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Abstract—Distributed bandit online convex optimization
with time-varying coupled inequality constraints is consid-
ered, motivated by a repeated game between a group of
learners and an adversary. The learners attempt to minimize
a sequence of global loss functions and at the same time
satisfy a sequence of coupled constraint functions, where
the constraints are coupled across the distributed learners
at each round. The global loss and the coupled constraint
functions are the sum of local convex loss and constraint
functions, respectively, which are adaptively generated by
the adversary. The local loss and constraint functions are
revealed in a bandit manner, i.e., only the values of loss
and constraint functions are revealed to the learners at
the sampling instance, and the revealed function values
are held privately by each learner. Both one- and two-point
bandit feedback are studied with the two corresponding
distributed bandit online algorithms used by the learners.
We show that sublinear expected regret and constraint
violation are achieved by these two algorithms, if the
accumulated variation of the comparator sequence
also grows sublinearly. In particular, we show that
O(T θ) expected static regret and O(T 7/4−θ) constraint
violation are achieved in the one-point bandit feedback
setting, and O(Tmax{κ,1−κ}) expected static regret and
O(T 1−κ/2) constraint violation in the two-point bandit
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feedback setting, where θ ∈ (3/4, 5/6] and κ ∈ (0, 1) are
user-defined tradeoff parameters. Finally, the tightness
of the theoretical results is illustrated by numerical
simulations of a simple power grid example, which also
compares the proposed algorithms to algorithms existing
in the literature.

Index Terms—Bandit convex optimization, distributed
optimization, gradient approximation, online optimization,
time-varying constraints.

I. INTRODUCTION

ONLINE convex optimization is a promising methodology
for modeling sequential tasks and has important applica-

tions in machine learning [1], smart grids [2], sensor networks
[3], [4], etc. It can be traced back to the 1990s [5]–[8]. Online
convex optimization can be understood as a repeated game
between a learner and an adversary [1]. At round t of the game,
the learner chooses a point xt from a known convex set X ⊆ Rp,
where p is the dimension of the space. Then, the adversary
observes xt and chooses a convex loss function ft : Rp → R.
After that, the loss function ft is revealed to the learner who
suffers a loss ft(xt). Note that at each round, the loss function
can be arbitrarily chosen by the adversary, especially with no
probabilistic model imposed on the choices, which is the key
difference between online and stochastic convex optimization.
Such an adversary with the power to arbitrarily choose the loss
functions is said to be a completely adaptive adversary [9]. The
goal of the learner is to choose a sequence xT = (x1, . . . , xT )

such that his/her regretReg(xT ,yT ) =
∑T

t=1(ft(xt)− ft(yt))
is minimized, where T is the total number of rounds and
yT = (y1, . . . , yT ) is a comparator sequence. Over the past two
decades, online convex optimization has been extensively stud-
ied, e.g., [1], [3], [4], [8], [10]–[19]. It has also been extended to
distributed setting, e.g., [20]–[22], and nonconvex setting, e.g.,
[23]–[25]. All existing online algorithms require the knowledge
of the entire loss function or the gradient of the loss function. In
particular, it is known that the projection-based online gradient
descent algorithm achieves an O(

√
T ) static regret bound for

convex loss functions with bounded subgradients and that this
is a tight bound up to constant factors [10].

Bandit online convex optimization is online convex optimiza-
tion with bandit feedback, i.e., at each round, only the values of
the loss functions are revealed, rather than the entire loss func-
tion, the gradient of the loss function, or some other information.
Bandit feedback is suitable to model various applications, where
the entire function or gradient information is not available, such
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as online source localization, online routing in data networks,
and online advertisement placement in web search [26]. For
such applications, existing online algorithms are inapplicable but
gradient-free (zeroth-order) optimization methods are needed.
Gradient-free optimization methods have a long history [27]
and have an evident advantage since computing a function value
is much simpler than computing its gradient. Gradient-free opti-
mization methods have gained renewed interests in recent years,
e.g., [28]–[31]. Essentially, bandit online convex optimization is
a gradient-free method to solve convex optimization problems.
In a bandit setting, a sublinear static regret bound may not be
guaranteed if the adversary still can arbitrarily choose the loss
function. Under completely adaptive adversary, Agarwal et al.
[9] gave an example to show that any algorithm suffer at least
linear regret. Therefore, the power of the adversary should be
limited to achieve a sublinear regret bound. For a so-called
adaptive adversary [9], the adversary chooses ft based only
on the learner’s past decisions x1, . . . , xt−1, but not on his/her
current decision xt. In other words, the adversary chooses ft
at the beginning of round t, before the learner chooses his/her
decision.

A key step in bandit online convex optimization is to estimate
the gradient of the loss function by sampling the loss function.
Various algorithms have been developed and can be divided
into two categories depending on the number of samplings.
Algorithms with one sampling at each round have been proposed
in [32]–[41]. Specifically, in [32],O(T 3/4) expected static regret
was achieved for Lipschitz-continuous functions. In [33]–[37],
smaller regret bounds were established under additional assump-
tions. Bubeck et al. [38] and Bubeck and Eldan[39] showed
that O(

√
T log(T )) expected static regret can be achieved for

Lipschitz-continuous loss functions, but they did not develop any
explicit algorithm. An algorithm to achieve this bound was pro-
posed in [40] based on the application of the ellipsoid method to
online learning. Algorithms with two or more samplings at each
round have been proposed in [9], [42]–[46]. The expected static
regret bounds can then be reduced compared to the one-sample
case. For example, Shamir [43] proposed a simple algorithm
with two samplings at each round and obtainedO(

√
T ) expected

static regret for Lipschitz-continuous loss functions.
Aforementioned studies did not consider equality or inequal-

ity constraints. In the literature, there are few papers considering
bandit online convex optimization with such constraints, al-
though such constraints are common in applications. Mahdavi et
al. [47] studied online convex optimization with static inequality
constraints and bandit feedback for constraints, whereas Chen
and Giannakis [48] studied online convex optimization with
time-varying inequality constraints and bandit feedback for loss
functions. Cao and Liu [49] studied online convex optimization
with time-varying inequality constraints and bandit feedback
for both loss and constraint functions. Moreover, most existing
bandit online convex optimization studies are in a centralized
setting and only few papers considered distributed bandit online
convex optimization. The consensus-based distributed bandit
online algorithms were proposed in [50]–[52].

This article considers the problem of distributed bandit online
convex optimization with time-varying coupled inequality con-
straints. This problem can be interpreted as a repeated game
between a group of learners and an adversary. The learners
attempt to minimize a sequence of global loss functions and at
the same time satisfy a sequence of coupled constraint functions.
The global loss and the coupled constraint functions are the sum

of local convex loss and constraint functions, respectively. They
are generated adaptively by the adversary. The local loss and
constraint functions are revealed in a bandit manner and the re-
vealed information is held privately by each learner. Specifically,
at each round, each learner can sample his/her local loss and
constraint function at one point (i.e., one-point bandit feedback)
or two points (i.e., two-point bandit feedback). Compared to
existing studies, the contributions of this article are summarized
as follows.

In the one-point bandit feedback setting, we propose a dis-
tributed bandit online algorithm with a one-point sampling gra-
dient estimator to solve the considered optimization problem.
To the best of our knowledge, this is the first algorithm to
solve the online convex optimization problem with time-varying
inequality constraints in the one-point bandit feedback setting.
An advantage of our algorithm is that the total number of rounds
is not used in the algorithm and, thus, does not need to be known
a priori, which is an improvement compared to the one-point
sampling algorithms in [32]–[37], [48], [50], [52]. Moreover,
note that these papers did not consider bandit feedback for time-
varying inequality constraints or did not even consider time-
varying inequality constraints at all. Sublinear expected regret
and constraint violation bounds are achieved by the proposed
algorithm if V (x∗

T ), the path-length of the optimal dynamic
decision sequence, grows sublinearly with a known order. In par-
ticular,O(T θ1) expected static regret andO(T 7/4−θ1) constraint
violation are achieved, where θ1 ∈ (3/4, 5/6] is a user-defined
tradeoff parameter. Specifically, when there are no inequality
constraints, the proposed algorithm achieves O(T 3/4) expected
static regret, which is the same expected static regret bound that
has been achieved by the one-point sampling algorithm in [32].
However, in [32], the total number of iterations T as well as
the Lipschitz constant and upper bound of the loss functions are
needed for the algorithm.

In the two-point bandit feedback setting, we propose a dis-
tributed bandit online algorithm with a two-point sampling
gradient estimator. This algorithm does not require the total
number of rounds or any other parameters related to the loss
or constraint functions, which is different from the two-point
sampling algorithms in [9], [42]–[44], [46]–[49], and [51]. In
an average sense, this algorithm is as efficient as the algo-
rithms proposed in [11], [12], [47], and [53], although Jenatton
et al. [11], Sun et al.[12], and Yi et al.[53] are in a full-
information feedback setting and Mahdavi et al.[47] consider
the bandit setting only for the constraint functions. Sublinear
expected regret and constraint violation bounds are achieved
by the proposed algorithm if the path-length of the optimal
dynamic decision sequence grows sublinearly with a known
order ν ∈ [0, 1). For example, O(T (1+ν)/2) expected dynamic
regret and O(T (3+ν)/4) constraint violation are achieved by our
algorithm. Thus, the bounds achieved by the centralized two-
point sampling bandit algorithms in [44] and [49] are recovered
by our algorithm. Moreover, O(Tmax{κ,1−κ}) expected static
regret and O(T 1−κ/2) constraint violation are also achieved,
where κ ∈ (0, 1) is a user-defined parameter. Thus, the bounds
achieved by the centralized two-point sampling bandit algorithm
in [43] and [47] are also recovered with κ = 1/2. However,
in [43] and [44], static set constraints rather than time-varying
inequality constraints are considered; in [47], static inequality
constraints and full-information feedback for the cost function
are studied; and in [43], [44], [47], and [49], the total number of
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TABLE I
COMPARISON OF THE TWO ALGORITHMS PROPOSED IN THIS ARTICLE TO RELATED WORKS ON BANDIT ONLINE CONVEX OPTIMIZATION

rounds as well as the Lipschitz constant of the loss function are
needed.

The comparison of the two algorithms proposed in this article
to related studies in the literature is summarized in Table I.

The rest of this article is organized as follows. Section II
introduces the preliminaries. Section III gives the problem for-
mulation and a motivating example. Sections IV and V provide
the distributed bandit online algorithms for one- and two-point
bandit feedback, respectively, and present their expected regret
and constraint violation bounds. Section VI gives numerical
simulations for the motivating example and compares the perfor-
mance of the proposed algorithms and the existing algorithms in
the literature. Finally, Section VII concludes this article. Proofs
are given in the Appendix.

Notations: All inequalities and equalities are understood com-
ponentwise. Rp and Rp

+ denote the set of p-dimensional vectors
and nonnegative vectors, respectively. N+ stands for the set
of positive integers. [n] represents the set {1, . . . , n} for any
n ∈ N+. [x]j is the jth element of a vector x ∈ Rp. 〈x, y〉
denotes the standard inner product of two vectors x and y.
x	 stands for the transpose of the vector or matrix x. ‖ · ‖
(‖ · ‖1) represents the Euclidean norm (1-norm) for vectors and
the induced 2-norm (1-norm) for matrices. Bp and Sp are the
unit ball and sphere centered around the origin in Rp under
Euclidean norm, respectively. In denotes the n-dimensional
identity matrix. 1n (0n) stands for the column one (zero) vector
of dimension n. col(z1, . . . , zk) represents the concatenated
column vector of vectors zi ∈ Rni , i ∈ [k]. log(·) is the nat-
ural logarithm. Given two scalar sequences {αt, t ∈ N+} and
{βt > 0, t ∈ N+}, αt = O(βt) means that lim supt→∞(αt/βt)
is bounded, whereas αt = o(βt) means that limt→∞(αt/βt) =
0. For a set K ⊆ Rp, PK(·) denotes the projection operator, i.e.,

PK(x) = arg miny∈K‖x− y‖2 ∀x ∈ Rp. For simplicity, [·]+
is used to denote PK(·) when K = Rp

+.

II. PRELIMINARIES

In this section, we present some definitions and properties
related to graph theory and gradient approximation.

A. Graph Theory

Let Gt = (V, Et) denote a time-varying directed graph, where
V = [n] is the agent set and Et ⊆ V × V is the edge set. A
directed edge (j, i) ∈ Et means that agent i can receive data
from agent j at time t. Let N in

i (Gt) = {j ∈ [n] | (j, i) ∈ Et}
and N out

i (Gt) = {j ∈ [n] | (i, j) ∈ Et} be the sets of in- and
out-neighbors, respectively, of agent i at time t. A directed path
is a sequence of consecutive directed edges. A directed graph
is said to be strongly connected if there is at least one directed
path from any agent to any other agent in the graph. The mixing
matrix Wt ∈ Rn×n at time t fulfills [Wt]ij > 0 if (j, i) ∈ Et or
i = j, and [Wt]ij = 0 otherwise.

B. Gradient Approximation

In this section, we introduce one- and two-point sampling
gradient estimators.

Let f : K → R be a function with K ⊂ Rp. We assume
that K is convex and bounded and has a nonempty interior.
Specifically, we assume that K contains the ball of radius r(K)
centered at the origin and is contained in the ball of radiusR(K),
i.e., r(K)Bp ⊆ K ⊆ R(K)Bp. Flaxman et al. [32] proposed the
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following gradient estimator:

∇̂1f(x) =
p

δ
f(x+ δu)u ∀x ∈ (1− ξ)K (1)

where u ∈ Sp is a uniformly distributed random vector, δ ∈
(0, r(K)ξ] is an exploration parameter, and ξ ∈ (0, 1) is a shrink-
age coefficient. The estimator ∇̂1f only requires to sample the
function at one point, so it is a one-point sampling gradient
estimator. Some intuition for this estimator can be found in [32].
Different from Nesterov and Spokoiny [28], uniform distribution
rather than Gaussian distribution is used to generate u in (1)
since the later may generate unbounded u. The estimator ∇̂1f
is defined over the set (1− ξ)K instead of K, since otherwise
the perturbations may move points outside K. The feasibility of
the perturbations is guaranteed by the following lemma.

Lemma 1 (see Observation 2 in [32]): For any x ∈ (1− ξ)K
and u ∈ Sp, it holds that x+ δu ∈ K for any δ ∈ (0, r(K)ξ].

Our two-point sampling gradient estimator is defined as

∇̂2f(x) =
p

δ
(f(x+ δu)− f(x))u ∀x ∈ (1− ξ)K. (2)

The intuition follows from directional derivatives [42].
Both estimators ∇̂1f and ∇̂2f are unbiased gradient estima-

tors of f̂ , where f̂ is the uniformly smoothed version of f defined
as

f̂(x) = Ev∈Bp [f(x+ δv)] ∀x ∈ (1− ξ)K

with the expectation is taken with respect to uniform distribution.
Some properties of f̂ , ∇̂1f , and ∇̂2f are presented in the
following lemma.

Lemma 2:
1) The uniform smoothing f̂ is differentiable on (1− ξ)K

even when f is not, and for all x ∈ (1− ξ)K

∇f̂(x) = Eu∈Sp

[
∇̂1f(x)

]
= Eu∈Sp

[
∇̂2f(x)

]
.

2) If f is convex on K, then f̂ is convex on (1− ξ)K and

f(x) ≤ f̂(x) ∀x ∈ (1− ξ)K.

3) If f is Lipschitz-continuous on K with constant L0(f) >

0, then f̂ and ∇f̂ are Lipschitz-continuous on (1− ξ)K
with constants L0(f) and pL0(f)/δ, respectively. More-
over ∣∣∣f̂(x)− f(x)

∣∣∣ ≤ δL0(f) ∀x ∈ (1− ξ)K.

4) If f is bounded on K, i.e., there exists F0(f) > 0 such
that |f(x)| ≤ F0(f) ∀x ∈ K, then∣∣∣f̂(x)∣∣∣ ≤ F0(f)∥∥∥∇̂1f(x)

∥∥∥ ≤ pF0(f)

δ
∀x ∈ (1− ξ)K.

5) If f is Lipschitz-continuous on K with constant L0(f) >
0, then ∥∥∥∇̂2f(x)

∥∥∥ ≤ pL0(f) ∀x ∈ (1− ξ)K.

Proof: See Appendix B. �
Intuitively, the key idea of gradient-free optimization methods

is using the smoothed function f̂ to replace the original function
f since they are close when δ is small, as shown in 3) of Lemma 2.
Moreover, the gradient of f̂ can be estimated by the gradient
estimators ∇̂1f or ∇̂2f , as shown in 1). The main difference
between these two gradient estimators is that the norm of ∇̂1f

is large when δ is small, whereas ∇̂2f has a bounded norm,
as shown in 4) and 5), respectively. This difference leads to
improved results for the two-point bandit feedback algorithm,
as will be seen in the later sections.

III. PROBLEM FORMULATION

We consider the problem of distributed bandit online convex
optimization with time-varying coupled inequality constraints.
This problem can be defined as a repeated game between a group
of n learners indexed by i ∈ [n] and an adversary. At round t of
the game, the adversary first arbitrarily chooses n local convex
loss functions {fi,t : Rpi → R, i ∈ [n]} andn local convex con-
straint functions {gi,t : Rpi → Rm, i ∈ [n]}, where pi and m
are positive integers. Then, without knowing {fi,t, i ∈ [n]} and
{gi,t, i ∈ [n]}, all learners simultaneously choose their decisions
{xi,t ∈ Xi, i ∈ [n]}, where Xi ⊆ Rpi are known convex sets.
Each learner i samples the values of fi,t and gi,t at the point xi,t

as well as at other potential points, i.e., the learners receive bandit
feedback from the adversary. These values are held privately by
each learner. At the same moment, the learners exchange data
with their neighbors over a time-varying directed graph Gt. The
goal of the learners is to cooperatively choose a global decision
sequence xT = (x1, . . . , xT ), where T is the total number of
rounds and xt = col(x1,t, . . . , xn,t) is the decision vector, such
that the accumulated global loss

∑T
t=1 ft(xt), where ft(xt) =∑n

i=1 fi,t(xi,t) is the global loss function, is competitive with
the loss of any comparator sequence yT = (y1, . . . , yT ) with
yt = col(y1,t, . . . , yn,t) (i.e., the regret is as small as possible)
and at the same time the constraint violation is as small as
possible.

Specifically, the regret of a global decision sequence xT with
respect to a comparator sequence yT is defined as

Reg(xT ,yT ) =
T∑

t=1

ft(xt)−
T∑

t=1

ft(yt).

In the literature, there are two commonly used comparator se-
quences. One is the optimal dynamic decision sequence in hind-
sight yT = x∗

T = (x∗
1, . . . , x

∗
T ) solving the constrained convex

optimization problem

min
T∑

t=1

ft(xt)

s.t. xt ∈ X, gt(xt) ≤0m ∀t ∈ [T ] (3)

where X = X1 × · · · × Xn ⊆ Rp is the global decision set, p =∑n
i=1 pi, and gt(xt) =

∑n
i=1 gi,t(xi,t) is the coupled constraint

function. In order to guarantee that problem (3) is feasible, we
assume that for any T ∈ N+, the set of all feasible decision se-
quences XT = {(x1, . . . , xT ) : xt ∈ X, gt(xt) ≤ 0m, t ∈ [T ]}
is nonempty. With this standing assumption, an optimal dy-
namic decision sequence to (3) always exists. In this case,
Reg(xT ,x

∗
T ) is called the dynamic regret for xT . The other

comparator sequence is yT = x̌∗
T = (x̌∗

T , . . . , x̌
∗
T ), where x̌∗

T
is the optimal static decision in hindsight solving

min
T∑

t=1

ft(x)

s.t. x ∈ X, gt(x) ≤0m ∀t ∈ [T ]. (4)

Similar to above, in order to guarantee that problem (4)
is feasible, we assume that for any T ∈ N+, the set of

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 16:45:15 UTC from IEEE Xplore.  Restrictions apply. 



4624 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 10, OCTOBER 2021

all feasible static decision sequences X̌T = {(x, . . . , x) : x ∈
X, gt(x) ≤ 0m, t ∈ [T ]} ⊆ XT is nonempty. In this case,
Reg(xT , x̌

∗
T ) is called the static regret. It is straightforward

to see that Reg(xT ,yT ) ≤ Reg(xT ,x
∗
T ) ∀yT ∈ XT , and that

Reg(xT , x̌
∗
T ) ≤ Reg(xT ,x

∗
T ).

For a decision sequencexT , the constraint violation is defined
as ∥∥∥∥∥

[
T∑

t=1

gt(xt)

]
+

∥∥∥∥∥ .
Note that this definition implicitly allows constraint violations
at some times to be compensated by strictly feasible decisions
at other times. This is appropriate for constraints that have a
cumulative nature, such as in applications with energy budgets
enforced through average power constraints.

The considered problem can be viewed as an extension of
the problem studied in [53], from full information feedback to
bandit feedback. As discussed in Section I, two main motivations
of considering bandit feedback are that gradient information is
not available in many applications [26] and computing a function
value is much simpler than computing its gradient [28].

We make the following assumptions on the time-varying
directed graph Gt as well as the loss and constraint functions.

Assumption 1: For any t ∈ N+, the directed graphGt satisfies
the following conditions.

1) There exists a constant w ∈ (0, 1), such that [Wt]ij ≥ w
if [Wt]ij > 0.

2) The mixing matrix Wt is doubly stochastic, i.e.,∑n
i=1[Wt]ij =

∑n
j=1[Wt]ij = 1 ∀i, j ∈ [n].

3) There exists an integer ι > 0 such that the directed graph
(V,∪l=0,...,ι−1Et+l) is strongly connected.

Assumption 2:
1) For each i ∈ [n], the set Xi is convex and closed. More-

over, there exist ri > 0 and Ri > 0 such that

riB
pi ⊆ Xi ⊆ RiB

pi (5)

and ri is known a priori.
2) For each i ∈ [n], {fi,t(x)} and {[gi,t(x)]j , j ∈ [m]} are

convex and uniformly bounded on Xi, i.e., there exist con-
stants Ffi > 0 and Fgi > 0 such that for all t ∈ N+, j ∈
[m], x ∈ Xi

|fi,t(x)| ≤ Ffi , and |[gi,t(x)]j | ≤ Fgi . (6)

3) For each i ∈ [n], fi,t and gi,t are differentiable on Xi.
Moreover, {∇fi,t} and {∇[gi,t(x)]j , j ∈ [m]} are uni-
formly bounded on Xi, i.e., there exist constants Gfi > 0
and Ggi > 0 such that for all t ∈ N+, j ∈ [m], x ∈ Xi

‖∇fi,t(x)‖ ≤ Gfi , and ‖∇[gi,t(x)]j‖ ≤ Ggi . (7)

Assumption 1 is common in the literature on distributed opti-
mization. Assumption 2 appears often in the literature of bandit
online convex optimization. From Assumption 2 and [1, Lemma
2.6], it follows that for all t ∈ N+, i ∈ [n], j ∈ [m], x, y ∈ Xi

|fi,t(x)− fi,t(y)| ≤ Gfi‖x− y‖ (8a)

|[gi,t(x)]j − [gi,t(y)]j | ≤ Ggi‖x− y‖ (8b)

i.e., {fi,t(x)} and {[gi,t(x)]j} are Lipschitz-continuous on Xi

with constants Gfi and Ggi , respectively.

Algorithm 1: Distributed Bandit Online Descent With One-
Point Sampling Gradient Estimator.

1: Input: Nonincreasing sequences {αi,t}, {βi,t},
{γi,t} ⊆ (0,+∞), {ξi,t} ⊆ (0, 1), and
{δi,t} ⊆ (0, riξi,t−1], i ∈ [n], t ∈ N+.

2: Initialize: ui,1 ∈ Spi , zi,1 ∈ (1− ξi,1)Xi,
xi,1 = zi,1 + δi,1ui,1, and qi,1 = 0m, i ∈ [n].

3: for t = 2, . . . , T do
4: for i ∈ [n] in parallel do
5: Select vector ui,t ∈ Spi independently and

uniformly at random.
6: Sample fi,t−1(xi,t−1) and gi,t−1(xi,t−1).
7: Update

q̃i,t =

n∑
j=1

[Wt−1]ijqj,t−1 (9a)

zi,t = P(1−ξi,t)Xi
(zi,t−1 − αi,tai,t) (9b)

xi,t = zi,t + δi,tui,t (9c)

qi,t = [(1− βi,tγi,t)q̃i,t + γi,tgi,t−1(xi,t−1)]+ .

(9d)

8: Broadcast qi,t to N out
i (Gt) and receive qj,t from

j ∈ N in
i (Gt).

9: end for
10: end for
11: Output: xT .

A. Motivating Example

As a motivating example, consider a power grid with n power
generation units. Each unit i has pi conventional and renewable
power generators. The units can communicate through the in-
formation infrastructure. At stage t, let xi,t ∈ Xi and Xi ⊂ Rpi

be the output and the set of feasible outputs of the generators in
unit i, respectively. To generate the output, each unit i suffers
a cost fi,t(xi,t). This local cost fi,t is usually described by a
quadratic function [54], but it is unknown in advance, since fossil
fuel price is fluctuating and renewable energy is uncertain and
unpredictable. Except the local generator limit constraints Xi, all
units need to cooperatively take into account global constraints,
such as power balance and emission constraints. The global
constraints can be modeled as

∑n
i=1 gi,t(xi,t) ≤ 0m, where gi,t

is unit i’s local constraint function. Again, the precise form of
the constraint functions is unknown in advance either since that
power demands can change from 1 h to the next, or that the
emission can change due to the uncertain and unpredictable
features of renewable energy. The goal of the units is to reduce
the global cost while satisfying the constraints.

IV. ONE-POINT BANDIT FEEDBACK

In this section, we propose a distributed bandit online algo-
rithm with a one-point sampling gradient estimator to solve
the considered optimization problem. We then derive ex-
pected regret and constraint violation bounds for the proposed
algorithm.
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A. Distributed Bandit Online Algorithm With One-Point
Sampling Gradient Estimator

The proposed algorithm is given in pseudocode as Algo-
rithm 1. In this algorithm, each agent i maintains four local
sequences: the local primal decision variable sequence {xi,t} ⊆
Xi, the local intermediate decision variable sequence {zi,t} ⊆
(1− ξi,t)Xi, the local dual variable sequence {qi,t} ⊆ Rm

+ , and
the estimates of the average of local dual variables {q̃i,t} ⊆ Rm

+ .
They are updated recursively by the update rules (9a)–(9d). In
(9b), ai,t is the updating direction information for the local
intermediate decision variable defined as

ai,t = ∇̂1fi,t−1(zi,t−1) +
(
∇̂1gi,t−1(zi,t−1)

)	
q̃i,t. (10)

The intuition of the update rules (9a)–(9d) is as follows. The
regularized Lagrangian function associated with the constrained
optimization problem with cost function f and constraint func-
tion g is

A(x, μ) = f(x) + μ	g(x)− β

2
‖μ‖2 (11)

where μ ∈ Rm
+ is the Lagrange multiplier and β > 0 is the

regularization parameter.A(x, μ) is a convex–concave function.
A standard primal-dual algorithm to find its saddle point is

xk+1 = PX

(
xk − α

(
∇f(xk) + (∇g(xk))

	 μk

))
(12a)

μk+1 = [μk + γ(g(xk)− βμk)]+ (12b)

where α > 0 and γ > 0 are the stepsizes used in the primal
and dual updates, respectively. The update rules (9a)–(9d) are
the distributed, online, and gradient-free extensions of (12a)
and (12b). The differences between Algorithm 1 and the cen-
tralized one-point sampling algorithm in [48] are that in [48],
full-information feedback for the constraint functions is used
and in the update of the dual variables in Algorithm 1, i.e., (9d),
there is an additional term −βi,tγi,tq̃i,t, which comes from the
regularized Lagrangian function and it plays a key role to bound
the dual variables, as shown later in Lemma 5.

The sequences {αi,t}, {βi,t}, {γi,t}, {ξi,t}, and {δi,t} used in
Algorithm 1 are predetermined and the vector sequences {ui,t}
are randomly selected. Moreover, {q̃i,t}, {zi,t}, {xi,t}, and
{qi,t} are random vector sequences generated by Algorithm 1.
Let Ut denote the σ-algebra generated by the independent and
identically distributed random variables u1,t, . . . , un,t and let
Ut =

⋃t
s=1 Us. It is straightforward to see that q̃t+1, zi,t, xi,t−1,

and qi,t, i ∈ [n] depend on Ut−1 and are independent of Us for
all s ≥ t.

B. Expected Regret and Constraint Violation Bounds

This section states the main results on the expected regret and
constraint violation bounds for Algorithm 1. The following theo-
rem characterizes these bounds based on some specially selected
stepsizes, shrinkage coefficients, and exploration parameters.

Theorem 1: Suppose Assumptions 1 and 2 hold. For any T ∈
N+, let xT be the sequence generated by Algorithm 1 with

αi,t =
r2i

4mp2iF
2
gi
tθ1

, βi,t =
2

tθ2
, γi,t =

1

t1−θ2

ξi,t =
1

(t+ 1)θ3
, δi,t =

ri
(t+ 1)θ3

, i ∈ [n], t ∈ N+ (13)

where θ1 ∈ (0, 1), θ2 ∈ (0, θ1/3), and θ3 ∈ (θ2, (θ1 − θ2)/2]
are constants. Then, for any comparator sequence yT ∈ XT

E [Reg(xT ,yT )] ≤ C1T
max{θ1,1−θ1+2θ3,1−θ3+θ2}

+ C1,1T
θ1V (yT ) (14a)

E

[∥∥∥∥∥
[

T∑
t=1

gt(xt)

]
+

∥∥∥∥∥
]
≤ C2T

1−θ2/2 (14b)

where C1 =
∑n

i=1(
mFgGgi

(2ri+Ri)

1−θ3+θ2
+

Gfi
(2ri+Ri)

1−θ3
+

F 2
fi

4mF 2
gi

(1−θ1+2θ3)
)+C1,1+

C0

θ2
, C2=

√
C2,1(2

∑n
i=1 Ffi+C1),

Fg = maxi∈[n]{Fgi}, C1,1 =
∑n

i=1

8mp2
iF

2
gi

R2
i

r2i
, C0 =

6mn2F 2
g τ

1−λ
+ 2mnF 2

g , τ = (1− w
2n2 )

−2 > 1, λ = (1− w
2n2 )

1
ι ,

C2,1 = 2n(1 + maxi∈[n]{
F 2

fi

F 2
gi

(1−θ1+2θ3)
}+ 1

1−θ2
), w and ι are

given in Assumption 1, ri, Ri, Ffi , Fgi , Gfi , and Ggi are given
in Assumption 2, and

V (yT ) =

T−1∑
t=1

n∑
i=1

‖yi,t+1 − yi,t‖

is the accumulated variation (path-length) of the comparator
sequence yT .

Proof: See Appendix C. �
Remark 1: From (14b), we see that Algorithm 1 achieves

sublinear expected constraint violation. From (14a), we see that
Algorithm 1 can achieve sublinear expected dynamic regret if
V (x∗

T ) grows sublinearly with a known order. In this case, there
exists a known constant ν ∈ [0, 1), such that V (x∗

T ) = O(T ν),
then setting yT = x∗

T and θ1 ∈ (0, 1− ν) in Theorem 1 gives
E[Reg(xT ,x

∗
T )] = o(T ).

Remark 2: To the best of our knowledge, Algorithm 1 is the
first algorithm to solve the online convex optimization problem
with time-varying inequality constraints in the one-point bandit
feedback setting. In Algorithm 1, the information about the
total number of rounds is not used, which is an improvement
compared to the one-point sampling algorithms in [32]–[37],
[48], [50], [52]. Note that these papers did not consider ban-
dit feedback for time-varying inequality constraints or did not
even consider time-varying inequality constraints at all. The
potential drawback of Algorithm 1 is that in order to use the
sequences defined in (13), each learner i needs to know Fgi ,
the uniform upper bound of his/her time-varying constraint
function. One way to overcome this is to let αi,t = τi/t

θ1

and θ3 ∈ (θ2, (θ1 − θ2)/2), where τi > 0 is a user-defined pa-
rameter. In this case, similar to the way we prove (14a) and
(14b), we can establish similar results as (14a) and (14b) for
T ≥ (4mmaxi∈[n]{p2iF 2

gi
τi/r

2
i })1/(θ1−θ2−2θ3) rather than any

T ∈ N+.
SettingyT = x̌∗

T in Theorem 1 gives following results, which
characterize the expected static regret and constraint violation
bounds.

Corollary 1: Under the same conditions as in Theorem 1 with
θ1 ∈ (3/4, 5/6], θ2 = 2θ1 − 3/2, and θ3 = θ1 − 1/2, it holds
that

E [Reg(xT , x̌
∗
T )] ≤ C1T

θ1 (15a)

E

[∥∥∥∥∥
[

T∑
t=1

gt(xt)

]
+

∥∥∥∥∥
]
≤ C2T

7/4−θ1 . (15b)
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Algorithm 2: Distributed Bandit Online Descent With Two-
Point Sampling Gradient Estimator.

1: Input: Nonincreasing sequences {αi,t}, {βi,t},
{γi,t} ⊆ (0,+∞), {ξi,t} ⊆ (0, 1), and
{δi,t} ⊆ (0, riξi,t−1], i ∈ [n], t ∈ N+.

2: Initialize: xi,1 ∈ (1− ξi,1)Xi and qi,1 = 0m, i ∈ [n].
3: for t = 2, . . . , T do
4: for i ∈ [n] in parallel do
5: Select vector ui,t−1 ∈ Spi independently and

uniformly at random.
6: Sample fi,t−1(xi,t−1 + δi,t−1ui,t−1),

fi,t−1(xi,t−1), gi,t−1(xi,t−1 + δi,t−1ui,t−1), and
gi,t−1(xi,t−1).

7: Update

q̃i,t =

n∑
j=1

[Wt−1]ijqj,t−1 (16a)

xi,t = P(1−ξi,t)Xi
(xi,t−1 − αi,tbi,t) (16b)

qi,t = [(1− γi,tβi,t)q̃i,t + γi,tci,t]+ . (16c)

8: Broadcast qi,t to N out
i (Gt) and receive qj,t from

j ∈ N in
i (Gt).

9: end for
10: end for
11: Output: xT .

Remark 3: The parameter θ1 in Corollary 1 is a user-defined
parameter influencing the step length in (13). It enables the
tradeoff between the expected static regret bound and the ex-
pected constraint violation bound. Same as in [32], if there are
no inequality constraints, i.e., gi,t ≡ 0m ∀i ∈ [n] ∀t ∈ N+,
then by setting αi,t = 1/t3/4, βi,t = γi,t = 0, ξi,t = 1/(t+

1)1/4, andδi,t = ri/(t+ 1)1/4 in (13), we have that (15a)
can be replaced by E[Reg(xT , x̌

∗
T )] ≤ Ĉ1T

3/4, where Ĉ1 =∑n
i=1(4Gfi(2ri +Ri)/3 + 6R2

i + 4p2iF
2
fi
/(3r2i )). Hence, Al-

gorithm 1 achieves the same expected static regret bound as
the bandit algorithm in [32]. However, in [32], the total number
of rounds, the Lipschitz constant, and upper bound of the loss
functions need to be known in advance to run the algorithm.

V. TWO-POINT BANDIT FEEDBACK

In this section, we consider a novel two-point bandit feedback
algorithm.

A. Distributed Bandit Online Algorithm With Two-Point
Sampling Gradient Estimator

With two-point bandit feedback at each round, each learner
samples the values of his/her local loss and constraint at two
points. This gives the freedom to design a more efficient algo-
rithm, which at the same time avoids the potential drawback of
Algorithm 1 stated in Remark 2 on knowing the upper bounds of
the time-varying constraint functions. The proposed algorithm
is given in pseudocode as Algorithm 2. In (16b), bi,t is the
updating direction information for the local primal decision
variable defined as

bi,t = ∇̂2fi,t−1(xi,t−1) +
(
∇̂2gi,t−1(xi,t−1)

)	
q̃i,t. (17)

Similarly, in (16c), ci,t is the updating direction information for
the local dual variable defined as
ci,t = ∇̂2gi,t−1(xi,t−1)(xi,t − xi,t−1) + gi,t−1(xi,t−1). (18)
In addition to that Algorithm 2 uses a two-point sampling

gradient estimator, another difference between Algorithms 1 and
2 is that when updating the local dual variable, in Algorithm 2,
ci,t is used to replace gi,t−1(xi,t−1), which is a key difference
between Algorithm 2 and the centralized two-point sampling
algorithm in [49]. This modification is inspired by the algorithms
proposed in [13] and [53] and helps to avoid using the uniform
upper bound of each learner’s time-varying constraint function,
i.e., to remove the potential drawback stated in Remark 2.

B. Expected Regret and Constraint Violation Bounds

This section states the main results on the expected regret and
constraint violation bounds for Algorithm 2.

Theorem 2: Suppose Assumptions 1 and 2 hold. For any T ∈
N+, let xT be the sequence generated by Algorithm 2 with

αt =
1

tκ
, βt =

1

tκ
, γt =

1

t1−κ

ξi,t =
1

t+ 1
, δi,t =

ri
t+ 1

, i ∈ [n], t ∈ N+ (19)

where κ ∈ (0, 1) is a constant. Then, for any comparator se-
quence yT ∈ XT

E [Reg(xT ,yT )] ≤ C3T
max{κ,1−κ} + 2RmaxT

κV (yT )

(20a)

E

[∥∥∥∥∥
[

T∑
t=1

gt(xt)

]
+

∥∥∥∥∥
]
≤ C4T

1−κ/2 (20b)

where C3 =
∑n

i=1(2Gfi(ri +Ri) + 8R2
i +

2
√
mB1Ggi

Ri

κ +
p2
iG

2
fi

1−κ ) + Ĉ0

κ , C4 =
√

C4,1(2
∑n

i=1 Ffi + C3), C4,1 =∑n
i=1 2(

2mp2
iG

2
gi

+1

1−κ + 1), Ĉ0 =
6n2

√
mτB1Fg

1−λ
+ 2nB2

1 ,
B1 =

√
mFg +

√
mpGgRmax, and Rmax = maxi∈[n]{Ri}.

Proof: See Appendix D. �
Remark 4: The bounds obtained in (20a) and (20b) are the

same as the bounds achieved in [53] under the same assumptions,
although Yi et al. [53] considered a full-information feedback
setting. In other words, in an average sense, Algorithm 2, which
only uses two-point bandit feedback, is as efficient as the algo-
rithm proposed in [53], which uses full-information feedback.
By comparing (13), (14a), and (14b) with (19), (20a), and
(20b), respectively, we see that if a two-point sampling gradient
estimator is used, then not only the uses of Fgi , the uniform
upper bound of the time-varying constraint functions, is avoided,
but also the upper bounds of the expected regret and constraint
violation are both reduced. An advantage of Algorithm 2 is that
the total number of rounds or any other parameters related to
loss or constraint functions are not used, which is different from
the two-point sampling algorithms in [9], [42]–[44], [46]–[49],
[51].

Remark 5: Similar to the analysis in Remark 1, from (20b),
we know that Algorithm 2 achieves sublinear expected con-
straint violation. Algorithm 2 can also achieve sublinear ex-
pected dynamic regret ifV (x∗

T ) grows sublinearly with a known
order. In this case, there exists a known constant ν ∈ [0, 1),
such that V (x∗

T ) = O(T ν). Then, setting yT = x∗
T and κ ∈
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(0, 1− ν) in Theorem 2 gives E[Reg(xT ,x
∗
T )] = o(T ). One

special case is to set κ = (1− ν)/2 in (20a) and (20b). It gives
E[Reg(xT , x̌

∗
T )] = O(T (1+ν)/2) and E[‖[∑T

t=1 gt(xt)]+‖] =
O(T (3+ν)/4), which recovers the bounds achieved by the cen-
tralized two-point sampling bandit algorithms in [44] and [49].

Setting yT = x̌∗
T in Theorem 2 gives the following results.

Corollary 2: Under the same conditions as stated in Theo-
rem 2, it holds that

E [Reg(xT , x̌
∗
T )] ≤ C3T

max{κ,1−κ} (21a)

E

[∥∥∥∥∥
[

T∑
t=1

gt(xt)

]
+

∥∥∥∥∥
]
≤ C4T

1−κ/2. (21b)

Remark 6: The parameter κ for the sequences {αi,t}, {βi,t},
and {γi,t} in Corollary 2 enables the user to tradeoff the
expected static regret bound for the expected constraint vi-
olation bound. For example, setting κ = 1/2 in Corollary 2
gives E[Reg(xT , x̌

∗
T )] = O(

√
T ) and E[‖[∑T

t=1 gt(xt)]+‖] =
O(T 3/4). These two bounds are the same as the bounds achieved
in [11], [12], and [47]. In other words, Algorithm 2 is as efficient
as the algorithms proposed in [11], [12], and [47]. However,
Jenatton et al. [11] and Sun et al. [12] use full-information feed-
back and Mahdavi et al. [47] consider bandit setting only for the
constraint functions. The algorithms proposed in [11], [12], and
[47] are centralized and the constraint functions considered in
[11] and [47] are time-invariant. Moreover, in [12] and [47], the
total number of rounds and in [11], [12], [47], the upper bounds
of the loss and constraint functions and their subgradients need
to be known in advance to execute the algorithms. Also, an
O(

√
T ) expected static regret bound was achieved by the bandit

algorithm in [43]. However, in [43], static set constraints (rather
than time-varying inequality constraints) are considered and
the proposed algorithm is centralized (rather than distributed).
Moreover, in [43], the total number of rounds and the Lipschitz
constant need to be known in advance.

Remark 7: If the learners exchange data with their neigh-
bors over a static complete graph rather than the time-varying
directed graph, then with some modifications to the proposed
algorithms and proofs, we can show that all the results on
constraint violation still hold if we replace the constraint vi-
olation metric ‖[∑T

t=1 gt(xt)]+‖ by the more stricter metric∑T
t=1 ‖[g(xt)]+‖2. It is unclear how to extend this over general

time-varying directed graphs. We leave this for future work.

VI. NUMERICAL SIMULATIONS

This section evaluates the performance of Algorithms 1
and 2 in solving the power generation example introduced in
Section III-A. The local cost and constraint functions are denoted

fi,t(xi,t) = x	
i,tΠ

	
i,tΠi,txi,t + 〈πi,t, xi,t〉

gi,t(xi,t) = x	
i,tΦ

	
i,tΦi,txi,t + 〈φi,t, xi,t〉+ ci,t

where Πi,t ∈ Rpi×pi , πi,t ∈ Rpi

+ , Φi,t ∈ Rpi×pi , φi,t ∈ Rpi ,
and ci,t ∈ R. At each time t, an undirected graph is used as
the communication graph. Specifically, connections between
vertices are random and the probability of two vertices be-
ing connected is ρ > 0. Moreover, edges (i, i+ 1), i ∈ [n− 1]
are added and [Wt]ij = 1/n if (j, i) ∈ Et and [Wt]ii = 1−∑

j∈N in
i (Gt)

[Wt]ij . The parameters are set as: n = 50, m = 1,
pi = 6, Xi = [−10, 10]pi , and ρ = 0.2. Each element of Πi,t,

Fig. 1. Comparison of evolutions of the expected dynamic regret
E[Reg(xT ,x∗

T )]/T .

Fig. 2. Comparison of evolutions of the expected constraint violation
E[‖[

∑T

t=1
gt(xt)]+‖]/T .

πi,t, Φi,t, φi,t, and ci,t are drawn from the discrete uniform
distribution in [−5, 5], [0,10], [−5, 5], [−5, 5], and [−5,−1],
respectively. Under aforementioned settings, Assumptions 1 and
2 hold.

Since there are no other distributed bandit online algorithms to
solve the problem of online optimization with time-varying cou-
pled inequality constraints, we compare our Algorithms 1 and
2 with the centralized one- and two-point sampling algorithms
in [48], which use full-information feedback for the constraint
functions, and the centralized two-point sampling algorithm in
[49]. Figs. 1 and 2 show the evolutions of E[Reg(xT ,x

∗
T )]/T

and E[‖[∑T
t=1 gt(xt)]+‖]/T , respectively. The average is taken

over 100 realizations. Note that E[‖[∑T
t=1 gt(xt)]+‖]/T → 0.

This is in agreement with (14b), (20b), and the theoretical results
shown in [48] and [49]. From the zoomed figures, we see that the
centralized algorithms in [48] and [49] achieve smaller expected
dynamic regret and constraint violation than our distributed
algorithms, which is reasonable. We also see that Algorithm 2
achieves smaller expected dynamic regret and constraint viola-
tion than Algorithm 1, which is consistent with our theoretical
results.
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VII. CONCLUSION

In this article, we considered the distributed bandit online con-
vex optimization problem with time-varying coupled inequality
constraints. We proposed distributed bandit online algorithms
with one- and two-point bandit feedback. We showed that sub-
linear expected regret and constraint violation can be achieved
by both proposed algorithms. We showed that the results can be
cast as nontrivial extensions of existing literature on online opti-
mization and bandit feedback. Future research directions include
considering an adaptive choice of the number of samplings at
each round by different learners, relaxing the doubly stochastic
assumption, studying sampling noise, achieving a smaller regret
bound under stronger assumptions for the cost functions, and
trying to establish sublinear constraint violation under a stricter
constraint violation metric.

APPENDIX

A. Useful Lemmas

The following two lemmas are used in the proofs.
Lemma 3: Let K be a nonempty closed convex subset of

Rp and let a, b, andc be three vectors in Rp. The following
statements hold.

1) For each x ∈ Rp, PK(x) exists and is unique.
2) PK(x) is nonexpansive, i.e.,

‖PK(x)− PK(y)‖ ≤ ‖x− y‖ ∀x, y ∈ Rp. (22)

3) If a ≤ b, then

‖[a]+‖ ≤ ‖b‖and[a]+ ≤ [b]+. (23)

4) If x1 = PK(c− a), then

2〈x1 − y, a〉
≤ ‖y − c‖2 − ‖y − x1‖2 − ‖x1 − c‖2 ∀y ∈ K. (24)

Proof: The first two parts are from [55, Th. 1.5.5].
Substituting x = a and y = a− b into (22) with K = Rp

+

gives (23). If a ≤ b, then it is straightforward to see [a]+ ≤ [b]+
since all inequalities are understood componentwise.

Denote h(y) = ‖c− y‖2 + 2〈a, y〉. Then, x1 =
arg miny∈Kh(y). This optimality condition implies that

〈x1 − y,∇h(x1)〉 ≤ 0 ∀y ∈ K.

Substituting ∇h(x1) = 2x1 − 2c+ 2a into aforementioned in-
equality yields (24). �

Lemma 4: For any constants θ ∈ [0, 1], κ ∈ [0, 1), and s ≤
T ∈ N+, it holds that

(t+ 1)κ
(

1

tθ
− 1

(t+ 1)θ

)
≤ 1

t
∀t ∈ N+ (25a)

T∑
t=s

1

tκ
≤ T 1−κ

1− κ
(25b)

T∑
t=s

1

t
≤ 2 log(T ), ifT ≥ 3. (25c)

Proof:
1) Denote ht(θ) =

1
tθ

− 1
(t+1)θ

. Then, for any fixed

t ∈ N+, maxθ∈[0,1]{ht(θ)} = ht(1) since dht(θ)
dθ ≥

0 ∀θ ∈ [0, 1]. Hence, (t+ 1)κht(θ) ≤ (t+ 1)κht(1) =
(t+1)κ

t(t+1) ≤ 1
t , i.e., (25a) holds.

2) (25b) holds since
T∑

t=s

1

tκ
≤
∫ T

s−1

1

tκ
dt =

T 1−κ − (s− 1)1−κ

1− κ
≤ T 1−κ

1− κ
.

3) (25c) holds since
T∑

t=s

1

t
≤1

s
+

∫ T

s

1

t
dt=

1

s
+ log(T )− log(s)≤2 log(T ).

�
B. Proof of Lemma 2

1) ∇f̂(x) = Eu∈Sp [∇̂1f(x)] is the result of [32, Lemma
1]. ∇f̂(x) = Eu∈Sp [∇̂2f(x)] since Eu∈Sp [f(x)u] =
f(x)Eu∈Sp [u] = 0p.

2) (1− ξ)K is convex since K is convex.
For any x, y ∈ (1− ξ)K and α ∈ [0, 1], then αx+ (1−
α)y ∈ (1− ξ)K since (1− ξ)K is convex andαx+ (1−
α)y + δv ∈ K due to Lemma 1. Moreover

f̂(αx+ (1− α)y) = Ev∈Bp [f(αx+ (1− α)y + δv)]

≤ Ev∈Bp [αf(x+ δv) + (1− α)f(y + δv)]

= αf̂(x) + (1− α)f̂(y).

Hence, f̂ is convex on (1− ξ)K.
From Lemma 1, we know that (1− ξ)K is a subset of the
interior of K. Then, for any x ∈ (1− ξ)K, from [56, Th.
3.1.15], we know that ∇f(x) exists. Moreover

f̂(x) = Ev∈Bp [f(x+ δv)]

≥ Ev∈Bp [f(x) + δ〈∇f(x), v〉] = f(x).

3) For any x, y ∈ (1− ξ)K∣∣∣f̂(x)− f̂(y)
∣∣∣ = |Ev∈Bp [f(x+ δv)− f(y + δv)]|

≤ Ev∈Bp [|f(x+ δv)− f(y + δv)|]
≤ Ev∈Bp [L0(f)‖x− y‖] = L0(f)‖x− y‖.

Hence, f̂ is Lipschitz-continuous on (1− ξ)K with con-
stant L0(f).
Similarly∥∥∥∇f̂(x)−∇f̂(y)

∥∥∥
=

p

δ
‖Eu∈Sp [f(x+ δu)u− f(y + δu)u]‖

≤ p

δ
Eu∈Sp [|f(x+ δu)− f(y + δu)| ‖u‖]

≤ p

δ
Eu∈Sp [L0(f)‖x− y‖] = pL0(f)

δ
‖x− y‖.

Hence, ∇f̂ is Lipschitz-continuous on (1− ξ)K with
constant pL0(f)/δ.
For any x ∈ (1− ξ)K∣∣∣f̂(x)− f(x)

∣∣∣ = |Ev∈Bp [f(x+ δv)]−Ev∈Bp [f(x)]|

≤ Ev∈Bp [|f(x+ δv)− f(x)|]
≤ Ev∈Bp [δL0(f)‖v‖] ≤ Ev∈Bp [δL0(f)] = δL0(f).

4) For any x ∈ (1− ξ)K and u ∈ Sp∣∣∣f̂(x)∣∣∣ = |Ev∈Bp [f(x+ δv)]|
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≤ Ev∈Bp [|f(x+ δv)|] ≤ F0(f)

and ∥∥∥∇̂1f(x)
∥∥∥ =

∥∥∥p
δ
f(x+ δu)u

∥∥∥
≤ p

δ
|f(x+ δu)|‖u‖ ≤ pF0(f)

δ
.

5) For any x ∈ (1− ξ)K and u ∈ Sp∥∥∥∇̂2f(x)
∥∥∥ =

∥∥∥p
δ
(f(x+ δu)− f(x))u

∥∥∥
≤ pL0(f)

δ
‖x+ δu− x‖‖u‖ = pL0(f).

C. Proof of Theorem 1

To prove Theorem 1, the following three lemmas are used.
Lemma 5 presents the results on the local dual variables, whereas
Lemma 6 provides an upper bound for the regret of one round.
Lemma 7 provides the expected regret constraint violation
bounds for Algorithm 1 for the general case.

To simplify notation, we denote βt = βi,t, γt = γi,t, and ξt =
ξi,t.

Lemma 5: Suppose Assumptions 1 and 2 hold. For all i ∈ [n]
and t ∈ N+, q̃i,t and qi,t generated by Algorithm 1 satisfy

‖q̃i,t+1‖ ≤
√
mFg

βt
, ‖qi,t‖ ≤

√
mFg

βt
(26a)

‖q̃i,t+1 − q̄t‖ ≤ 2
√
mnFgτ

t−1∑
s=1

γs+1λ
t−1−s (26b)

Δt+1

2γt+1
≤ (q̄t − q)	gt(xt) + 2mnF 2

g γt+1

+
nβt+1

2
‖q‖2 + d1(t) (26c)

where q̄t =
1
n

∑n
i=1 qi,t

Δt =

n∑
i=1

‖qi,t − q‖2 − (1− βtγt)

n∑
i=1

‖qi,t−1 − q‖2 (27)

q is an arbitrary vector in Rm
+ , and d1(t) =

2mn2F 2
g τ
∑t

s=1 γs+1λ
t−s.

Proof:
1) From (6), we have

‖gi,t(xi,t)‖ ≤ √
mFg, ∀i ∈ [n] ∀t ∈ N+. (28)

We prove (26a) by induction.
It is straightforward to see that qi,1 = q̃i,2 = 0m ∀i ∈
[n], thus ‖q̃i,2‖ ≤

√
mFg

β1
, ‖qi,1‖ ≤

√
mFg

β1
∀i ∈ [n]. As-

sume that (26a) is true at time t for all i ∈ [n]. We show
that it remains true at time t+ 1. First, from (23), (9d),
(28), 1− γt+1βt+1 ≥ 0, andβt ≥ βt+1, we know that for
all i ∈ [n]

‖qi,t+1‖ ≤ (1− γt+1βt+1)‖q̃i,t+1‖+ γt+1‖gi,t(xi,t)‖

≤ (1− γt+1βt+1)

√
mFg

βt
+ γt+1

√
mFg

≤ (1− γt+1βt+1)

√
mFg

βt+1
+ γt+1

√
mFg ≤

√
mFg

βt+1
.

Then, the convexity of norms and
∑n

j=1[Wt]ij = 1 yield

‖q̃i,t+2‖ ≤
n∑

j=1

[Wt+1]ij‖qj,t+1‖ ≤
n∑

j=1

[Wt]ij

√
mFg

βt+1

=

√
mFg

βt+1
∀i ∈ [n].

Thus, (26a) follows.
2) Note that (9d) can be rewritten as

qi,t+1 =

n∑
j=1

[Wt]ijqj,t + εqi,t (29)

where εqi,t = [(1− γt+1βt+1)q̃i,t+1 + γt+1gi,t(xi,t)]+ −
q̃i,t+1. Then, (22), (26a), and (28) give

‖εqi,t‖ ≤ ‖ − γt+1βt+1q̃i,t+1 + γt+1gi,t(xi,t)‖
≤ 2

√
mFgγt+1 ∀i ∈ [n]. (30)

Then, from Assumption 1, [20, Lemma 2], qi,1 =
0m ∀i ∈ [n], and (30), we know that for any i ∈ [n] and
t ∈ N+

‖qi,t+1 − q̄t+1‖ ≤ 2
√
mnFgτ

t∑
s=1

γs+1λ
t−s. (31)

Thus, (26b) follows since
∑n

j=1[Wt]ij = 1

and ‖q̃i,t+1 − q̄t‖ = ‖∑n
j=1[Wt]ijqj,t − q̄t‖ ≤∑n

j=1[Wt]ij‖qj,t − q̄t‖.
3) Applying (22) to (9d) yields

‖qi,t − q‖2 ≤ ‖(1− βtγt)q̃i,t + γtgi,t−1(xi,t−1)− q‖2

= ‖q̃i,t − q‖2 + γ2
t ‖gi,t−1(xi,t−1)− βtq̃i,t‖2

+ 2γt[q̃i,t − q]	gi,t−1(xi,t−1)− 2βtγt[q̃i,t − q]	q̃i,t.
(32)

For the first term of the right-hand side of (32), by convex-
ity of norms and

∑n
j=1[Wt−1]ij = 1, it can be concluded

that

‖q̃i,t − q‖2 =

∥∥∥∥∥∥
n∑

j=1

[Wt−1]ijqj,t−1 −
n∑

j=1

[Wt−1]ijq

∥∥∥∥∥∥
2

≤
n∑

j=1

[Wt−1]ij‖qj,t−1 − q‖2. (33)

For the second term of the right-hand side of (32), (26a),
and (28) yield

γ2
t ‖gi,t−1(xi,t−1)− βtq̃i,t‖2 ≤ (

2
√
mFgγt

)2
. (34)

For the fourth term of the right-hand side of (32), we have

2γt[q̃i,t − q]	gi,t−1(xi,t−1)

= 2γt[q̄t−1 − q]	gi,t−1(xi,t−1)

+ 2γt[q̃i,t − q̄t−1]
	gi,t−1(xi,t−1). (35)

Moreover, from (28) and (26b), we have

2γt[q̃i,t − q̄t−1]
	gi,t−1(xi,t−1)

≤ 2γt‖q̃i,t − q̄t−1‖‖gi,t−1(xi,t−1)‖ ≤ 2γtd1(t− 1)

n
.

(36)
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For the last term of the right-hand side of (32), neglecting
the nonnegative term βtγt‖q̃i,t‖2 gives

−2βtγt[q̃i,t − q]	q̃i,t ≤ βtγt
(‖q‖2 − ‖q̃i,t − q‖2) .

(37)

Combining (32)–(37), summing over i ∈ [n], dividing by
2γt, using

∑n
i=1[Wt−1]ij = 1 ∀t ∈ N+, setting t = t+

1, and rearranging the terms yields (26c). �
Lemma 6: Suppose Assumptions 1 and 2 hold. For all i ∈ [n],

let {xt} be the sequence generated by Algorithm 1 and {yt} be
an arbitrary sequence in X, then

ft(xt)− ft(yt)

≤ (q̄t)
	(gt(yt)− gt(xt)) + 2d1(t) + d2(t)

+

n∑
i=1

p2iF
2
fi
αi,t+1

δ2i,t
+

n∑
i=1

2Ri‖yi,t+1 − yi,t‖
αi,t+1

+ d3(t) +EUt
[d4(t)] ∀t ∈ N+ (38)

where d1(t) is given in Lemma 5, d2(t) =
∑n

i=1{(2δi,t +
Riξt)(

√
mGgi‖qi,t‖+Gfi) +

2R2
i (ξt−ξt+1)
αi,t+1

}, d3(t) =

2mmaxi∈[n]{p2
iF

2
gi

αi,t+1

δ2i,t
}(n‖q‖2 +∑n

i=1 ‖qi,t − q‖2),
d4(t) =

∑n
i=1

‖y̌i,t−zi,t‖2−‖y̌i,t+1−zi,t+1‖2
2αi,t+1

, and y̌i,t =

(1− ξt)yi,t.
Proof: For any i ∈ [n], t ∈ N+, and x ∈ (1− ξt)Xi, denote

f̂i,t(x) = Ev∈Bp [fi,t(x+ δi,tv)]

ĝi,t(x) = Ev∈Bp [gi,t(x+ δi,tv)].

From Lemma 2, (6), (28), (8a), and (8b), we know that f̂i,t(x)
and ĝi,t(x) are convex on (1− ξt)Xi, and for any i ∈ [n], t ∈
N+, and x ∈ (1− ξt)Xi

∇f̂i,t(x) = EUt

[
∇̂1fi,t(x)

]
(39a)

fi,t(x) ≤ f̂i,t(x) ≤ fi,t(x) +Gfiδi,t (39b)∥∥∥∇̂1fi,t(x)
∥∥∥ ≤ piFfi

δi,t
(39c)

∇ĝi,t(x) = EUt

[
∇̂1gi,t(x)

]
(39d)

gi,t(x) ≤ ĝi,t(x) ≤ gi,t(x) +Ggiδi,t1m (39e)∥∥∥∇̂1gi,t(x)
∥∥∥ ≤

√
mpiFgi

δi,t
(39f)

‖ĝi,t(x)‖ ≤ √
mFgi . (39g)

Then, (8a), (8b), (5), and (39b) yield

|fi,t(xi,t)− fi,t(zi,t)| ≤ Gfi‖xi,t − zi,t‖ ≤ Gfiδi,t (40a)

‖gi,t(xi,t)− gi,t(zi,t)‖
≤ √

mGgi‖xi,t − zi,t‖ ≤ √
mGgiδi,t (40b)

f̂i,t(y̌i,t)− fi,t(yi,t)

= fi,t(y̌i,t)− fi,t(yi,t) + f̂i,t(y̌i,t)− fi,t(y̌i,t)

≤ Gfi‖y̌i,t − yi,t‖+ f̂i,t(y̌i,t)− fi,t(y̌i,t)

≤ GfiRiξt +Gfiδi,t (40c)

fi,t(zi,t)− f̂i,t(zi,t) ≤ 0 (40d)

‖gi,t(y̌i,t)− gi,t(yi,t)‖ ≤ √
mGgiRiξt. (40e)

From that f̂i,t(x) is convex on (1− ξt)Xi, we have that

f̂i,t(zi,t)− f̂i,t(y̌i,t) ≤
〈
∇f̂i,t(zi,t), zi,t − y̌i,t

〉
=
〈
EUt

[
∇̂1fi,t(zi,t)

]
, zi,t − y̌i,t

〉
= EUt

[〈
∇̂1fi,t(zi,t), zi,t − y̌i,t

〉]
(41)

where the first equality holds from (39a) and the last equality
holds since zi,t is independent of Ut.

Next, we rewrite the right-hand side of (41) into two terms
and bound them individually.

EUt

[〈
∇̂1fi,t(zi,t), zi,t − y̌i,t

〉]
= EUt

[〈
∇̂1fi,t(zi,t), zi,t − zi,t+1

〉]
+EUt

[〈
∇̂1fi,t(zi,t), zi,t+1 − y̌i,t

〉]
. (42)

For the first term of the right-hand side of (42), the Cauchy–
Schwarz inequality and (39c) give〈

∇̂1fi,t(zi,t), zi,t − zi,t+1

〉

≤
∥∥∥∇̂1fi,t(zi,t)

∥∥∥ ‖zi,t − zi,t+1‖ ≤ piFfi

δi,t
‖zi,t − zi,t+1‖

≤ p2iF
2
fi
αi,t+1

δ2i,t
+

1

4αi,t+1
‖zi,t − zi,t+1‖2. (43)

For the second term of the right-hand side of (42), it follows
from (10) that

EUt

[〈
∇̂1fi,t(zi,t), zi,t+1 − y̌i,t

〉]

= EUt

[〈(
∇̂1gi,t(zi,t)

)	
q̃i,t+1, y̌i,t − zi,t+1

〉]

+EUt
[〈ai,t+1, zi,t+1 − y̌i,t〉]

= EUt

[〈(
∇̂1gi,t(zi,t)

)	
q̃i,t+1, y̌i,t − zi,t

〉]

+EUt

[〈(
∇̂1gi,t(zi,t)

)	
q̃i,t+1, zi,t − zi,t+1

〉]

+EUt
[〈ai,t+1, zi,t+1 − y̌i,t〉] . (44)

For the first term of the right-hand side of (44), noting that xi,t

and q̃i,t+1 are dependent of Ut, from (39d), q̃i,t+1 ≥ 0m, q̄t ≥
0m, (39e), and that ĝi,t is convex, we have

EUt

[〈(
∇̂1gi,t(zi,t)

)	
q̃i,t+1, y̌i,t − zi,t

〉]

=

〈(
EUt

[
∇̂1gi,t(zi,t)

])	
q̃i,t+1, y̌i,t − zi,t

〉

=
〈
(∇ĝi,t(zi,t))

	 q̃i,t+1, y̌i,t − zi,t

〉
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≤ [q̃i,t+1]
	ĝi,t(y̌i,t)− [q̃i,t+1]

	ĝi,t(zi,t)

= [q̄t]
	[ĝi,t(y̌i,t)− ĝi,t(zi,t)]

+ [q̃i,t+1 − q̄t]
	[ĝi,t(y̌i,t)− ĝi,t(zi,t)]

≤ [q̄t]
	[gi,t(y̌i,t) + δi,tGgi1m − gi,t(zi,t)]

+ [q̃i,t+1 − q̄t]
	[ĝi,t(y̌i,t)− ĝi,t(zi,t)]. (45)

From (26b) and (39g), we have

[q̃i,t+1 − q̄t]
	[ĝi,t(y̌i,t)− ĝi,t(zi,t)] ≤ 2d1(t)

n
. (46)

For the second term of the right-hand side of (44), from the
Cauchy–Schwarz inequality, (39f), and (33), we have〈(

∇̂1gi,t(zi,t)
)	

q̃i,t+1, zi,t − zi,t+1

〉

= q	∇̂1gi,t(zi,t)(zi,t − zi,t+1)

+ (q̃i,t+1 − q)	∇̂1gi,t(zi,t)(zi,t − zi,t+1)

≤ 2mp2iF
2
gi
αi,t+1

δ2i,t
‖q‖2 + 1

8αi,t+1
‖zi,t+1 − zi,t‖2

+
2mp2iF

2
gi
αi,t+1

δ2i,t
‖q̃i,t+1 − q‖2 + 1

8αi,t+1
‖zi,t+1 − zi,t‖2

≤ 2mmax
i∈[n]

{
p2iF

2
gi
αi,t+1

δ2i,t

}
‖q‖2 + 1

4αi,t+1
‖zi,t+1 − zi,t‖2

+ 2mmax
i∈[n]

{
p2iF

2
gi
αi,t+1

δ2i,t

}
n∑

j=1

[Wt]ij‖qj,t − q‖2. (47)

For the last term of the right-hand side of (44), noting that y̌i,t ∈
(1− ξt)Xi ⊆ (1− ξt+1)Xi since ξt ≥ ξt+1 and applying (24)
to the update rule (9b) yields

2αi,t+1〈ai,t+1, zi,t+1 − y̌i,t〉
≤ ‖y̌i,t − zi,t‖2 − ‖y̌i,t − zi,t+1‖2 − ‖zi,t+1 − zi,t‖2

= ‖y̌i,t+1 − zi,t+1‖2 − ‖y̌i,t − zi,t+1‖2 + ‖y̌i,t − zi,t‖2

− ‖y̌i,t+1 − zi,t+1‖2 − ‖zi,t+1 − zi,t‖2. (48)

The first two terms of the right-hand side of (48) can be bounded
by

‖y̌i,t+1 − zi,t+1‖2 − ‖y̌i,t − zi,t+1‖2

≤ ‖y̌i,t+1 − y̌i,t‖‖y̌i,t+1 + y̌i,t − 2zi,t+1‖
≤ 4Ri‖(1− ξt+1)yi,t+1 − (1− ξt)yi,t‖
= 4Ri‖(1− ξt+1)(yi,t+1 − yi,t) + (ξt − ξt+1)yi,t‖
≤ 4Ri‖yi,t+1 − yi,t‖+ 4R2

i (ξt − ξt+1) (49)

where the last inequality holds since {ξt} ⊆ (0, 1) is nonincreas-
ing.

Combining (40c)–(49), taking expectation in Ut, summing
over i ∈ [n], and rearranging the terms yields (38). �

Lemma 7: Suppose Assumptions 1 and 2 hold. For any T ∈
N+, let xT be the sequence generated by Algorithm 1. Then,

for any comparator sequence yT ∈ XT

E [Reg(xT ,yT )]

≤
T∑

t=1

E [d2(t)] + C0

T∑
t=1

γt+1 +

T∑
t=1

n∑
i=1

p2iF
2
fi
αi,t+1

δ2i,t

+

n∑
i=1

2R2
i

αi,T+1
+

T−1∑
t=1

n∑
i=1

2Ri‖yi,t+1 − yi,t‖
αi,t+1

+
1

2

T∑
t=1

α̃tE
[‖qi,t‖2] (50a)

E

⎡
⎣
∥∥∥∥∥
[

T∑
t=1

gt(xt)

]
+

∥∥∥∥∥
2
⎤
⎦

≤ d5(T )

{
T∑

t=1

E [d2(t)] + C0

T∑
t=1

γt+1

+

T∑
t=1

n∑
i=1

p2iF
2
fi
αi,t+1

δ2i,t
+

n∑
i=1

2R2
i

αi,T+1
+ 2T

n∑
i=1

Ffi

+
1

2

T∑
t=1

α̃tE
[‖qi,t − qc‖2

]}
(50b)

where α̃t =
∑n

i=1(4mmaxi∈[n]{p2
iF

2
gi

αi,t+1

δ2i,t
}+ 1

γt+1
− 1

γt
−

βt+1), d5(T ) = 2n( 1
γ1

+
∑T

t=1(4mmaxi∈[n]{p2
iF

2
gi

αi,t+1

δ2i,t
}+

βt+1)), and qc = 2[
∑T

t=1 gt(xt)]+/d5(T ) ∈ Rm
+ .

Proof:
1) For any λ ∈ (0, 1) and nonnegative sequence ζ1, ζ2, . . . ,

it holds that
T∑

t=1

t∑
s=1

ζs+1λ
t−s =

T∑
t=1

ζt+1

T−t∑
s=0

λs ≤ 1

1− λ

T∑
t=1

ζt+1.

(51)

Thus
T∑

t=1

d1(t) ≤ 2
√
mn2τB1Fg

1− λ

T∑
t=1

γt+1. (52)

The definition of Δt given by (27) yields

−
T∑

t=1

Δt+1

2γt+1

=
1

2

n∑
i=1

T∑
t=1

[
1

γt
‖qi,t − q‖2 − 1

γt+1
‖qi,t+1 − q‖2

]

+
1

2

T∑
t=1

n∑
i=1

(
1

γt+1
− 1

γt
− βt+1

)
‖qi,t − q‖2

=
1

2

n∑
i=1

[
1

γ1
‖qi,1 − q‖2 − 1

γT+1
‖qi,T+1 − q‖2

]

+
1

2

T∑
t=1

n∑
i=1

(
1

γt+1
− 1

γt
− βt+1

)
‖qi,t − q‖2
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≤ n

2γ1
‖q‖2+1

2

T∑
t=1

n∑
i=1

(
1

γt+1
− 1

γt
−βt+1

)
‖qi,t−q‖2

(53)

where the last inequality holds since qi,1 = 0m and
‖qi,T+1 − q‖2 ≥ 0.
From the properties of conditional expectation, we know
that

EUT
[EUt

[d4(t)]] = E [d4(t)] ∀t ∈ [T ] (54)

where we recall the definition UT =
⋃T

s=1 Us.
Noting that{αt} is nonincreasing and (5), for any s ∈ [T ],
we have

T∑
t=s

d4(t)

=
1

2

T∑
t=s

n∑
i=1

(
1

αi,t
‖y̌i,t − zi,t‖2 − 1

αi,t+1
‖y̌i,t+1

− zi,t+1‖2
)

+
1

2

T∑
t=s

n∑
i=1

(
1

αi,t+1
− 1

αi,t

)
‖y̌i,t − zi,t‖2

≤ 1

2αi,s

n∑
i=1

‖y̌i,s − zi,s‖2

− 1

2αi,T+1

n∑
i=1

‖y̌i,T+1 − zi,T+1‖2

+ 2

n∑
i=1

(
1

αi,T+1
− 1

αi,s

)
R2

i ≤
n∑

i=1

2R2
i

αi,T+1
. (55)

Let gc : Rm
+ → R be a function defined as

gc(q) =

(
T∑

t=1

gt(xt)

)	

q − d5(T )

4
‖q‖2. (56)

Combining (26c) and (38), summing over t ∈ [T ], using
(52)–(56) and gt(yt) ≤ 0m,yT ∈ XT , and taking expec-
tation in UT yields

E [gc(q)] +E [Reg(xT ,yT )]

≤
T∑

t=1

E [d2(t)] + C0

T∑
t=1

γt+1 +
T∑

t=1

n∑
i=1

p2iF
2
fi
αi,t+1

δ2i,t

+

n∑
i=1

2R2
i

αi,T+1
+

T∑
t=1

n∑
i=1

2Ri‖yi,t+1 − yi,t‖
αi,t+1

+
1

2

T∑
t=1

α̃tE
[‖qi,t − q‖2] ∀q ∈ Rm

+ . (57)

Then, substituting q = 0m into (57), setting yi,T+1 =
yi,T , and noting that {αt} is nonincreasing yields (50a).

2) Substituting q = qc into gc(q) gives

gc(qc) =

∥∥∥∥[∑T
t=1 gt(xt)

]
+

∥∥∥∥
2

d5(T )
. (58)

Moreover, (6) gives

|Reg(xT ,yT )| ≤ 2T

n∑
i=1

Ffi ∀yT ∈ XT . (59)

Substituting q = qc and yt = x̌∗
T , t ∈ [T + 1] into (57),

combining (58)–(59), and rearranging the terms gives
(50b). �

Before proving Theorem 1, let us generally explain why
choosing the sequences in (13). The intuition of the choice is to
let the terms in the right-hand side of (50a) and (50b) be as small
as possible. Specifically, the first four terms in the right-hand side
of (50a) need to be sublinear. Moreover, α̃t should be nonpositive
otherwise it is unclear how to show that the last terms in the
right-hand side of (50a) and (50b) are sublinear. We are now
ready to prove Theorem 1.

1) Applying (25a), (25b), and (26a) to the first three terms
of the right-hand side of (50a) and noting θ2 < θ3 gives

T∑
t=1

E [d2(t)] ≤
n∑

i=1

mFgGgi(2ri +Ri)

1− θ3 + θ2
T 1−θ3+θ2

+

n∑
i=1

Gfi(2ri +Ri)

1− θ3
T 1−θ3 + C1,1 log(T ) (60a)

C0

T∑
t=1

γt+1 ≤ C0

θ2
T θ2 (60b)

T∑
t=1

n∑
i=1

p2iF
2
fi
αi,t+1

δ2i,t

≤
n∑

i=1

F 2
fi

4mF 2
gi
(1− θ1 + 2θ3)

T 1−θ1+2θ3 . (60c)

From (13) and θ1 − 2θ3 ≥ θ2, we know that

α̃t =
1

(t+ 1)θ1−2θ3
+

t+ 1

(t+ 1)θ2
− t

tθ2
− 2

(t+ 1)θ2

≤ 1

(t+ 1)θ2
+

t+ 1

(t+ 1)θ2
− t

tθ2
− 2

(t+ 1)θ2

=
t

(t+ 1)θ2
− t

tθ2
< 0. (61)

Combining (50a) and (60a)–(61) yields (14a).
2) Using (25b) and noting θ1 − 2θ3 ≥ θ2 gives

d5(T ) ≤ C2,1T
1−θ2 . (62)

Combining (50b) and (60a)–(62) gives

E

⎡
⎣
∥∥∥∥∥
[

T∑
t=1

gt(xt)

]
+

∥∥∥∥∥
2
⎤
⎦ ≤ C2

2T
2−θ2 . (63)

Finally, combining (63) and (E[‖[∑T
t=1 gt(xt)]+‖])2 ≤

E[‖[∑T
t=1 gt(xt)]+‖2] (which follows from Jensen’s in-

equality) gives (14b).
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D. Proof of Theorem 2

The proof is similar to the proof of Theorem 1 with some
modifications. Lemmas 5–7 are replaced by Lemmas 8–10.

To simplify notation, we denote αt = αi,t, βt = βi,t, γt =
γi,t, and ξt = ξi,t.

Lemma 8: Suppose Assumptions 1 and 2 hold. For all i ∈ [n]
and t ∈ N+, q̃i,t and qi,t generated by Algorithm 2 satisfy

‖q̃i,t+1‖ ≤ B1

βt
, ‖qi,t‖ ≤ B1

βt
(64a)

‖q̃i,t+1 − q̄t‖ ≤ 2nB1τ
t−1∑
s=1

γs+1λ
t−1−s (64b)

Δt+1

2γt+1

≤ (q̄t − q)	gt(xt) + 2nB2
1γt+1 + d6(t)

+
1

2

n∑
i=1

(
2mp2iG

2
gi
αt+1 + βt+1

) ‖q‖2 + d7(t) (64c)

where q is an arbitrary vector in Rm
+ , d6(t) =

2
√
mn2B1Fgτ

∑t
s=1 γs+1λ

t−s, and d7(t) =
1

4αt+1

∑n
i=1

‖xi,t+1 − xi,t‖2 +
∑n

i=1[q̃i,t+1]
	∇̂2gi,t(xi,t)(xi,t+1 − xi,t).

Proof: From the fifth part in Lemma 2 and (8b), we know that
for all i ∈ [n], x ∈ (1− ξi,t)Xi, and t ∈ N+∥∥∥∇̂2gi,t(x)

∥∥∥ ≤ √
mpiGgi . (65)

Hence, (5), (6), (18), and (65) yield

‖ci,t+1‖ ≤ ‖gi,t(xi,t)‖+
∥∥∥∇̂2gi,t(xi,t)

∥∥∥ ‖xi,t+1 − xi,t‖

≤ √
mFgi + 2

√
mpiGgiRi ≤ B1 ∀i ∈ [n] ∀t ∈ N+.

(66)

Replacing zi,t and gi,t(zi,t) by xi,t and ci,t+1, respectively,
and following steps similar to those used to prove (26a) and
(26b) yields (64a) and (64b).

Applying (22) to (16c) yields

‖qi,t − q‖2 ≤ ‖(1− βtγt)q̃i,t + γtci,t − q‖2

= ‖q̃i,t − q‖2 + γ2
t ‖ci,t − βtq̃i,t‖2

+ 2γt [q̃i,t]
	 ∇̂2gi,t−1(xi,t−1)(xi,t − xi,t−1)

− 2γtq
	∇̂2gi,t−1(xi,t−1)(xi,t − xi,t−1)

+ 2γt [q̃i,t − q]	 gi,t−1(xi,t−1)

− 2βtγt [q̃i,t − q]	 q̃i,t. (67)

For the fourth term of the right-hand side of (67), (65) and the
Cauchy–Schwarz inequality yield

− 2γtq
	∇̂2gi,t−1(xi,t−1)(xi,t − xi,t−1)

≤ 2γt

(
mp2iG

2
gi
αt‖q‖2 + 1

4αt
‖xi,t − xi,t−1‖2

)
. (68)

Replacing (32) by (67), using (68), and following steps similar
to those used to prove (26c) yields (64c). �

Lemma 9: Suppose Assumptions 1 and 2 hold. For all i ∈ [n],
let {xt} be the sequence generated by Algorithm 2 and {yt} be

an arbitrary sequence in X, then

ft(xt)− ft(yt)

≤ (q̄t)
	 (gt(yt)− gt(xt)) + 2d6(t)−EUt

[d7(t)]

+

n∑
i=1

p2iG
2
fi
αt+1 +

n∑
i=1

2Ri‖yi,t+1 − yi,t‖
αt+1

+ d8(t) +EUt
[d9(t)] ∀t ∈ N+ (69)

where d8(t) =
∑n

i=1{(δi,t +Riξt)(
√
mGgi‖qi,t‖+Gfi) +

2R2
i (ξt−ξt+1)
αt+1

}, d9(t) =
1

2αt+1

∑n
i=1(‖y̌i,t − xi,t‖2 −

‖y̌i,t+1 − xi,t+1‖2), and y̌i,t = (1− ξt)yi,t.
Proof: Replacing zi,t, ai,t, and (39c) by xi,t, bi,t, and

‖∇̂2fi,t(x)‖ ≤ piGfi , respectively, deleting (47), and following
steps similar to those used to prove (38) yields (69). �

Lemma 10: Suppose Assumptions 1 and 2 hold. For any T ∈
N+, let xT be the sequence generated by Algorithm 2. Then,
for any comparator sequence yT ∈ XT

E [Reg(xT ,yT )]

≤
T∑

t=1

E [d8(t)] + Ĉ0

T∑
t=1

γt+1 +
n∑

i=1

2R2
i

αT+1

+
1

2

T∑
t=1

n∑
i=1

(
1

γt+1
− 1

γt
− βt+1

)
E
[‖qi,t‖2]

+

T∑
t=1

n∑
i=1

p2iG
2
fi
αt+1 +

2RmaxV (yT )

αT
(70a)

E

⎡
⎣
∥∥∥∥∥
[

T∑
t=1

gt(xt)

]
+

∥∥∥∥∥
2
⎤
⎦

≤ d10(T )

{
T∑

t=1

E [d8(t)] + Ĉ0

T∑
t=1

γt+1 +

n∑
i=1

2R2
i

αT+1

+
1

2

T∑
t=1

n∑
i=1

(
1

γt+1
− 1

γt
− βt+1

)
E
[‖qi,t − q̂c‖2

]

+

T∑
t=1

n∑
i=1

p2iG
2
fi
αt+1 + 2T

n∑
i=1

Ffi

}
(70b)

where d10(T ) = 2n( 1
γ1

+
∑T

t=1(2mp2iG
2
gi
αt+1 + βt+1)) and

q̂c = 2[
∑T

t=1 gt(xt)]+/d10(T ) ∈ Rm
+ .

Proof: With Lemmas 8 and 9 at hand, the proof of Lemma 10
follows steps similar to those used to prove Lemma 7. �

With Lemmas 8–10 at hand, the proof of (20a) and (20b) in
Theorem 2 follows steps similar to those used to prove (14a) and
(14b) in Theorem 1.
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