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Linear Convergence of First- and Zeroth-Order Primal-Dual Algorithms
for Distributed Nonconvex Optimization

Xinlei Yi%?, Shengjun Zhang “, Tao Yang

Abstract—This article considers the distributed nonconvex op-
timization problem of minimizing a global cost function formed by
a sum of local cost functions by using local information exchange.
We first consider a distributed first-order primal-dual algorithm.
We show that it converges sublinearly to a stationary point if each
local cost function is smooth and linearly to a global optimum
under an additional condition that the global cost function satisfies
the Polyak—tojasiewicz condition. This condition is weaker than
strong convexity, which is a standard condition for proving linear
convergence of distributed optimization algorithms, and the global
minimizer is not necessarily unique. Motivated by the situations
where the gradients are unavailable, we then propose a distributed
zeroth-order algorithm, derived from the considered first-order al-
gorithm by using a deterministic gradient estimator, and show that
it has the same convergence properties as the considered first-
order algorithm under the same conditions. The theoretical results
are illustrated by numerical simulations.

Index Terms—Distributed nonconvex optimization, first-order al-
gorithm, linear convergence, primal-dual algorithm, zeroth-order
algorithm.

|. INTRODUCTION

Distributed convex optimization has a long history, which can be
traced back at least to the 1980s [1]. It has gained renewed interests
in recent years due to its wide applications in power systems, ma-
chine learning, and sensor networks, just to name a few [2]. Various
distributed optimization algorithms have been developed. Basic conver-
gence results in distributed convex optimization typically ensure that
algorithms converge to optimal points sublinearly (see, e.g., [3] and
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[4]). Linear convergence rate can be established under more stringent
strong convexity conditions. For example, in [5]-[14] and [15]-[17],
the authors assumed that each local cost function and the global cost
function are strongly convex, respectively.

Unfortunately, in many practical applications, such as least squares,
the cost functions are not strongly convex [18]. This situation has
motivated researchers to consider alternatives to strong convexity. There
are some results in centralized optimization. For instance, in [19],
Necoara et al. derived linear convergence of several centralized first-
order methods for smooth and constrained optimization problems when
cost functions are convex and satisfy the quadratic functional growth
condition; in [20], Karimi ef al. showed linear convergence of cen-
tralized proximal-gradient methods for smooth optimization problems
when cost functions satisfy the Polyak—t.ojasiewicz (P-L.) condition,
which is weaker than the conditions assumed in [19]. There also
are some results in distributed optimization [21]-[26]. Specifically,
in [21], Shi et al. proposed the distributed exact first-order algorithm
(EXTRA) to solve smooth convex optimization problems and proved
linear convergence under the conditions that the global cost function
is restricted strongly convex and the optimal set is a singleton, which
are stronger than the P-L condition. The authors of [22] and [23] later
extended the results in [21] to directed graphs. In [24], Yi et al. proposed
acontinuous-time distributed heavy-ball algorithm with event-triggered
communication to solve smooth convex optimization problems and
proved exponential convergence under the same conditions as that as-
sumed in [21]. In [25], Liang ef al. established linear convergence of the
distributed primal—dual gradient descent algorithm for solving smooth
convex optimization problems under the condition that the primal—dual
gradient map is metrically subregular, which is different from the P-L
condition but weaker than strong convexity. In [26], Yi et al. considered
a distributed primal—dual gradient descent algorithm to solve smooth
convex optimization problems and established linear convergence under
the assumptions that the global cost function satisfies the restricted
secant inequality condition and the gradients of each local cost function
at optimal points are the same, which are also stronger than the P-L
condition.

In many applications, such as optimal power flow problems, resource
allocation problems, and empirical risk minimization problems, the
cost functions are usually nonconvex. Thus, distributed nonconvex
optimization has gained considerable attentions (see, e.g., [27]-[34]).
In these studies, basic convergence results typically ensure that dis-
tributed algorithms converge to stationary points. For example, in [27],
[29]-[32], and [34], it was shown that the first-order stationary point
can be found with an O(1/T") convergence rate when each local cost
function is smooth, where 7" is the total number of iterations.

Note that aforementioned distributed optimization algorithms use
at least gradient information of the cost functions, and sometimes
even second- or higher order information. However, in some practical
applications, explicit expressions of the gradients are often unavailable
or difficult to obtain [35]. For example, the cost functions of many
big data problems that deal with complex data generating processes
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cannot be explicitly defined [36]. Thus, zeroth-order (gradient-free)
optimization algorithms are needed. A key step in zeroth-order opti-
mization algorithms is to estimate the gradient of the cost function
by sampling the function values. Various gradient estimation methods
have been developed (see, e.g., [37] and [38]). Some recent works have
combined these gradient estimation methods with distributed first-order
algorithms. For instance, the authors of [39]-[44] and [45], [46] pro-
posed distributed zeroth-order algorithms for distributed convex and
nonconvex optimization, respectively.

The main contribution of this article is on solving distributed noncon-
vex optimization problems. We first consider a distributed first-order
primal—dual algorithm, which is a special form of the EXTRA algorithm
proposed in [21]. When each local cost function is smooth, we show that
it finds the first-order stationary point with a rate O(1/7T') and that the
cost difference between the global optimum and the resulting stationary
point is bounded. We also show that not only the same algorithm can
find a global optimum, but also the convergence rate is linear under
an additional assumption that the global cost function satisfies the P—L
condition. This condition is weaker than the (restrict) strong convexity
condition assumed in [5]-[17], [21]-[24], and [26] since it does not
require convexity and the global minimizer is not necessarily unique.
This condition is also different from the metric subregularity criterion
assumed in [25]. In other words, we show that for a larger class of cost
functions than strongly convex functions, the global optimum can be
founded linearly by the considered distributed algorithm. It should be
highlighted that the P-L constant is not used to design the algorithm
parameters. Noting that, generally, the P-L condition is difficult to
check, with the above property that the P-L condition does not need
to be checked when implementing the considered algorithm, which is
a significant innovation. Another innovation is that the proofs of both
sublinear and linear convergence are based on the same appropriately
designed Lyapunov function, which facilitates extending our results to
other settings, such as event-triggered communication. We notice that,
recently, Xin et al. [47] considered a distributed randomized incre-
mental gradient algorithm and achieved the same convergence results
under the same conditions as ours. The algorithm considered in [47]
is computationally efficient since it evaluates only one component
gradient per agent per iteration. However, the P-L£ constant is used
to design the stepsize in [47]. In other words, in order to implement the
algorithm considered in [47], the P—L condition needs to be checked in
advance, which is normally difficult in practice.

Motivated by the situation where the gradient information is un-
available, we then propose a distributed zeroth-order algorithm, by
integrating the considered distributed first-order algorithm with the
deterministic gradient estimator proposed in [38]. We show that it has
the same convergence properties as the considered first-order algorithm
under the same conditions. It should be mentioned that the analysis of
both sublinear and linear convergence for our zeroth-order algorithm is
based on the Lyapunov function modified from the Lyapunov function
for the first-order algorithm. Compared with [46], which also proposed
a distributed deterministic zeroth-order algorithm and established the
same convergence properties under the same conditions as ours, one
innovation of our zeroth-order algorithm is that the P—t. constant,
which is normally difficult to determine, is not used for designing
the algorithm. Moreover, the proposed zeroth-order algorithm only
requires each agent to communicate one p-dimensional variable with
its neighbors at each iteration, where p is the dimension of the decision
variable, while the algorithm proposed in [46] requires each agent to
communicate three p-dimensional variables. The detailed comparison
of this article to other related studies in the literature is summarized in
tables provided in the online version [48] due to the space limitation.

The rest of this article is organized as follows. Section II introduces
some preliminaries. Section III presents the problem formulation and
assumptions. Sections IV and V provide the distributed first- and zeroth-
order primal—dual algorithms and analyze their convergence properties,
respectively. Simulations are given in Section VI. Finally, Section VII
concludes this article. All the proofs are given in the online version [48]
due to the space limitation.

Notations: Ny and N denote the set of nonnegative and positive
integers, respectively. {e1,...,e,} represents the standard basis of
RP. [n] denotes the set {1,...,n} for any positive constant inte-
ger n. col(z1,...,2) is the concatenated column vector of vectors
z; € RPi 4 € [k]. 1,, (0,,) denotes the column one (zero) vector of
dimension n. I,, is the n-dimensional identity matrix. Given a vector
[®1,...,2,]" € R", diag([x1, ..., z,]) is a diagonal matrix with the
ith diagonal element being x;. The notation A ® B denotes the Kro-
necker product of matrices A and B. null(A) is the null space of matrix
A. p(+) stands for the spectral radius for matrices and ps (-) indicates the
minimum positive eigenvalue for matrices having positive eigenvalues.
|| - || represents the Euclidean norm for vectors or the induced 2-norm
for matrices. For any square matrix A, denote ||z||3=xT Ax. Given a
differentiable function f, V f denotes the gradient of f.

II. PRELIMINARIES

In this section, we present some definitions and properties related
to algebraic graph theory, the P-L condition, and the deterministic
gradient estimator.

A. Algebraic Graph Theory

Let G = (V, &, A) denote a weighted undirected graph with the set
of vertices (nodes) V = [n], the set of links (edges) £ C V x V), and
the weighted adjacency matrix A = AT = (a;;) with nonnegative ele-
ments a;;. A link of G is denoted by (¢, j) € Eifa;; > 0,1i.e.,if vertices
¢ and 7 can communicate with each other. It is assumed that a;; = 0
for all i € [n]. Let N; = {j € [n] : a;; > 0} and deg; = > 7_, a;;
denote the neighbor set and weighted degree of vertex 4, respectively.
The degree matrix of graph G is Deg = diag([deg;, ..., deg,]). The
Laplacian matrixis L = (L;;) = Deg — A. A path of length & between
vertices ¢ and j is a subgraph with distinct vertices ig = ¢, ...,i = J €
[n] and edges (i;,%;4+1) € €, j =0,...,k — 1. An undirected graph
is connected if there exists at least one path between any two distinct
vertices. If the graph G is connected, then its Laplacian matrix L is
positive semidefinite and null(L) = {1, } (see [49]).

B. P—t Condition

Let f(z):RP— R be a differentiable function. Let X* =
argmin, pp f(z) and f* = min,crpr f(x). Moreover, we assume
that f* > —o0.

Definition 1: The function f satisfies the P-L. condition with con-
stant v > 0 if

%HVf(Oﬁ)II2 > v(f(z)— ) Vo eRP. )

It is straightforward to see that every (essentially or weakly) strongly
convex function satisfies the P-E condition. The P-E condition implies
that every stationary point is a global minimizer, i.e., X* = {z € R? :
V f(z) = 0,}. But unlike the (essentially or weakly) strong convexity,
the P-E condition alone does not imply convexity of f. Moreover,
it does not imply that X* is a singleton either. The function f(x) =
22 4+ 3sin?(z) is an example of nonconvex functions satisfying the
P-L condition with v = 1/32 (see [20]).
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C. Deterministic Gradient Estimator

Let f(x) : R? — R be a differentiable function. Agarwal et al. [38]
proposed the following deterministic gradient estimator:

S, 8) = 23+ ber) — f(a)ey @
=1

where § > 0 is an exploration parameter. This gradient estimator can
be calculated by sampling the function values of f at p + 1 points.
From [38, eq. (16)], we know that V f(z, §) is close to V f () when &
is small, which is summarized in the following lemma.

Lemma 1: Suppose that f is smooth with constant L ¢; then

195@.0) - Vi) < Y e crr vis 0. )

Ill. PROBLEM FORMULATION AND ASSUMPTIONS

Consider a network of n agents, each of which has a private local
cost function f; : R” — R. All agents collaborate to solve the following
optimization problem:

: RN
min f(x) = ; fi(@). @

The communication among agents is described by a weighted
undirected graph G. Let X* and f* denote the optimal set and the
minimum function value of the optimization problem (4), respectively.
The following assumptions are made.

Assumption 1: The undirected graph G is connected.

Assumption 2: The optimal set X* is nonempty and f* > —oo.

Assumption 3: Each local cost function f;(x) is smooth with con-
stant Ly > 0, 1.e., |V fi(z) = Vi(y)| < L¢|lz —yl|, Yo,y € RP.

Assumption 4: The global cost function f(z) satisfies the P-L
condition with constant v > 0.

Remark 1: Assumptions 1-3 are common in the literature, e.g., [5],
[21]. Assumption 4 is weaker than the assumption that the global or
each local cost function is strongly convex. It should be highlighted
that the convexity of the cost functions and the boundedness of their
gradients are not assumed. Moreover, we do not assume that X* is a
singleton or finite set either.

IV. DISTRIBUTED FIRST-ORDER PRIMAL—DUAL ALGORITHM

In this section, we consider a distributed first-order primal-dual
algorithm and analyze its convergence property.

A. Algorithm Description

In this section, we present the derivation of the considered algorithm.
Denote « = col(zy, ..., x,), f(x) = 1", fi(z;),and L = L ®
I,. Recall that the Laplacian matrix L is positive semidefinite
and null(L) = {1,,} when G is connected. The optimization prob-
lem (4) is equivalent to the following constrained optimization
problem:

A T
st. LY?z =0,,. ®)

Here, L'/? = L'/? ® 1, and L'/? is the square root of the positive-
semidefinite matrix L. Moreover, we use L'/?x = 0,,,, rather than
Lz = 0,,, as the constraint since they are both equivalenttox = 1,, ®
 due to the fact that null(L'/?) = null(L) = {1,,}, but the first has
a particular property, which will be discussed in Remark 6.

Algorithm 1: Distributed First-Order Primal-Dual Algorithm.
1: Input: parameters a > 0, 5 > 0, and > 0.

2: Initialize: z; o € R? and v; o = 0,, Vi € [n].
3: fork=0,1,... do
4: fori = 1,...,nin parallel do
5: Broadcast z;  to NV; and receive x; 5, from j € N;;
6: Update z; ;41 by (92);
7. Update v; 141 by (9b).
8: end for
9: end for
10: Output: {x;}.

Let w € R™ denote the dual variable. Then, the augmented La-
grangian function associated with (5) is

Az, u) = f(x) + %wTLw + fu' LY %2 (6)

where a > 0 and 8 > 0 are the regularization parameters.
Based on the primal-dual gradient method, a distributed first-order
algorithm to solve (5) is

Tpr1 = 2, — n(aLxy, + BLY?uy, + Vf(mk)) (7a)

Up+1 = Ug + nﬁLl/ka Vg, ug € R™P (7b)

where 1 > 0 is a fixed stepsize. Denote v, = col(vy g, ..., Un k) =
LY 2uy. Then, the recursion (7) can be rewritten as

xi1 = @, — n(alay + o + Vf(xr)) (8a)

Vip1 = v +nBLay Yoo €R™, D vj0=0,  (8b)
j=1

The initialization condition Z;;l vj,0 = 0, is derived from vy =
L1/2u0, and it is easy to be satisfied, for example, v; o = 0,, Vi €
[n], or vi 0 = >0, Lijwjo, Vi € [n]. It is straightforward to verify
that the algorithm (8) is a special form of the EXTRA algorithm
proposed in [21] with mixing matrices W = I,,, — naL and W =
L., — naL 4+ n?B2L. It is also a special form of general frameworks
for primal—dual decentralized algorithms studied in [50]. Note that (8)
can be written agentwise as

Tikt1l = Tik — N (Oéz Lijxjn+ Bvig + sz(%k)) (9a)

j=1

Vi k1 = Uik + 7752 Lz, Vo0 € RP, Z'Uj,() =0, (%)

Jj=1 Jj=1

This corresponds to the considered distributed first-order primal—
dual algorithm, which is presented in pseudo-code as Algorithm 1.

Remark2: Inthe literature, various distributed first-order algorithms
have been proposed to solve the nonconvex optimization problem
(4), for example, distributed gradient descent (DGD) algorithm [28],
[34], distributed gradient tracking algorithm [34], distributed algo-
rithm based on a novel approximate filtering-then-predict and tracking
(xFILTER) strategy [31]. Compared with the considered distributed
algorithm (9), these algorithms have some potential drawbacks. For the
DGD algorithm, existing studies, such as [28] and [34], only showed
that the output of the algorithm converges to a neighborhood of a station-
ary point unless additional assumptions, such as the boundedness of the
gradients of cost functions, are assumed. The xFILTER algorithm [31]
is a double-loop algorithm and, thus, more complicated than (9).
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B. Convergence Analysis

In this section, we provide convergence analysis for both scenarios
without and with Assumption 4.

Denote K, =1, — 11,1]. K = K, ®I,, H = 1(1,1] ® I,),
T = %(NIZ @L)xy, T =1, Ty, g, = Vi), gp = Hgy.
g% =Vf(zy), gt = Hg} =1, ® Vf(Z), and

~ 1 B B
Vi = @k % + [lox + BQ%H%{ +n(f(@x) — f)

L
B
We have the following convergence result for Algorithm 1 without
Assumption 4.
Theorem 1: Suppose that Assumptions 1-3 hold. Let {x}} be the
sequence generated by Algorithm 1 with « € (8 + k1, k20], 8 >

max{%, K3, Ka},and n) € (O,min{j—;7 Z—Z, z—z ). Then, we have

Wi, = @ — 2 + lloe + Zghlli + 113 1* + llgR]*.

T esV
S owp < =L VI e N (10)
k=0 €7
esV
f(@r) = f < 8n° vT € N, (an
where
— 2+ 312 1
"= oy B e >
R . )
K3 = — K
! * T pa(L)

1 1\2 3
kg = | ko + —— | L2 + (n +7> L2+2) L
' ( p2<L>) ! ( 2T am) !

&1 = (o~ B)pa(L) — 5(2+3L3)

&2 = p(L) + (20 + F)A(1) + 2 I3

1 « 1
2 282 2Bps(L)

1 1 1 1 «
=135 5) Y

1 1 L:(1+L
56:7(1+ +g)L§+M

1
764:2/82_‘—5

p? p2(L) B 2
. 1
€7 = 1)MIN § €1 — 7)€z, €3 — 1€4, €5 — T)€g, 1
a+p 1
€g = .
2 2pa(L)

Remark 3: We should point out that the settings on the parameters
«, B, and 7 are just sufficient conditions. With some modifications
of the proofs, other forms of settings for these algorithm parameters
still can guarantee the same kind of convergence rate. Moreover,
the interval (8 4+ k1,k203] is nonempty due to the settings that
B> rk1/(ke —1) and ko >1. From (10), we know that
minger{||@r — Zxll® + [|g0)°} = O(1/T). In other words,
Algorithm 1 finds a stationary point of the nonconvex optimization
problem (4) with arate O(1/T). This rate is the same as that achieved
by the distributed gradient tracking algorithm [34] and the XFILTER
algorithm [31] under the same assumptions on the cost functions. From

(11), we know that the cost difference between the global optimum
and the resulting stationary point is bounded.

With Assumption 4, the following result states that Algorithm 1 can
find a global optimum and the convergence rate is linear.

Theorem 2: Suppose that Assumptions 1-4 hold. Let {x } be the
sequence generated by Algorithm 1 with the same «, 3, and n given in
Theorem 1. Then, we have

ey — 24| + n(f(@x) — £) < (1 — e)Fc VEk € Ny (12)
where
€10 68‘70 . 1 o — 6
€ o €(0,1), ¢ - , €9 mm{sz)7 0 }

. v
€10 = 7)Mmin {61 — M€z, €3 — N€y, 5} .

Moreover, if the projection operator Px- () is well defined, then
1
ey — 1, ® Px-(Z2)||> < (1 - e)Fc <1 + 5) Vk € Ny. (13)

Remark 4: From Theorems 1 and 2, we know that the considered
first-order primal-dual algorithm uses the same algorithm parameters
for the cases without and with the P-L. condition. The proofs of both the-
orems are based on the same appropriately designed Lyapunov function
given in the proof. In the literature that considered distributed noncon-
vex optimization, e.g., [29]-[33], the lower bounded potential functions
(which may be negative) are commonly used to analyze the convergence
properties of the proposed algorithms. Therefore, the analysis in those
studies cannot be extended to show linear convergence when the P-L
condition holds since the lower bounded potential functions may not be
Lyapunov functions. In the literature that obtained linear convergence
for distributed optimization, e.g., [5]-[17], [21]-[26], the convexity
and/or the uniqueness of the global minimizer are the key in the
analysis. Therefore, the analysis in those studies cannot be extended to
show linear convergence when strong convexity is relaxed by the P-L
condition since the later does not imply convexity of cost functions and
the uniqueness of the global minimizers.

Remark 5: The distributed first-order algorithms proposed in [5]—
[17] and [21]-[26] also established linear convergence. However,
in [5]-[14], it was assumed that each local cost function is strongly
convex. In [15] and [16], it was assumed that each local cost function is
convex and the global cost function is strongly convex. In [17], it was as-
sumed that the global cost function is strongly convex. In [21] and [24],
it was assumed that each local cost function is convex, the global cost
function is restricted strongly convex, and X* is a singleton. In [22] and
[23], it was assumed that each local cost function is restricted strongly
convex and the optimal set X* is a singleton. In [25], it was assumed
that each local cost function is convex and the primal-dual gradient
map is metrically subregular. In [26], it was assumed that the global
cost function satisfies the restricted secant inequality condition and the
gradients of each local cost function at optimal points are the same. In
contrast, the linear convergence result established in Theorem 2 only
requires that the global cost function satisfies the P—E condition, but the
convexity assumption on cost functions and the singleton assumption
on the optimal set and the set of each local cost function’s gradients at
the optimal points are not required. Moreover, it should be highlighted
that the P constant v is not used when implementing Algorithm 1.
This is an important property since it is normally difficult to determine
the Pt constant. Compared with some of the aforementioned studies,
one potential drawback is that we assume that the communication graph
is static and undirected. We leave the extension to time-varying directed
graph for future work.
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Algorithm 2 Distributed Deterministic Zeroth-Order Primal-Dual
Algorithm

1: Input: parameters & > 0, 8 > 0,7 > 0, and {0, , > 0}.
2: [Initialize: 2, o € R? and v; o = 0, Vi € [n].

3: fork=0,1,... do

4 fori=1,...,nin parallel do

5 Broadcast x; j, to AV; and receive x, ;, from j € N;;
6: Sample f;(x; ) and {f;(zik + 6; ver) H_ s

7: Update z; ;1 by (152);

8 Update Vi, k+1 by (le)

9 end for

0: end for

1: Output: {z}.

10:
11:

Remark 6: If we use Lx = 0,,,, as the constraint in (5), then we
can construct an alternative distributed primal-dual gradient descent
algorithm

n
Tikt1 = Tik — 1) <Z Lij(axjx + Bujk) + vfz($zk)) (14a)
j=1
Vi k+1 = Vi k T 7752 Lijx;, Va0, vio € RP. (14b)
j=1
Similar results as shown in Theorems 1 and 2 (as well as the results
stated in Theorems 3 and 4 in the next section) can be obtained. We omit
the details due to the space limitation. Different from the requirement
that Z?:l vj,0 = 0, in the algorithm (9), v; o can be arbitrarily chosen
in the algorithm (14). In other words, the algorithm (14) is robust to the
initial condition v; o. However, it requires additional communication
of v; 1 in (14a), compared to (9).

V. DISTRIBUTED DETERMINISTIC ZEROTH-ORDER
PRIMAL—DUAL ALGORITHM

In this section, we propose a distributed deterministic zeroth-order
primal—dual algorithm and analyze its convergence property.

A. Algorithm Description

‘When implementing the first-order algorithm (9), each agent needs to
know the gradient of its local cost function. However, in some practical
applications, the explicit expressions of the gradients are unavailable or
difficult to obtain [35]. Inspired by the deterministic gradient estimator
(2), based on the considered distributed first-order algorithm (9), we
propose the following zeroth-order algorithm:

Tik+1 = Tik — 1) <Oé Z Lij«’rj,k + ﬁ’Ui,k + @ﬁ (mi,ka 6i,k)>

j=1

(15a)

Vi k+1 = Vi + 7752 Lijzj, Vx;0 € RP, ng’,o =0, (15b)

j=1 j=1

where V f;(; , 6 ) is the deterministic estimator of V f; (x;1), as
defined in (2). Note that the gradient estimator \V/ fi(x;k, 0 1) can be
calculated by sampling the function values of f; at p + 1 points.

We present the distributed deterministic zeroth-order primal—dual
algorithm (15) in pseudocode as Algorithm 2.

Remark 7: A different distributed deterministic zeroth-order algo-
rithm was proposed in [46]. However, in that algorithm, at each itera-
tion, each agent ¢ needs to communicate two additional p-dimensional

variables besides the communication of x; ;, with its neighbors, which
results in a heavy communication burden when p is large. Moreover,
the deterministic gradient estimator used in [46] requires that at each
iteration, each agent samples its local cost function values at 2p points
compared with p + 1 points used in our algorithm.

B. Convergence Analysis

In this section, we provide convergence analysis for both scenarios
without and with Assumption 4.

We use the same notations introduced in Section IV.
Moreover, denote h; = @fz(xlk, Oik)s b = col(h1 gy .-y hn k),
FLk =Hh;, 6= maxie[n]{&,k}, hg,k = @fl(i’k, 6k)’ hg =
col(hY 4, ... 19 ), hy, = HRY, and

N 1 _ ¥
Ur = ll@elli + llve + EhQHfK +n(f (@) = f7):
We have the following convergence result for Algorithm 2 without
Assumption 4.
Theorem 3: Suppose that Assumptions 1-3 hold. Let {zx } be the
sequence generated by Algorithm 2 with « € (8 + &1, k20], 8 >
R1 €

max{ 15, K3, Ra}, N € (O,min{é7 E—Z, z:—; ), and ;% > 0 such

R2
that
+o0
5 =07, < foc. (16)
k=0
Then
a ¢
> ek — 24]* + 180]%) < = VT € Ng a7
k=0 €7
. ¢
f(jT+1) — f < E VT € N() (18)
where
f— L (24912
) !

& = (o~ B)pa(L) — 5(2+9L3)

& = B2p(L) + (20® + 5)p* (L) + ?L?

g_l_i(l_k 1 +g)L2
T8 28\B (L) B)

.3 1« Li(143Ly)

f6= o (14 ——+— | L2 4 21220

° 52( pa(L) ﬁ) ! 2

- . 1 15 3npL>2
67:77m1n{61—77627§}7611: (Tn+5772> 1 f+612

o= (v 30) (st + ) 1)
PEAB T mB) \pe(L) T B) B 2 2) 4

c= esﬁo + (11 + €12) Z‘S?

i=1
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Remark 8: Similar to the discussion in Remark 3, from (17),
we know that Algorithm 2 finds a stationary point of the noncon-
vex optimization problem (4) with a rate O(1/T"). This rate is the
same as that achieved by the distributed stochastic zeroth-order algo-
rithm proposed in [45] under different assumptions. More specifically,
Hajinezhad et al. [45] consider a more realistic scenario, where the
cost function values are queried with noises. However, in [45], it needs
an additional assumption that the gradient of each local cost function
is bounded and each agent needs to employ O(T') function value
samplings at each iteration. From (18), we know that the cost differ-
ence between the global optimum and the resulting stationary point is
bounded.

With Assumption 4, the following result states that Algorithm 2 can
find a global optimum and the convergence rate is linear.

Theorem 4: Suppose that Assumptions 1-4 hold. Let {x}} be the
sequence generated by Algorithm 2 with the same «, /3, and 7 given in
Theorem 3, and 0, , € (0, €%]; then

ek — k|® + n(f(Zk) — f*)
La-ar

€9

where € € (0,1), € € (1),

< LesUo + @P(€,€,¢)) VEk € Ny (19)

€10

v
e= 22 (0,1), &1 = nmin {& —nés, € —nes, 7 )
€g 4
1_~k+1
(Gl
1—¢e—c¢
. € k41 )
¢(Ea€7 ):<1il~+612> g_iefl, 1f1—€<€
€k+l
v ~) 1f1_g:€
€—€

Moreover, if the projection operator Px:(+) is well defined, then
e — 15 ® P ()1

< 1 (1 + i) (1= e)**leglUy + ¢(E,6,€)) Vk e Ng. (20)
€9 2v

Remark 9: 1t is straightforward to see that ¢ = O(a*), where
a =max{l — € ¢ ¢} < 1, so ¢ linearly converges to zero. By com-
paring Theorems 1 and 2 with Theorems 3 and 4, respectively,
we see that the considered distributed first- and zeroth-order algo-
rithms have the same convergence properties under the same as-
sumptions. Similar convergence results as stated in Theorems 3 and
4 were also achieved by the distributed deterministic zeroth-order
algorithm proposed in [46] under the same assumptions. Compared
with [46], in addition to the advantages discussed in Remark 7, one
more potential advantage of Theorem 4 is that the P-L constant v
is not used. However, Tang et al. [46] also proposed a distributed
random zeroth-order algorithm. We expect that the considered dis-
tributed first-order algorithm (9) can be extended to be a random
zeroth-order algorithm with two noisy samples of local cost func-
tion values by each agent at each iteration. Such an extension is our
ongoing article.

VI. SIMULATIONS

In this section, we verify and illustrate the theoretical results through
numerical simulations.

We consider the nonconvex distributed binary classification problem
in [31], which is formulated as the optimization problem (4) with each
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Fig. 1. Evolutions of P(T") with respect to the number of communica-
tion rounds.

component function f; given by

P
ZZ A‘
Zlogl—key” i) +Zl+“ﬂ[m]

where m is the number of data points of each sensor, y;, € {1,—1}
denotes the label for the sth data point of sensor i, z;; € R? is the
feature vector, and A and p are regularization parameters. All settings
for cost functions and the communication graph are the same as those
described in [31]. Specifically, n = 20, p = 50, m = 200, A = 0.001,
and p = 1. The graph used in the simulation is the random geometric
graph, and the graph parameter is set to be 0.5. We independently and
randomly generate nm data points with dimension p and each agent
contains m data points.

We compare Algorithms 1 and 2 with state-of-the-art algorithms:
DGD with diminishing stepsizes [28], [34], distributed first-order
gradient tracking algorithm (DFO-GTA) [11], [34], distributed deter-
ministic zeroth-order gradient tracking algorithm (DDZO-GTA) [46],
xFILTER [31], proximal gradient primal-dual algorithm [29], and
distributed gradient primal—-dual algorithm [30].

We use P(T) = minger {[ V@) + 2 X0 llzis — 2%}
to measure the performance of each algorithm. Fig. 1 illustrates the
convergence of P(T") with respect to the number of communication
rounds 7" for these algorithms with the same initial condition. It can
be seen that the first-order algorithm (see Algorithm 1) gives the best
performance in general. We also see that both zeroth-order algorithms
(Algorithm 2 and DDZO-GTA [46]) exhibit almost identical behavior
as their first-order counterparts (Algorithm 1 and DFO-GTA [11], [34])
during the early stage, but then slow down and converge at a sublinear
rate.

In order to compare the performance of the two deterministic zeroth-
order algorithms (Algorithm 2 and DDZO-GTA [46]), we plot the
convergence of P(7T') with respect to the number of function value
queries and variables communicated in Fig. 2. It can be seen that
Algorithm 2 gives better performance.

l

VIl. CONCLUSION

In this article, we studied distributed nonconvex optimization. We
considered distributed first- and zeroth-order primal-dual algorithms
and derived their convergence properties. Linear convergence was
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Fig. 2. Evolutions of P(T") with respect to the number of function value

queries (left) and the number of variables communicated (right).

established when the global cost function satisfies the P-E condition.
This relaxes the standard strong convexity condition in the literature. In-
teresting directions for future work include proving linear convergence
for larger stepsizes, considering time-varying graphs, investigating the
scenarios where the function values are sampled with noises, and
studying constraints.
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