bounded relative compression error to design distributed
stochastic gradient descent (SGD) algorithms; [16] employed
biased but contractive compressors to design a distributed SGD
algorithm; [17] and [18], [19] utilized unbiased compressors
to respectively design distributed gradient descent and primal—
dual algorithms; [20] and [21] made use of the standard uni-
form quantizer to respectively design distributed subgradient
methods and alternating direction method of multipliers ap-
proaches; [22], [23] and [24] respectively adopted the unbiased
random and adaptive quantization to design distributed pro-
jected subgradient algorithms; [25] and [26]-[29] exploited the
standard uniform quantizer with dynamic quantization level
to respectively design distributed subgradient and primal—dual
algorithms; and [30] applied the standard uniform quantizer
with a fixed quantization level to design a distributed gradient
descent algorithm. The compressors mentioned above can be
unified into three general classes. Specifically, [31] proposed
a wider class of compressors with bounded relative compres-
sion error which covers the compressors used in [13]-[19];



[32] considered a general class of compressors with globally
bounded absolute compression error which accommodates the
compressors used in [20]-[24]; and [33] studied a general class
of compressors with locally bounded absolute compression
error which contains the compressors used in [12], [25]-[30].
These studies also analyzed the convergence properties of the
proposed algorithms. Especially, some of them showed that the
achieved convergence rates under compressed communication
are comparable to and even match those under exact communi-
cation. For instance, linear convergence was achieved in [18],
[19], [26]-[29], [31], [33] under the standard strong convexity
assumption.

While various algorithms with compressed communication
have been designed for distributed convex optimization, com-
munication compression for distributed nonconvex optimiza-
tion is relatively less studied because the analysis is more
challenging due to the nonconvexity. Moreover, when con-
sidering distributed nonconvex optimization, most of existing
distributed algorithms with compressed communication are
SGD algorithms although different types of compressors have
been used. For instance, [12] used the modular arithmetic for
communication quantization (Moniqua); [34] used unbiased
compressors with bounded relative or absolute compression
error; [35]-[38] used biased but contractive compressors;
[39] used unbiased compressors with bounded absolute com-
pression error. These studies also analyzed the convergence
properties of the proposed algorithms. For instance, [12],
[34]-[38] showed that the proposed SGD algorithms with
compressed communication achieve linear speedup conver-
gence rate O(1/v/nT), which is the same as that achieved
by distributed SGD algorithms with exact communication.
Observing this, one core theoretical question arises.

(Q1) Under compressed communication, can first-order
stationary points be found with the well-known O(1/T)
convergence rate?

On the other hand, noting that it has been shown in [9],
[40], [41] that global optima of nonconvex optimization can be
linearly found if the global cost function satisfies the Polyak—
Lojasiewicz (P-L) condition, another core theoretical question
arises.

(Q2) Under compressed communication, can global optima
be linearly found when the global cost function satisfies the
P—L condition?

B. Main Contributions

In this paper, we provide positive answers to the above
questions. More specifically, the contributions of this paper
are summarized as follows.

(C1) We first use a general class of compressors with
bounded relative compression error, which incorporates var-
ious commonly used compressors including unbiased com-
pressors and biased but contractive compressors, to design a
communication-efficient distributed algorithm (Algorithm 1).
This algorithm only requires each agent to communicate one
compressed variable with its neighbors per iteration. We show
that this compressed communication algorithm has compara-
ble convergence properties as state-of-the-art algorithms with

exact communication. Specifically, we show in Theorem 1 that
it can find a first-order stationary point with the well-known
O(1/T) convergence rate; thus, (Q1) is answered. Moreover, if
the global cost function satisfies the P-£ condition, we show
in Theorem 2 that it can find a global optimum with linear
convergence rate; thus, (Q2) is answered.

(C2) We then propose an error feedback based compressed
communication algorithm (Algorithm 2) for biased compres-
sors particularly. This algorithm can correct the bias induced
by biased compressors under the cost that it requires each
agent to communicate two compressed variables with its
neighbors per iteration. We show in Theorems 3 and 4 that
this algorithm has similar convergence properties as the first
algorithm, which respectively answer (Q1) and (Q2).

(C3) We finally use two general classes of compressors
with globally and locally bounded absolute compression er-
ror, which cover various commonly used compressors in-
cluding unbiased compressors with bounded variance, ran-
dom/adaptive/uniform quantization, and even 1-bit binary
quantizer, to design a communication-efficient distributed al-
gorithm (Algorithm 3). This algorithm also only requires
each agent to communicate one compressed variable with its
neighbors per iteration. When the compressors have globally
bounded absolute compression error, we show in Theorems 5
and 6 that this algorithm has similar convergence properties
as the first algorithm, which respectively answer (Q1) and
(Q2). When the compressors have locally bounded absolute
compression error, we show in Theorem 7 that this algorithm
can find a global optimum with linear convergence rate if the
global cost function satisfies the P-L condition and a lower
bound on the corresponding P-t. constant is known a priori,
which answers (Q2).

In summary, the main contribution of this paper is to pro-
pose three distributed primal—dual algorithms with compressed
communication for distributed nonconvex optimization, which
have comparable convergence properties as state-of-the-art
algorithms with exact communication. This is a significant
theoretical development, and to the best of our knowledge,
it is the first time to achieve this.

C. Outline

The rest of this paper is organized as follows. Section II in-
troduces some preliminaries. Section III presents the problem
formulation. Sections IV-VI provide three communication-
efficient distributed algorithms and analyze their convergence
properties. Section VII gives numerical simulations. Finally,
Section VIII concludes this paper.

Notations: Ny denotes the set of nonnegative integers. [n]
denotes the set {1,...,n} for any positive constant integer
n. || - ||, represents the p-norm for vectors or the induced p-
norm for matrices, and the subscript is omitted when p = 2.
Given a differentiable function f, Vf denotes its gradient.
1, (0,) denotes the column one (zero) vector of dimension
n. I, is the n-dimensional identity matrix. col(z1,...,z2x) is
the concatenated column vector of vectors z; € R% ., i € [k].
Given a vector [z1,...,z,]" € R™, diag([z1,...,,]) is a
diagonal matrix with the ¢-th diagonal element being x;. The



notation A @ B denotes the Kronecker product of matrices A
and B. Given two symmetric matrices M and N, M > N
means that M — N is positive semi-definite. null(A) is the
null space of matrix A. p(-) stands for the spectral radius for
matrices and ps(-) indicates the minimum positive eigenvalue
for matrices having positive eigenvalues. For any square matrix
A, denote ||z|%4=2T Az.

II. PRELIMINARIES

In this section, we briefly introduce algebraic graph theory
and the P-L. condition.

A. Algebraic Graph Theory

Let G = (V,&,A) denote a weighted undirected graph
with the set of vertices (nodes) V = [n], the set of links
(edges) £ C V x V, and the weighted adjacency matrix
A = AT = (a;;) with nonnegative elements a;;. A link of
G is denoted by (i,5) € & if a;; > 0, ie., if vertices %
and j can communicate with each other. It is assumed that
a; = 0 foralie [n. Let N; = {j € [n] : a;; > 0}
and deg; = ) a;; denote the neighbor set and weighted

i=1

J:
degree of vertex ¢, respectively. The degree matrix of graph

G is Deg = diag([degy, - - ,deg,]). The Laplacian matrix is
L = (L;;) = Deg —A. A path of length k between vertices %
and j is a subgraph with distinct vertices ig = %,...,i; =J €
[n] and edges (i;,i;41) € £, § =0,...,k— 1. An undirected
graph is connected if there exists at least one path between
any two distinct vertices.

B. Polyak—tLojasiewicz Condition

Let f(x) : RY +— R be a differentiable function. Let
X* = argmin g, f(x) and f* = min,cga f(2). Moreover,
we assume that f* > —oo.

Definition 1. The function f satisfies the Polyak—Lojasiewicz
(P-L) condition with constant v > O if

SIVI@IP 2 v(f(@) - 1), VaeRL @)

It is straightforward to see that every (essentially or weakly)
strongly convex function satisfies the P-L. condition. The P-
L condition implies that every stationary point is a global
minimizer. But unlike the (essential or weak) strong convexity,
the P-L condition alone does not imply convexity of f.
Moreover, it does not imply that the global minimizer is unique
either. In fact, P-L. condition generalizes strong convexity to
nonconvex functions. The function f(z) = z? + 3sin?(z)
given in [40] is an example of a nonconvex function satisfying
the P-t condition with v = 1/32. Moreover, it was shown in
[42] that the loss functions in some applications satisfy the P-L
condition in the local region near a local minimum. Moreover,
[43] proved that the cost function of the policy optimization
for the linear quadratic regulator problem is nonconvex and
satisfies the P-L condition.

III. PROBLEM FORMULATION

In this section, we introduce three general classes of com-
pressors and provide the assumptions on the communication
network and cost functions.

A. Compressors

To improve communication efficiency, we consider the sce-
nario that the communication between agents is compressed.
Specifically, we consider a class of compressors with bounded
relative compression error, and two classes of compressors
respectively with globally and locally bounded absolute com-
pression error satisfying the following assumptions.

Assumption 1. The compressor C : R? s R? satisfies

3)

for some constants ¢ € (0,1] and r > 0. Here E¢[-] denotes
the expectation over the internal randomness of the stochastic
compression operator C.

Be[| 92— ] < - @), v e B,

From (3), we have

Bellc(w) — ol) = Be |- (42 - o) + ¢~ e ]
e
< rollz|?, VCZG R,

<27Bc | o] +20 - m2e?

“4)

where 79 = 2r%(1 — ¢) + 2(1 — r)2. Therefore, the class
of compressors satisfying Assumption 1 is the same as that
used in [31]. As explained in [31], the class of compressors
satisfying Assumption 1 is broad. It incorporates all the unbi-
ased compressors with bounded relative compression error!
and biased but contractive compressorsz, such as random
quantization and sparsification, which are commonly used in
the literature, e.g., [14]-[19], [34]-[38], [44]. It also includes
some biased and non-contractive compressors, such as the
norm-sign compressor. Moreover, it is straightforward to check
that the class of compressors satisfying Assumption 1 also
covers the three classes of biased compressors considered in
[13]. In other words, Assumption 1 is weaker than various
commonly used assumptions for compressors in the literature.

Assumption 2. The compressor C : R? — R satisfies

Ec[|C(z) — z|2] < C, Vz € RY, (5)

for some real number p > 1 and constant C > 0.

The same class of compressors satisfying Assumption 2 has
also been used in [32], which incorporates the deterministic
quantization used in [20]-[22], [24] and the unbiased random
quantization used in [22], [23], [34], [39].

Assumption 3. The compressor C : R? — R? satisfies

IC(z) — zll, < (1 - ), Vo€ {z eR?: |lzfl, <1}, (6)

'A compressor C : R? — R¢ is unbiased with bounded relative compres-
sion error (or just unbiased for simplicity) if for all 2 € R, E¢[C(x)] = z
and there exists a constant C' > 0 such that E¢[||C(z) — z||?] < C||z]|2.

2A compressor C : R% +— R< is contractive if there exists a constant
¢ € (0,1] such that Ec[|C(x) — /|2] < (1 - ¢)|«]]2, Vz € RY.



for some real number p > 1 and constant ¢ € (0, 1].

The same class of compressors satisfying Assumption 3
has also been used in [33], which covers the standard uni-
form quantizers with dynamic and fixed quantization levels
respectively used in [25]-[29] and [30], and the Moniqua used
in [12]. Moreover, as pointed out in [33], the 1-bit binary
quantizer satisfies Assumption 3. The difference between
Assumptions 2 and 3 is that the former is a global assumption
while the latter is a local assumption. It should be pointed out
that all Assumptions 1-3 do not require the compressors to be
unbiased. Note that the inequalities in Assumptions 1-3 are
different, and no one can imply another. Therefore, the three
types of compressors are different from each other, and no one
type is more restrictive than or can imply another. Moreover,
the intersection of each pair of the three types of compressors
is non-empty. For example, as explained in Simulations, the
norm-sign compressor satisfies both Assumptions 1 and 3.
Therefore, the three types of compressors are not mutually
exclusive.

The above three general classes of compressors cover most
of existing compressors used in machine learning and signal
processing applications, which substantiate the generality of
the results later in this paper.

B. Communication Network and Cost Functions

The following assumptions for the problem (1) are made.

Assumption 4. The underlying communication network is
modeled by an undirected and connected graph G.

Assumption 5. The minimum function value of the optimiza-
tion problem (1) is finite.

Assumption 6. Each local cost function f;(x) is smooth with
constant Ly > 0, i.e., it is differentiable and

IV£i(x) = Vi)l < Lylle = yll, Yo,y e R (D)

Assumption 7. The global cost function f(x) satisfies the P-L
condition with constant v > .

Assumptions 4-6 are standard in the literature to guarantee
the well-known O(1/T') convergence rate for distributed algo-
rithms finding the first-order stationary points for nonconvex
optimization problems. Assumption 7 is weaker than the as-
sumption that the global or each local cost function is strongly
convex, but it still can guarantee linear convergence. Note that
the convexity of the cost functions and the boundedness of
their gradients are not assumed. We also make no assumptions
on the boundedness of the deviation between the gradients of
local cost functions. In other words, we do not assume that
L3 IV fil@) =V f(2)]|? is bounded. Moreover, we do not
assume that the optimal set is a singleton or finite set either.

IV. COMPRESSED COMMUNICATION ALGORITHM:
BOUNDED RELATIVE COMPRESSION ERROR

In this section, we use the compressors with bounded
relative compression error to design a communication-efficient
distributed algorithm and analyze its convergence properties.

A. Algorithm Description

To solve (1), various distributed algorithms have been
proposed. For example, [9] proposed the following distributed
primal—dual algorithm:

n
ikl = Tif — U(a Z Lijxjp + Buik + sz'(%,k)),
=1

(8a)

=vik + 1B Z Lijzjk,
=1

Vi, k+1 (8b)

where «, 3, and 7 are positive algorithm parameters, and
Tik € R is agent ¢’s estimation of the solution to the problem
(1) at the k-th iteration.

To implement the algorithm (8), at each iteration each agent
J needs to exactly communicate the vector-valued variable x;
with its neighbors, which requires significant amount of data
exchange especially when the dimension d is large. However,
in practice communication bandwidth and power are lim-
ited, which motivates this paper to consider communication-
efficient distributed algorithms. We use communication com-
pression to improve communication efficiency. As mentioned
in Introduction, directly combining the algorithm (8) and
communication compression, i.e., using the compressed vari-
able C(z; ) to replace z;j in (8), does not work due to
the compression error. To reduce the compression error, an
auxiliary variable a;; € R? is introduced. The difference
2k — ;) instead of x;; is compressed and communicated,
and then is added back to a; j, for replacing x; ; in (8). Then,
we have the following algorithm

Tikt1 = Tif — 77(04 Z L& + Bvik + Vfi(ffi,k))7

i=1
(9a)
Vi k41 = Uik + 1B Z L%k, (9b)
i=1
where
ik = aik +C(Tig — Qi) (10)

Although in the algorithm (9), the compressor error can
be reduced, at each iteration each agent j still needs to
exactly communicate the vector-valued variable a; . due to the
summation term Z?zl L;j;a; y inside (9). Thus, the algorithm
(9) does not enjoy the benefits of compression. To overcome
that, another auxiliary variable b;; € R? is introduced to
calculate Z?:l L;ja; . The proposed algorithm is presented
in pseudo-code as Algorithm 1, which is a communication-
efficient algorithm since each agent j only communicates the
compressed variable g; ;, with its neighbors. Noting that a; o =
bi,0 = 04, by mathematical induction, it is straightforward to
check that b; , = a; j — Z?Zl Lijajk, Vi € [n]. Then, (11c)
and (11d) respectively can be rewritten as (9a) and (9b). The
same idea to use auxiliary variables to reduce the compression
error and to implement communication compression has also
been used in the literature, e.g., [18], [31].

To end this section, we would like to briefly explain why the



Algorithm 1

1: Input: positive parameters «, /3, 1, and 1.

2: Initialize: Ti0 € Rd, a; o = bi’() = Vi,0 = 04, and qi,0 =
C(.Z'i,o), Vi € [n]

3: for k=0,1,... do

4. for ¢=1,... n in parallel do
5: Broadcast ¢; 1 to N; and receive g, from j € N
6: Update

Qi k1 = Qi ks + Vi ks (11a)

bik+1 = big + ¢<qi,k - Z Liij,k)7 (11b)
=1

n
Ti k1 = Tk — N (ai,k — b+ Z Liij,k)
j=1
—n(Bvix + Vfi(zir)),
n
Vi k1 = Vi + 10 (ai,k — bk + Z Liqu),
j=1

(11d)
(11e)

(11c)

Gik+1 = C(Ti k41 — Qi k41)-

7:  end for
8: end for
9: Output: {z;x}.

compression error is reduced in Algorithm 1 when the class of
compressors satisfying Assumption 1 is used. From (10) and
(4), we have

Ec[lzix — i x)*] = Ecllzix — aik — C(xik — ain)l]

< roEe[||mix — airl?]: (12)

From the proof of Theorem 1 given in Appendix B, we know
that Y"1, Ee[||z; 1 —a; 1||?] converges to zero. Therefore, the
compression error is reduced.

B. Convergence Analysis

In this section, we provide convergence analysis for both
scenarios without and with Assumption 7. We first have the
following convergence result.

Theorem 1. Suppose that Assumptions 1 and 4-6 hold. Let
{zik} be the sequence generated by Algorithm 1 with o =
k18, B > ko, n € (0,k3), and ¥ € (0,1/r], where k1, Ko,
and k3 are positive constants given in Appendix B. Then, for
any T € Ny,

T n
DD Eellwik — @l + [V (@0)IP] = O(1),  (13a)
k=0 i=1

Eclf(zr) — 7] = O(1),

where Ty, = L3 @ .

(13b)

Proof: We use Lyapunov analysis to prove this theorem.
More specifically, we first appropriately design a function Vj,
which contains terms >, Ec[||z; x —Zx|?], Ec[f(Zx)— f*],

and Y7 | Ec[||z;,x — aix||?] describing consensus, optimiza-
tion, and compression errors, respectively. We then prove
that E¢[V}] is non-increasing by showing that the difference
Ec¢[Vi, — Vit1] can be lower bounded by >0 | Ec[||zir —
|| + |k — aikl* + [[VF(Zk)]|?]. We finally show that
Vi is non-negative and get (13a)—(13b) by summarizing the
inequalities containing the difference Ec[V; — Vj41]. The
explicit expressions of the Lyapunov function V}, and the right-
hand sides of (13a)—(13b), and the detailed proof are given in
Appendix B. [ ]

We have several remarks on Theorem 1. Firstly, from
(13a), we know that minke[T]{Z?zl EC[”-’Ei,k — ijQ +
IV f(zk)||?]} = O(1/T). In other words, Algorithm 1 finds a
first-order stationary point with the well-known rate O(1/7),
which is the same as that achieved by distributed algorithms
with exact communication in the literature, e.g, [5]-[9]. Sec-
ondly, from (13b), we know that the cost difference between
the global optimum and the resulting stationary point is
bounded. Thirdly, it should be pointed out that the settings on
the parameters «, 3, and 7 are just sufficient conditions. With
some modifications of the proofs, other forms of settings for
these parameters still can guarantee the same type of conver-
gence result. Fourthly, observe that the definitions of «; and ko
given in Appendix B are independent of the parameters related
to the compressors. Therefore, the choice of the parameters o
and 3 is independent of the compressors. Finally, the proof
of Theorem 1 is inspired by the proof of Theorem 1 in [9].
However, due to the compressed communication, a different
Lyapunov function is appropriately designed and the details
are also different.

Then, with Assumption 7, the following result states that
Algorithm 1 can linearly find a global optimum.

Theorem 2. Suppose that Assumptions 1 and 4-7 hold. Let
{zi 1} be the sequence generated by Algorithm 1 with the same
«, B, n, and ¢ given in Theorem 1. Then, for any k € N,

> Eelllwik — 2kl + f(@e) — f1=0((1 - &F), (14)

i=1

where € is a constant in (0,1) given in Appendix C.

Proof : This proof is based on the proof of Theorem 1. From
the P-t condition, we know that Ec[||Vf(Zx)|?] can be
lower bounded by E¢[f(Zx) — f*], which further implies the
difference E¢[Vjy — Vj41] can be lower bounded by E¢[V%].
Therefore, E¢[V}] exponentially decreases to zero. Thus, (14)
holds. The explicit expression of the right-hand side of (14)
and the detailed proof are given in Appendix C. [ ]

We have several remarks on Theorem 2. Firstly, observe that
Algorithm 1 uses the same parameters for the cases without
and with the P-L condition in Theorems 1 and 2, respectively.
As a result, it is not needed to check the P-t condition
before implementing Algorithm 1, which is important since
it is normally difficult to check that condition. Secondly,
compared to [31] which used the same type of compressors
and established linear convergence under the condition that
the global cost function is strongly convex, we show linear
convergence under the weaker P-L. condition and only use a



Algorithm 2
1: Input: positive parameters «, 3, 1, 1, and o.
2: Initialize: z; 0 € RY, a;0 = b; o = €i0 = vio = 04, and
G0 = Gio = C(xi’0)7 Vi € [n}

3: for k=0,1,... do

4. for ¢ =1,... n in parallel do

5: Broadcast ¢; 5 and §;  to N; and receive g, and
4;, from j € V.

6: Update

Qi k+1 = Qi k + VG5 ks (15a)

n
bt = big + (@ = D Liara),  (15b)
=1

n
Tit1 = Tik — 1 (azk —bigt+ Y Lij@jk)
j=1

—n(Bvik + Vfi(zir)), (15¢)
Vi k1 = ik + 10 (ai,k —bik+ Lijéj,k),
=1
(15d)
Gik+1 = C(Ti k1 — Qi ky1)s (15¢)
€iktl = OCk + Tik — ik — ik, (151)
Gik+1 = C(0€; k41 + Ti k1 — Git1)- (15g)

7.  end for
8: end for
9: Output: {z; 1 }.

half number of compression and communication operations
per iteration since in the algorithm proposed in [31] each
agent needs to communicate two compressed variables with its
neighbors. Thirdly, compared to [18], [19] which used unbi-
ased compressors with bounded relative compression error and
established linear convergence under the condition that each
local cost function is strongly convex, we use the more general
compressors and the weaker P-L condition to show linear
convergence. Lastly, compared to [17] which used unbiased
compressors with bounded relative compression error but only
achieved sublinear convergence under the condition that each
local cost function is strongly convex, we not only use the
more general compressors and the weaker P-L. condition, but
also show strictly faster convergence.

V. ERROR FEEDBACK BASED COMPRESSED
COMMUNICATION ALGORITHM: BOUNDED RELATIVE
COMPRESSION ERROR

In this section, we extend Algorithm 1 to error feedback
version for biased compressors particularly.

A. Algorithm Description

The error feedback based communication-efficient dis-
tributed algorithm is presented in pseudo-code as Algorithm 2.
Without ambiguity, we denote

Tik = Qi k + Qi ks (16)

then (15¢) and (15d) respectively can be written as (9a) and
(9b) since b; ) = a; ) — Z?:1 Lijajk, Vi € [n]. Therefore,
Algorithm 2 also is a communication-efficient extension of the
distributed primal—dual algorithm (8).

Compared to Algorithm 1, Algorithm 2 has two new vari-
ables §; and e;j which are used to estimate the biased
compression error and to accumulate the biased compression
errors, respectively. Then each agent can use §; ;. to correct the
bias induced by the biased compressors®. However, compared
to Algorithm 1, there are twice number of compression and
communication operations per iteration in Algorithm 2.

B. Convergence Analysis

Similar to Theorem 1, we first have the following sublinear
convergence result for Algorithm 2 without Assumption 7.

Theorem 3. Suppose that Assumptions 1 and 4-6 hold.
Let {z; 1} be the sequence generated by Algorithm 2 with
a=r1f B> Ky ne(0,k3), o€ (0,k0) and ¢ € (0,1/7],
where k1, ko and kg, ks are positive constants given in
Appendices B and D, respectively. Then, for any T € Ny,

T n
DO Eelllmn — @l + V(@) = O(1),  (17a)
k=0 i=

Ec[f(zr) — f*] = O1).

Proof: This proof is similar to the proof of Theorem 1,
but uses a different Lyapunov function Wj. Due to space
limitations, the explicit expressions of the Lyapunov function
Wi, and the right-hand sides of (17a)—(17b), and the detailed
proof are given in the arXiv version [45]. [ ]

(17b)

Similar to Theorem 2, we then have the following linear
convergence result for Algorithm 2 with Assumption 7.

Theorem 4. Suppose that Assumptions 1 and 4-7 hold. Let
{zir} be the sequence generated by Algorithm 2 with the
same «, B, n, o, and ¢ given in Theorem 3. Then, for any
k € N,

> Eelllwik — 2kl + f(@k) — £ = O((1 — &),

i=1

(18)

where € is a constant in (0,1) given in Appendix E.

Proof: This proof is similar to the proof of Theorem 2,
but uses the Lyapunov function Wj, as used in the proof of
Theorem 3. Due to space limitations, the expression of the
right-hand side of (18) and the detailed proof are given in the
arXiv version [45]. |

VI. COMPRESSED COMMUNICATION ALGORITHM:
BOUNDED ABSOLUTE COMPRESSION ERROR

In this section, we use the compressors with bounded ab-
solute compression error to design a communication-efficient
distributed algorithm and analyze its convergence properties
in various setups.

3For unbiased compressors, it is unnecessary to consider error feedback
since Ec[e; ;] = 0g4.



Algorithm 3

1: Input: positive parameters «, /3, 1, and a positive scaling
sequence {sy}.

2: Initialize: Ti0 € Rd, .’f?iyfl = Yi—-1 = Vi = 04, and
4,0 = C(xio/s0), Vi € [n].

3: for k=0,1,... do
4. for ¢=1,... n in parallel do
5: Broadcast ¢; 1, to NV; and receive ¢; 5 from j € N.
6: Update
ik = Tjp—1 + SKGik, (192)
n
Yik = Yik—1 + SkGik — Sk Z Lijqjr, (19b)
=1
Tigt1 = Tik — N Tik — Yik)
—n(Bvik + Vfi(zik)), (19¢)
Vikt1 = Vik +08(Zik — Yik), (194d)
Gik+1 = C((Ti k41 — Tik)/Skt1)- (19e)
7:  end for
8: end for

9: Output: {z;x}.

A. Algorithm Description

The communication-efficient distributed algorithm is pre-
sented in pseudo-code as Algorithm 3.

By mathematical induction, it is straightforward to check
that y; 1, = Ti — 2?21 L&, Vi € [n]. Therefore, (19¢)
and (19d) can be rewritten as (9a) and (9b), respectively.
Therefore, Algorithm 3 also is a communication-efficient
extension of the distributed primal—dual algorithm (8). More-
over, same as Algorithm 1, in Algorithm 3 each agent only
communicates one compressed variable with its neighbors.
The difference between Algorithms 1 and 3 is that they use
different types of compressors.

B. Convergence Analysis

We first analyze the performance of Algorithm 3 when
the class of compressors satisfying Assumption 2 is used.
Before stating the convergence results, we would like to briefly
explain why this algorithm works. From (19a), (19e), and (5),
we have

Ec(l|lzik — &kl

= Ec[llzik — Zik-1 — skC(xik — Eip—1)/5x)[3)]

= Eclsill(zik — Zik-1)/sk — C((ik — Eip—1)/51)|7)]
< Csi. (20)

If we let s; exponentially decrease to zero, then the error
caused by the compressed communication is neglectable. In
this case, Algorithm 3 using the second class of compressors
can have comparable convergence properties as the corre-
sponding algorithm with exact communication, i.e., (8).

Similar to Theorem 1, we have the following sublinear
convergence result.

Theorem 5. Suppose that Assumptions 2 and 4-6 hold.
Let {x; 1} be the sequence generated by Algorithm 3 with
a = k13, B > ko, n € (0,R3), and s, = soy*, where
k1 and ko are positive constants given in Appendix B, kK3
a positive constant given in Appendix F, sqg is an arbitrary
positive constant, and 7y is an arbitrary constant in (0,1).
Then, for any T € Ny,

T n
DO Eelllmn — @l + V(@) = O(1),  (2la)

k=0 i=1

Ec[f(zr) — f*] = O1).

Proof: This proof is similar to the proof of Theorem 1,
but uses the non-negative function U which contains terms
describing consensus and optimization errors and is given in
Appendix B. We show that the difference E¢[Uy — Ug1]
can be lower bounded by >°"" | Ec[||z;x — T — ||z —
#ikl? + V(@)% From (20) and s; = soy*, we can
get (21a)—-(21b) by summarizing the inequalities containing
the difference E¢[Uy — Uky1]. Due to space limitations, the
explicit expressions of the right-hand sides of (21a)—(21b) and
the detailed proof are given in the arXiv version [45]. [ ]

(21b)

Similar remarks as those after Theorem 1 are valid for The-
orem 5. Moreover, we would like to point out that the choice
of the parameter v is also independent of the compressors
since the definition of K3 given in Appendix F is independent
of the parameters related to the compressors.

Similar to Theorem 2, we then have the following linear
convergence result for Algorithm 3 when the class of com-
pressors satisfying Assumption 2 is used.

Theorem 6. Suppose that Assumptions 2 and 4-7 hold. Let
{4 i } be the sequence generated by Algorithm 3 with the same
«, B, n, and sy given in Theorem 5. Then, for any k € N,

> Eelllwik — 2l + f(@) — f]=0((1 - &%), (22)

i=1

where € is a constant in (0,1) given in Appendix G.

Proof: This proof is based on the proof of Theorem 5.
From the P-£. condition, we know that E¢[|V f(Zx)||?] can
be lower bounded by Ec¢[f(Zx) — f*], which further implies
the difference Ec[U; — Ug41] can be lower bounded by
Ec[Ux—>"1, l|lzi s — i k|/*]. Then, combining this, (20), and
sk = soy*, we can get that E¢[U}] exponentially decreases to
zero. Thus, (22) holds. Due to space limitations, the explicit
expression of the right-hand side of (22) and the detailed proof
are given in the arXiv version [45]. |

Compared to [32] which used the same class of compressors
satisfying Assumption 2, Theorem 6 shows that a global
optimum can be precisely found with a linear convergence rate
under the P-L condition. In contrast, although [32] assumed
the stronger strong convexity assumption and also showed that
convergence rate is linear, the parallel algorithms proposed in
[32] only converged to a neighbor of the unique optimal point.

We also have the following linear convergence result for
Algorithm 3 when the class of compressors satisfying Assump-
tion 3 is used.



Theorem 7. Suppose that Assumptions 3—7 hold and a lower
bound on the P-L. constant v is known in advance. Let {z; ;}
be the sequence generated by Algorithm 3 with a = k13,
B > Ko, n € (0,k3), and s, = soy*, where Kk and ko are
positive constants given in Appendix B, k3, so, and v are
positive constants given in Appendix H with v € (0, 1). Then,
for any k € Ny,
n
> lwin = Zell* + f(@) = £7) = O(Y).

=1

(23)

Proof : This proof also uses the non-negative function Uy as
used in the proof of Theorem 5. Note that the inequality (6)
in Assumption 3 only holds locally. We use mathematical
induction to prove that max;epy [|(zix — Zik—1)/skl2 < 1
and Uy, /s? is globally bounded. Thus, (23) holds. Due to space
limitations, the explicit expression of the right-hand side of
(23) and the detailed proof are given in the arXiv version
[45]. ]

We have several remarks on Theorem 7. Firstly, compared to
Theorems 2, 4, and 6, Theorem 7 needs a lower bound on the
P-t constant v to be known in advance, which is used to de-
sign the parameters sy and ~ as shown in Appendix H. This is
a potential drawback since this constant is normally unknown
due to the difficulty to check the P-L condition. However,
for strongly convex cost functions, this is not a drawback
since if a function is strongly convex with convex parameter v,
then it also satisfies the P-L. condition with the same constant
v. Secondly, linear convergence has also been established in
[33] which used the same type of compressors. However, [33]
assumed that each local cost function is strongly convex, which
is stronger than the condition that the global cost function
satisfies the P-L. condition as used in Theorem 7, and required
that the absolute compression error satisfies an inequality
determined by the number of agents and the communication
network, which is not needed in Theorem 7. Moreover, [33]
required an unpractical condition that the unique optimal point
needs to be known a priori to design algorithm parameters,
which is a potential drawback. Thirdly, compared to [26]-
[29] which used the standard uniform quantizer with dynamic
quantization level and established linear convergence under
the condition that each local cost function is strongly convex,
we use the more general compressors and the weaker P—L
condition to show linear convergence. Finally, compared to
[30] which used the standard uniform quantizer with fixed
quantization level and established linear convergence under
the assumption that each local cost function is quadratic and
the global cost function is strongly convex, we not only use the
more general compressors but also consider the more general
nonconvex functions satisfying the weaker P-L. condition.

To end this section, we would like to clarify that al-
though this paper considers three different general classes
of compressors, it is not this paper’s goal to study which
specific compressor or general class of compressors has better
performance. Moreover, although this paper proposes three
communication-efficient distributed algorithms, it is not this
paper’s goal either to investigate which algorithm has better
performance.

VII. SIMULATIONS

In this section, we verify and illustrate the theoretical results
through numerical simulations. We consider the nonconvex
distributed binary classification problem as studied in [8], [9],
[11], which is formulated as the optimization problem (1) with
each component function f; being given by

my

filw) = - Z ((1 —ya)log (1 + e””TZ“>

m
=1

o (14 7)) 4 Zd: Aufe?

Yir 10g € pet 1 +IU[IE]%7
where m = E?:l m;, m; is the number of observations held
privately by agent ¢, z;; € RP is the [-th observation with label
yi € {0,1} owned by agent i, A and p are regularization
parameters, and [z], is the s-th coordinate of z € R?. All
settings for cost functions and the communication graph are
the same as those described in [8], [9]. Specifically, n = 20,
d = 50, m; = 200, A = 0.001, and px = 1. The graph used in
the simulation is the random geometric graph and the graph
parameter is set to be 0.5. We independently and randomly
generate m data points.

We consider the following five compressors:

o Unbiased [-bits quantizer [18]
2171
ign(x) o L 2] + wJ ,

2]l oo

X
Crfe) = 12le

where sign(-), ||, and |-| are the element-wise sign,
absolute, and floor functions, respectively, o denotes the
Hadamard product, and w is a random perturbation
vector uniformly sampled from [0, 1]¢. This compressor
is unbiased and satisfies Assumption 1 with r = 1 4 rq,
@ =1/(1+71), and r; = d/4'. As pointed out in [33],
transmitting Cy(z) needs (I + 1)d + by bits if a scalar
can be transmitted with by bits with sufficient precision,
since only ||z||co, sign(z), and the positive integer in the
bracket need to be transmitted. In this section, we choose
[ =2 and b; = 64.
o Greedy (Top-k) sparsifier [13]

k
Ca(w) = [aliei,
s=1
where {e;,...,eq} is the standard basis of R? and
i1,...,% are the indices of largest k£ coordinates in mag-

nitude of x. This compressor is biased but contractive.
Therefore, it satisfies Assumption 1 with » = 1 and
¢ = k/d. Moreover, it also satisfies Assumption 3 with
p > 2 and ¢ = k/d. Transmitting C2(x) needs kb; bits
since only k scalars need to be transmitted. In this section,
we choose k = 10.

o Norm-sign compressor

Cs(x) = % sign(z).

This compressor is biased and non-contractive, but satis-
fies Assumption 1 with r = d/2 and ¢ = 1/d?, see [31].
It also satisfies Assumption 3 with p = oo and ¢ = 0.5.



Transmitting C3(x) needs 2d + by bits since only ||z/o
and sign(x) need to be transmitted.

o Standard uniform quantizer

X ]-d
Ci(x) = A = + 2]

where A is a positive integer. This compressor satisfies
Assumption 2 with p = oo and C = A2 /4. Moreover,
it also satisfies Assumption 3 with p = co and ¢ = 0.5
when A = 1. Transmitting C4(z) needs dbs bits if by
bits are allocated to transmit an integer. In this section,
we choose A =1 and by = 8.

« 1-bit binary quantizer [33]

Cs(w) = col(Q1([z]h), -, Q1 ([z]a)),

where Q1 ([z]s) = 0.5 for [z]; > 0 and Q1 ([z]s) = —0.5
otherwise. This compressor satisfies Assumption 3 with
p = oo and ¢ = 0.5. Transmitting Cs(z) needs d bits
since for each coordinate only two symbols needs to be
transmitted.

We implement Algorithm 1 using C;—C3, Algorithm 2 using
Cy and Cs3, and Algorithm 3 using Co—Cs. Note that, to
the best of our knowledge, in the literature there are no
other similar communication-efficient distributed algorithms
for distributed nonconvex optimization as ours. Therefore,
we only compare the proposed communication-efficient dis-
tributed algorithms with their uncompressed counterpart, i.e.,
the distributed primal—dual algorithm (8), which is denoted as
DPDA. It is straightforward to see that each agent sends db;
bits per iteration when implementing DPDA. All the hyper-
parameters used in the experiment are tuned manually and
given in TABLE I in the arXiv version [45] due to space
limitations.

108 - T T
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. —-—- Algorithm 1-C;
10° Ry 1 e Algorithm 1-Cy | |
______________ Algorithm 1-C3
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Fig. 1: Evolutions of P(T) with respect to the number of
iterations.
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Fig. 2: Evolutions of P(T) with respect to the number of
transmitted bits.
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Fig. 3: Transmitted bits for different algorithm and compressor
combinations to reach P(T") < 10730,

to measure the performance of each algorithm. We plot the
convergence of P(T") with respect to both number of iterations
and bits transmitted between two neighbor agents for the above
algorithm and compressor combinations with the same initial
condition, as shown in Fig. 1 and Fig. 2, respectively. More-
over, the comparison of transmitted bits for different algorithm
and compressor combinations to reach P(T) < 10730 is
provided in Fig. 3. We highlight the following observations:

o From Fig. 1 we can see that all of the algorithm and
compressor combinations have comparable convergence
speeds as the corresponding algorithm with exact com-
munication, i.e., DPDA, which is consistent with the
theoretical results. Especially, Algorithm 1-C; and DPDA
have almost the same convergence speed .

o From Fig. 1 we can also see that Algorithm 1-C35 (Al-
gorithm 2-C3) has almost the same convergence speed
as Algorithm 1-Cy (Algorithm 2-Cs), and Algorithm 3-C3



has faster convergence speed than Algorithm 3-Cs. There-
fore, non-contractive compressors, e.g., C3, can converge
faster than contractive compressors, e.g., Co.

o From the zoomed figure in Fig. 1 we can see that the
error feedback method Algorithm 2-Co (Algorithm 2-
Cs3) has faster convergence speed than Algorithm 1-Co
(Algorithm 1-C3), which demonstrates the benefit of using
error feedback to correct the bias induced by the biased
COmpressors.

o« From Fig. 2 we can see that the communication-
efficient algorithms converge faster than their exact-
communication counterpart when comparing their perfor-
mances based on the number of bits that each agents com-
municates, which shows the effectiveness of the proposed
algorithms. Especially, Algorithm 3-Cs, Algorithm 1-C,
Algorithm 1-Cs, Algorithm 3-C3, and Algorithm 2-Cs
converge significantly faster than DPDA. For example,
it is illustrated in Fig. 3 that Algorithm 3-C5 only needs
6.24% of the bits used by DPDA to reach a specific level
of error.

o From Fig. 2 we can also see that Algorithm 1-Co (Al-
gorithm 1-C3) converges faster than its error feedback
version, i.e., Algorithm 2-Cy (Algorithm 2-C3) when
comparing their performances based on the number of
transmitted bits, which reveals the potential drawback of
using error feedback to correct the bias induced by the
biased compressors.

VIII. CONCLUSIONS

In this paper, we studied communication compression for
distributed nonconvex optimization. We used three general
classes of compressors to design three communication-efficient
distributed primal—dual algorithms. We showed that the pro-
posed algorithms can achieve comparable convergence results
as state-of-the-art algorithms although the communication is
compressed. Interesting directions for future work include
considering more general network topologies, reducing com-
munication complexity through periodic communication, ex-
ploring rules for choosing an appropriate compressor for high
efficiency, and studying how the important parameters, such
as compressor parameters, Lipschitz constant, and network
connectivity, affect the convergence rate.

APPENDIX
A. Useful Lemmas

The following results are used in the proofs.

Lemma 1. (Equation (5.4.21) on page 333 in [46].) For any
x € RY, it holds that ||z, < d||z| and ||z|| < d||x||,, where

d = ﬁl%:% and d = 1 when p € [1,2], and d = 1 and
d=d2"» when p > 2.

Lemma 2. For any x,y € R? and a,b > 0 satisfying ab = %,
it holds that

aTy < all=|® + byl (24)

This lemma is a direct extension of the Cauchy—Schwarz
inequality.

Lemma 3. Let L be the Laplacian matrix of an undirected and

connected graph G with n agents and K,, = n—%lnlz. Then

L and K, are positive semi-definite, null(L) = null(K,,) =
{177,}) L < p(L)In: p(Kn) =1,

K.L =LK, =L,
0 < po(L)K, < L < p(L)Kyp.

(25a)
(25b)

Moreover, there exists an orthogonal matrix [r R] € R™**™
with r = ﬁln and R € R"*("=1) sych that

L=[r R}{g (1)\1} ’; , (26a)
PL=LP=K,, (26b)
p (D)L, < P < py (D), (26¢)
where A1 = diag([Aa,...,An]) with 0 < Ay < -+ < A,

being the nonzero eigenvalues of the Laplacian matrix L, and

TT

RT

A0

P:[T R} 0 Al_l

Proof: From Lemmas 1 and 2 in the arXiv version of [47],
we know that all the results except (26b)—(26¢) hold.

From that [r R] is an orthogonal matrix, (26a), and the
definitions of K,,, P, and @, it is straightforward to check
that (26b)—(26¢) holds. [ |

B. Proof of Theorem 1

To prove Theorem 1, we first introduce some constants and
notations. Denote the following constants

9+ kg
> > 1}7 = 3 )
K1 > maX{QpQ(L) Ko = max{Kks, \/K¢}
K/BZmin{Sv 673’ 675; 6§+46769_68}7
€2 €4 €5 269
0 {4 + 5L? 6 }
Kg > U, K =maxq———, s
! ° K4 p2(L)
8(k1+1)°L7  4L%
Re = 5 )
r5p2(L) p3(L)
o 1 9
4(2 + ppr)
_ar2 2 2 2
+28% + 1+ 3a%p*(L),
€3 = g - 3p2_1(L)7
A2+ pyr)BPp*(L) | 4
er = 26%p(L) + + L),
4 p(L) g py (L)
1 (a+ ﬂ)2L? L%
€5 =35 — = - 9
T8 (L) 28°03(L)
(a+ B)L?c 3Lfc L?c Ly
6= 933 T s 2y T o0
28%ps(L) 4 | 2B2p3(L) | 2
r
)
1
€g = 5(04 +28)p(L)ro + 2870,



2 .2
€9 = @+ 7@2[1(;15 P (L)ro + (252 + D)ro,
_ap(L) =
-~ 2apy(L)
(a+8)? a+py 1 1
o= w2 )Pz(L) Ty
n+1 1 pYr
CTmpRD v T 2

c4g = C3+ 2c§ — 4772(1 + 051)042/12(11)7”07
o 1 9
Cs = §P2(L) - 1(B+4+ 5Lf)7

co =3L5 +4(1+c3")(a?p?(L) + L3),

1 3a2p*(L)
_ P2 -
cr =B+ 2 + 5
Denote = = col(xy,...,T,), f(a:) = >, filz), L =

Lol H=11,10L), K=K,®1; =1, — H,
P=Pxl; =1, @7 = Hzy, g = V(xk), gr =
Hgy, g0 = Vf(zk), g) = Hg) =1, ® Vf(Z}). Moreover,
without ambiguity, we denote C(x) = col(C(x1),...,C(zy)).
We also denote

2

Vi + gk

1
Ure = gleelie, Uai = o

a«gﬂp
1
Usy = ngP(”k + B92>7 Usr = n(f(zx) — f7),
4
Us =Y Uik, Vi = Ug + |l — al®,

=1
1 2
O = el + [[ox + 58|, + nr@0) - ).
Vie = Uk + [lzk — axl|®,
1
M = SL— 2 (B+4+5L3)K,

2

2y BB —a) 30’ 2
(ﬁ 2 L+ 2 L.

Note that Uy j is well defined since f* > —oo as assumed
in Assumption 5. To prove Theorem 1, the following lemma
is used, which presents a general relation between two con-

secutive outputs of Algorithm 1.

S
I

)K+

Lemma 4. Suppose Assumptions 1 and 46 hold. Let {z; ;}
be the sequence generated by Algorithm 1 with o > [ and
¥ € (0,1/r]. Then,

(/.
Ec[Vi1] < Be [ Ve = T8 — @2, i

H’Uk + QkH —n(es —nes) || ge||*

n(es—nes) P

~ (e7 = mes = neo) @ — ax?]- 27)

Proof: (i) We first introduce some useful equations.
The compact form of (11a), (11b), (9a), (9b), and (11e) is

ag+1 = ag + Pqx, (28a)
bir1 = b + (I, — L)qx, (28b)
Zpp1 =z — n(aLdy + fo, + Vf(xk)), (28¢)
Vg1 = U + nBLEy, (28d)

Qi1 = C(Tpt1 — apyr). (28e)

Denote 7, = +(1, ® IL,)vg. Then, from (28d) and
Z?Zl L;; = 0, we know that U1 = ¥y. This together with
the fact that Y, v; o = Oq4 implies

U = 0g4. 29)
Then, from (29) and (28c), we know that
Tp+1 = Tk — NGk- (30)

Noting that V fis Lipschitz-continuous with constant Ly >
0 as assumed in Assumption 6, we have

lgr — gull> < L7||l@e — xil? = L||@kli. (3D
Then, from (31) and p(H) = 1, we have
g — gell* = |1 H (g} — gr)II?
< llgk — gell* < L} flx k- (32)
From V f is Lipschitz-continuous and (30), we have
lghsr = grl* < L3 @err — &l* = LGl (33)
From Lemma 1.2.3 in [48], we know that (7) implies
fi(y) = filz) = (y — ) "V fi(z)]
< %”y*xHQ, Yo,y € RL. (34)
From (34) and (30), we have
f@ki1) — f(@r) < —ngfl gi + 7”ng2 (35

(ii) This step is to show the relation between Uj ;41 and Uy .
We have
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+ 2(a+28)p(L)|lzi — @i, (36)

where the second and third equalities hold due to (28c) and
(25a), respectively; the first and second inequalities hold due
to (24) and p(K) = 1; and the last inequality holds due to
(26¢) and (31).

(iii) This step is to show the relation between Us ;.11 and Us 1.
We have

Vg1 + 192 1
6 +

1
Uz i1 = §H etip

2

i
v + gk +nBLEy + 5(92“ - gz?)H

2” P+&P

2 . 1
= iHUk + ngHP n(a+ ﬁ)w;—K(vk + ng)

012
+ |2k 228 (qimL T 2B2||9k+1 gillprap
1
+B(vk+ ) (P+ P) (9241 — 92)
), (K+ K) (9811 — 9k)

1 R 1
< 5””’“+ ng n(a+ﬁ)wZK(vk+Bg;3)

P+B
2

. 1
1123 + o+ 5ot

2
(a+B) L+ K ns p

+||gk+1 gk”( )2 o
oz

-
+ *||9k+1 anll® + ka K(9k+1
o

ar)

. 1
5 llve + ngP 7P+U(@+5)$;K<vk+§92>

2
2

228 (a4 )L+ K

+H +1 0
o+ =
k ﬁgk 28 p

o
+aillgiy — goll? + 7@1((92“ —gp)

1 1 0 ~T 1 0
< §H'uk+ng %ﬁp+n(a+5)$k K(’Uk“ngk)
1 o112
180 o e [0 59|

_ no
+nPer Ly gel® + &0 K(gi, — gb), 37)

B

where the second and third equalities hold due to (28d) and
(26b), respectively; the first, second, and last inequalities hold
due to (24), (26¢) and (33), respectively.

(iv) This step is to show the relation between Us ;.1 and Us .

We have
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where the second equality holds due to (28c) and (28d); the
third equality holds due to (25a), (26b), (29) and K =1,,4 —
H; the first inequality holds due (24) and p(K) = 1; the
second inequality holds due to (26c); and the last inequality
holds due to (31) and (33).

(v) This step is to show the relation between Uy 41 and Uy i.
We have

Ui = 0l f (@) = f7) = f(@k41) —nf*
= (@) —nf* + f(@rs1) — f(fik)

< f(@r) —nf* —ngk9k+7llg 12

= f(@r) —nf* —ngy gp + illg 12



=n(f(Tx) — f*) - g (gk + g% — ar) (26¢), and (31).
From (40), (41), and (12), we have
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second inequality holds due to (24); and the last inequality * 2( Ble(Liro )l ¢l 4 Igl
holds due to (32). < Eec [Vk e A - .
(vi) This step is to show the relation between ||xx 1 —ar,1||? 1 4112 _
and ||z — ay||?. Denote C,.(-) = C(-)/r, then we have - Hvk + ngHn(ernm)P —n(es = nes)l|g |
n N =
Ec[|@xi1 — apsa ] — (es = Gla+28)p(Lyro) lmx — anl* = F152012]
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=Ec[[|zr+1 —zr + (1 — ¢r) (2 — ak) where the first inequality holds due to (36)—(39), (12), and
+ r(zy — ax — Cr(zr — ag))||] (42); and the second inequality holds due to (25b) and 5 < «.

For the third term in the right-hand side of (43), from (24)
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where the first and second equalities hold due to (28a) and 6
(28e), respectively; the first inequality holds due to (24) and ~From S > w2 > —75, we have
c3 > 0; the second inequality holds due to (24) and yr € 5> 0 (46)

(0,1]; and the last inequality holds due to (3).
From a = k18 and 8 > ko = max{ks, /K¢}, We have
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(ii) We then show that (13a) and (13b) hold.
From (24), we have
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From (27) and (48b)—(48d), we have
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From (50), (48a), and (49b), we have
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which yields (13a).
From (50), (48a), and (49a), we have

Ec[n(f(zr) — f*)] < Ec[Vr] < Vo,
which yields (13b).

Hence, from (55) and (52), we have
Ec[Vii1] < (1 - )Ec[Vi] < (1 — )"V,
which yields (14).

D. Constants used in Theorem 3

1 . . €1 €3 €5
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E. Constants used in Theorem 4

. €2 . v T3 T4
C. Proof of Theorem 2 €= P €12 = 7min {61 €2, TN 5 ' %}
In this proof, in addition to the notations used in the proof
of Theorem 1, we also denote F. Constants used in Theorem 5
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