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Distributed Sensor and Actuator Reconfiguration
for Fault-Tolerant Networked Control Systems

André M. H. Teixeira , José Araújo, Henrik Sandberg , and Karl Henrik Johansson , Fellow, IEEE

Abstract—In this paper, we address the problem of dis-
tributed reconfiguration of networked control systems upon
the removal of misbehaving sensors and actuators. In par-
ticular, we consider systems with redundant sensors and
actuators cooperating to recover from faults. Reconfigu-
ration is performed while minimizing a steady-state es-
timation error covariance and quadratic control cost. A
model-matching condition is imposed on the reconfigura-
tion scheme. It is shown that the reconfiguration and its un-
derlying computation can be distributed. Using an average
dwell-time approach, the stability of the distributed recon-
figuration scheme under finite-time termination is analyzed.
The approach is illustrated in a numerical example.

Index Terms—Distributed algorithms, fault-tolerant con-
trol, networked control systems.

I. INTRODUCTION

MODERN control systems are often operated over large-
scale complex networked infrastructures such as power

networks, building automation systems, power plants, and trans-
portation systems. The proliferation of low-cost embedded sys-
tems with radio capabilities has enabled the deployment of
systems with increased performance and flexibility. However,
these systems become increasingly complex and must be effi-
ciently designed and operated. Several steps have been taken in
this direction in the development of resilient and fault-tolerant
architectures and technologies [1], [2] and plug-and-play con-
trol [3]–[5]. In this paper, we focus on distributed sensor and
actuator reconfiguration in oversensed and overactuated net-
worked control systems with a high degree of redundancy. In
the event of malfunctioning actuators, sensors, or other system
components, control systems may exhibit poor performances or
even become unstable [2], [6]. Thus, the design of fault-tolerant
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control systems is of major importance. Examples of safety-
critical systems that must be resilient to faults and cyberattacks
include power networks, aircrafts, nuclear power plants, and
chemical plants.

Since the 1970s, much research has been conducted in fault-
tolerant control systems, fault detection and diagnosis (FDD),
and reconfigurable control [1], [2], [7]–[11]. FDD deals with
the identification of faults [1], [10], [12], while reconfigurable
control proposes methods to reconfigure a system after a faulty
component has been detected and disabled. The objectives of
reconfiguration are generally to recover stabilization of the sys-
tem, maintaining the same state trajectory (also known as model-
matching), achieving the same equilibrium point, or minimizing
the loss in performance inflicted by the fault. Model-matching
reconfiguration, in particular, has been the focus of much of
the research in this area [8]. Many types of faults in sensors,
actuators, and other system components have been considered
in both linear and nonlinear systems. However, the vast major-
ity of the solutions rely on a centralized approach [13]–[17].
Due to the increased complexity and size of current control sys-
tems, such techniques may be impractical [6], [18]. Through
the increased computation and communication capabilities of
embedded devices in these systems, FDD can technically move
from a centralized implementation to a distributed one. How-
ever, distributed FDD and reconfiguration to enable distributed
fault-tolerant systems have been much less explored. The
architecture of such systems is discussed in [19]–[21], while,
in [22], a distributed FDD is employed to perform a central-
ized reconfiguration. To the best of our knowledge, distributed
reconfiguration has not yet been addressed in the literature.

In this paper, we address the problem of distributed reconfigu-
ration for networked control systems with misbehaving sensors
and actuators by exploiting the existing redundancy. Assum-
ing that the sensor and actuator redundancy is high enough
to guarantee perfect model matching of the nominal dynamics
with only healthy sensors, we propose a distributed algorithm to
perform the reconfiguration. The proposed distributed method
guarantees closed-loop stability and minimizes the steady-state
estimation error covariance and a linear-quadratic control cost
under faults and cyberattacks while achieving model matching:
the desired closed-loop estimation error and dynamics remain
the same before and after removing the misbehaving devices.
The distributed algorithm is shown to converge to the optimal
solution asymptotically. In addition, the stability of the closed-
loop system is analyzed when the distributed reconfiguration
algorithms terminates in finite time.
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Fig. 1. Networked control system with a network of sensors S1 , S2 , and
S3 ; aggregator nodesF1 andF2 , and actuatorsA1 ,A2 ; andA3 . Sensors
and actuators are responsible for reconfiguring themselves when system
failures occur.

The rest of this paper is organized as follows. Section II
presents the system architecture and formulates the problem.
The centralized solution to the reconfiguration problem is
presented in Section III. In Section IV, it is shown that the
reconfiguration can be distributed among the sensor or actuator
nodes and an efficient algorithm is devised. For faults occurring
sufficiently far apart in time, thus satisfying a given average
dwell-time condition, stability properties of the system under
the proposed distributed reconfiguration scheme are given in
Section V. Finally, numerical examples illustrate the distributed
reconfiguration methods in Section VI, and Section VII con-
cludes this paper.

A. Notation

The Kronecker product of matrix A and B is denoted as
A⊗B and the vectorization operation as vec(A). A matrixA is
denoted as positive definite if A � 0 and positive semidefinite
when A � 0. The trace of matrix A is denoted as tr(A). For a
vector x, ‖x‖ =

√
x�x denotes the Euclidean norm of x. Given

a matrix A, ‖A‖2 = maxu �=0
‖Au‖
‖u‖ denotes the induced 2-norm

of A, while ‖A‖F = (tr(A�A))
1
2 corresponds to its Frobenius

norm. Let κ(A) = ‖A‖2‖A†‖2 denote the condition number of
matrix A, and A† the pseudoinverse of A. The notation | · |
represents the cardinality of a set, and A \ B denotes the set
obtained by removing set B ⊆ A from set A.

A network is represented by an undirected graphG(V, E) with
vertex set V and edge set E ⊆ V × V . The edge ek = (i, j) ∈ E
indicates that nodes i and j can exchange information. Denote
Ni = {j|j �= i, (i, j) ∈ E} as the neighbor set of node i.

II. PROBLEM FORMULATION

The architecture of the networked control system considered
in this work is depicted in Fig. 1. This architecture has two
networks: one of sensors and one of actuators. Each network
has a certain level of redundancy, which means that nominal
operation can be maintained despite some components being
removed. The precise meaning of redundancy in our setup will
be given later in this section. Each sensor or actuator is able to
exchange information with its neighbors within the network. In
typical applications, such as building automation and industrial

process control, a large number of sensors are expected to be de-
ployed. To reduce the sensor-to-controller communication, the
information from the sensor nodes is fused at aggregator nodes,
which connect to the estimator. The estimator is responsible for
computing the state estimate to be broadcasted to the actuators
in the network, which then compute the control input values.
The individual components of the system are described below.

A. System Model

Suppose the plant is modeled by a stochastic linear time-
invariant differential equation

dx(t) = Ax(t)dt+BΓu (t)u(t)dt+ dw(t) (1)

dy(t) = Γy (t) (Cx(t)dt+ dv(t)) (2)

with a state x(t) ∈ Rn , y(t) ∈ Rp and u(t) ∈ Rm being the
measurement vector and input vector, respectively, with redun-
dancy in their components, andw(t) ∈ Rn and v(t) ∈ Rp being
independent Wiener processes with uncorrelated increments.
The incremental covariances are Wdt and V dt, respectively.
Moreover, processes w(t) and v(t) are assumed to be mutually
uncorrelated [23].

The sensor nodes apply a local linear transformation to the
measurements and transmit these values to aggregation nodes,
which compute z(t) ∈ Rs as the fusion of the sensor data

dz(t) = Tdy(t) = TΓyCx(t)dt+ TΓy dv(t) (3)

where T ∈ Rs×p is the aggregation matrix, with s ≤ p, and z(t)
is transmitted to the estimator.

We consider the presence of misbehaving sensors and ac-
tuators, which could be acting according to different types of
failures such as outages [16], partial degradation and loss of
effectiveness [17], incipient faults [24], or even controlled by
malicious cyber adversaries [25], [26]. Furthermore, we sup-
pose that misbehaving devices are detected and isolated using
suitable FDD schemes [1], [10], [12], after which they are re-
moved from the system. Once the misbehaving devices have
been removed, reconfiguration of the closed-loop system takes
place, which is the focus of this paper.

The removal of misbehaving sensors and actuators is modeled
by the diagonal matrices Γy (t) ∈ Rp×p and Γu (t) ∈ Rm×m ,
respectively, with [Γy (t)]ii = γy i(t) ∈ {0, 1} and [Γu (t)]ii =
γu i(t) ∈ {0, 1}. Here, γy i(t) (γu i(t)) represents the status of
sensor (actuator) i at time t, where γy i(t) = 1 (γu i(t) = 1)
means that the sensor (actuator) is healthy, while γy i(t) = 0
(γu i(t) = 0) indicates that the sensor (actuator) has been dis-
abled. The system is initially under nominal conditions; hence,
Γy (t) = I and Γu (t) = I for t < t0 .

For the sake of clarity of the presentation, all misbehaving de-
vices are assumed to be removed simultaneously at time t = t0
and remain unchanged thereafter, which allows the time argu-
ment to be omitted. Note, however, that the methods devised in
this paper directly apply to the nonsimultaneous case, by run-
ning the proposed reconfiguration algorithm sequentially with
the occurrence of each new fault, which is further investigated
in Section V.



TEIXEIRA et al.: DISTRIBUTED SENSOR AND ACTUATOR RECONFIGURATION 1519

The sensor and actuator networks are represented by the con-
nected and undirected graphs Gy (Vy , Ey ) with |Vy | = p vertices
and Gu (Vu , Eu ) with |Vu | = m vertices, respectively. For sim-
plicity of presentation, we assume that each aggregator node is
connected to all sensor nodes. The set of sensor and actuator
nodes is defined as V � Vy ∪ Vu , whereas we denote Vf ⊆ V
as the set of misbehaving nodes that have been removed and we
let the set of healthy nodes be Vh � V \ Vf .

We assume that the controller is given by the continuous-
time linear–quadratic Gaussian (LQG) controller [23]. Let the
pair (TC,A) be observable and (A,B) be controllable. Next,
we describe the controller and estimator design under nomi-
nal conditions with Γu = I and Γy = I . For LQG control, the
feedback gain is obtained as the minimizer of the control cost
Jc � limτ→∞ Jc(τ), where

Jc(τ) � 1
τ

∫ τ

0
E
{
x(t)�Qx(t) + u(t)�Ru(t)

}
dt (4)

and Q � 0 and R � 0 are weight matrices. We assume that R
is diagonal. The optimal linear–quadratic controller is given by

u(t) = −Kx̂(t) = −R−1B�P x̂(t) (5)

where x̂(t) is the state estimate and P the solution to the Riccati
equation A�P + PA− PBR−1B�P +Q = 0. The estimate
is computed by the Kalman–Bucy filter [23] as follows:

dx̂(t) = (A− LTC)x̂(t)dt+Bu(t)dt+ Ldz(t) (6)

with L = ΣC�T�(TV T�)−1 , where Σ = limt→∞ E{e(t)
e(t)�} is the steady-state covariance matrix of the esti-
mation error e(t) = x̂(t) − x(t) given by the Riccati equa-
tion AΣ + ΣA� − ΣC�T�(TV T�)−1TCΣ +W = 0. The
Kalman–Bucy filter minimizes the expected mean-squared er-
ror, which we denote as the estimation cost function

Je � lim
τ→∞

1
τ

∫ τ

0
E
{
e(t)�e(t)

}
dt. (7)

From now on, we drop the time argument (t) when it is clear
from the context.

B. Reconfiguration Problem

Consider a scenario where several misbehaving sensor and
actuator nodes have been disabled, yielding Γu �= I and Γy �= I .
A possible corrective action is to modify the aggregation matrix
T and feedback matrix K so that only the remaining healthy
sensors and actuators are used to guarantee a certain level of
performance of the system. Let ũ ∈ Rm and z̃ ∈ Rs denote the
reconfigured control and sensor fusion signals

dz̃ = T̃ dy = T̃ΓyCxdt+ T̃Γy dv

ũ = −K̃x̂. (8)

Denote Ãc(K̃) = A−BΓuK̃ and Ãe(T̃ ) = A− LT̃ΓyC as
the system matrices for the closed-loop dynamics of the system
and estimator, respectively. The objective of the reconfiguration
is to achieve model matching [8], [15] for both the estimation
dynamics and the closed-loop system dynamics by computing

Fig. 2. Digraph representation of a system with high sensing and actu-
ation redundancy. Faulty actuators and sensors (u4 and y1 ) are depicted
in red and with dot-dashed edges. Nodes used to achieve perfect model
matching are represented in green.

T̃ and K̃ after the removal of sensors and actuators, respec-
tively. Model matching is a common reconfiguration goal in
fault-tolerant systems, as it guarantees that the original system
dynamics are preserved even in the presence of faults. The def-
inition of model-matching reconfiguration is as follows. Let us
denote the closed-loop estimator dynamics before the fault as
Ae = A− LTC and the nominal closed-loop system matrix as
Ac = A−BK. Then, model matching on the estimation error
dynamics is achieved if Ãe(T̃ ) = Ae for some new aggregation
matrix T̃ . Model matching on the closed-loop system dynamics
is achieved if Ãc(K̃) = Ac for some new feedback gain matrix
K̃.

A possible structure of a system with sufficiently high re-
dundancy to allow perfect model matching independently of K
and T is illustrated in Fig. 2. For instance, the input u4 can be
compensated by u2 and u5 , as they affect x3 and x5 , respec-
tively. However, since u2 also affects x1 , the use of u2 must,
in turn, be compensated by u1 . In short, denoting bi as the ith
column of B, the structural system in Fig. 2 has enough redun-
dancy to ensure that there exist scalars α1 , α2 , and α5 such that
α1b1 + α2b2 + α5b5 = b4 . In other terms, the actuation redun-
dancy ensures that Im(B) ≡ Im(BΓu ).

However, by taking the gain matrices into consideration, less
redundancy can be considered, as in the following assumption.

Assumption 1: The sensor and actuator networks have suffi-
cient redundancy such that model matching is feasible when sen-
sors and actuators are removed, that is, Im(BK) ⊆ Im(BΓu )
and Im(C�T�) ⊆ Im(C�Γy ).

Although the perfect model-matching conditions may seem
restrictive in classical control systems, large-scale networked
control systems indeed have a large number of redundant
components that may satisfy Assumption 1, as in the case
of application examples such as distributed control of wind
farms [27], farming and livestock systems [3], smart grids
with multiple distributed energy resources [26], and building-
management systems [25].

In case model matching would not be feasible, that is, Ae

or Ac would no longer be achievable with the healthy nodes,
different admissible closed-loop matrices must be considered.
After new feasible matricesAe andAc have been computed, the
methods proposed in this paper could be readily applied.

Since the model-matching constraints are underdetermined,
that is, they admit multiple solutions, we propose finding the
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model-matching solutions that minimize certain quadratic costs.
In particular, the cost function for the sensor reconfiguration is
the quadratic estimation cost (7)

Je(T̃ ) = lim
τ→∞

1
τ

∫ τ

0
E
{
ẽ�ẽ

}
dt (9)

where ẽ is the estimation error after the misbehaving sensors
have been detected and removed. Furthermore, we define the ob-
jective function of the actuator reconfiguration as the quadratic
control cost for the reconfigured control input

Jc(K̃) = lim
τ→∞

1
τ

∫ τ

0
E
{
x�

(
Q+ K̃�ΓuRΓuK̃

)
x
}
dt

s.t. ẋ = (A−BΓuK̃)x (10)

where the expectation is taken with respect to the initial condi-
tion x(0), which is a zero-mean Gaussian random variable with
the positive-definite covariance matrix R0 = E

{
x(0)x(0)�

}
.

The sensor and actuator networked reconfiguration problem
is to find the reconfigured aggregation matrix T̃ and feedback
gain matrix K̃ that minimize the estimation (9) and control cost
(10), respectively, subject to the model-matching condition. The
sensor reconfiguration can be reformulated as

min
T̃

Je(T̃ )

s.t. A− LT̃ΓyC = A− LTC (11)

while the actuator reconfiguration problem is

min
K̃

Jc(K̃)

s.t. A−BΓuK̃ = A−BK. (12)

The solution to these optimization problems may be achieved
in a centralized or distributed manner. Next, we describe a cen-
tralized approach to solve them. Later, we propose an efficient
distributed solution based solely on local information exchange
among sensor nodes and actuators nodes. In both cases, we
neglect the computation times and consider that the solutions
are computed instantaneously with respect to the process dy-
namics. In Section V, we analyze the stability properties of the
proposed distributed algorithm when the reconfiguration is not
instantaneous.

III. CENTRALIZED SENSOR AND ACTUATOR

RECONFIGURATION

We now tackle the centralized sensor and actuator reconfigu-
ration problems. Their solutions are derived and the centralized
reconfiguration mechanisms are illustrated.

A. Centralized Sensor Reconfiguration

The optimal solution to (11) can be characterized as follows.
Proposition 1: The solution to the sensor reconfiguration

problem (11) is

T̃ � = TC(C�V −1ΓyC)†C�ΓyV −1 . (13)

In order to prove Proposition 1, we use the following lemma.

Fig. 3. Networked control system with centralized sensor and actuator
reconfiguration. Faults are reported by the sensors and actuators to the
centralized estimator. Red-dashed arrows represent the transmission of
information related to faults.

Lemma 1: Optimization problem (11) is equivalent to

min
T̃

tr
(
(W + LT̃ΓyV Γy T̃�L�)Ze

)

s.t. LTC = LT̃ΓyC

0 = A�
e Ze + ZeAe + I. (14)

Proof: The proof is given in the Appendix. �
We now derive the optimal solution to (14), which is also the

solution to the sensor reconfiguration problem (11).
Proof of Proposition 1: Consider the optimization prob-

lem (14), which is convex. Note that the second equality con-
straint is a Lyapunov equation with the Hurwitz system matrix
Ae , determined by the model-matching condition. Hence, the
variable Ze is uniquely defined by the constraint and can
be computed beforehand. The Lagrangian function for (14)
is L(T̃ ,Λ) = tr((W + LT̃ΓyV Γy T̃�L�)Ze) + tr(Λ�(LTC
− LT̃ΓyC)), where Λ ∈ Rn×n represents the Lagrange mul-
tipliers. Using the trace derivative expressions, the Karush–
Kuhn–Tucker optimality conditions can be written as

0 =
∂

∂T̃
L(T̃ ,Λ) = 2L�ZeLT̃ΓyV Γy − L�ΛC�Γy

0 = LTC − LT̃ΓyC

and can be rewritten as

0 = T̃Γy − 1
2
(L�ZeL)†L�ΛC�V −1Γy

0 = LTC(C�V −1ΓyC)† − 1
2
L(L�ZeL)†L�Λ.

Solving the above equations yields the optimal solution (13). �
Fig. 3 illustrates the centralized reconfiguration that is per-

formed by a system component denoted as a reconfiguration
manager. A fault occurs at sensor S2 , which detects that it is
faulty, reporting it to the reconfiguration manager, which now
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knows Γy . The reconfiguration manager solves (13) to derive the
new aggregation matrix T̃ = [T̃1 . . . T̃p ], where T̃i is a column
vector corresponding to the ith column of T̃ . Then, T̃1 is sent to
sensor S1 and T̃3 to sensor S3 , which computes T̃1y1 and T̃3y3 ,
where T̃iyi = [[T̃iyi ]1 . . . [T̃iyi ]s ]�. Each nonzero component
[T̃iyi ]j is sent to the jth aggregator, allowing each aggregator
node to compute zj and transmit this value to the estimator.

B. Centralized Actuator Reconfiguration

The optimal centralized actuator reconfiguration is now pre-
sented, which uses the following lemma.

Lemma 2: The optimization problem (12) is equivalent to

min
K̃

tr
(
(Q+ K̃�ΓuRΓuK̃)Zc

)

s.t. BK = BΓuK̃

0 = AcZc + ZcA
�
c +R0 . (15)

Following similar steps as in Proposition 1, the optimal cen-
tralized actuator reconfiguration is characterized as follows.

Proposition 2: The solution to the actuator reconfiguration
problem (12) is

K̃� = ΓuR−1B�(BΓuR−1B�)†BK. (16)

Fig. 3 also depicts a fault in the actuator network. A fault
occurs at actuatorA2 , which reports to the reconfiguration man-
ager. The reconfiguration manager then solves (15) to derive the
new controller K̃ = [K̃�

1 . . . K̃
�
m ]�, where K̃i is a row vector

corresponding to the ith row of K̃. Then, K̃1 is transmitted
to actuator A1 and K̃3 to actuator A3 , which allows them to
compute and apply ũ1 and ũ3 , respectively.

We highlight that the centralized actuator reconfiguration so-
lution may be also obtained through other problem formula-
tions. In [11], the authors proposed solving actuator redundancy
through control allocation, which was formulated as an opti-
mization problem using the concept of virtual actuators. By
appropriately choosing the objective function, the solution (16)
can be obtained. Moreover, the same result may be obtained
using the pseudoinverse method from [28] and [29] whenR has
identical elements.

The centralized reconfiguration scheme requires a centralized
entity to compute the optimal T andK matrices and then inform
the corresponding sensors and actuators. However, since each
sensor/actuator may have a unique encoding/control policy, the
dissemination of the optimal matrices requires point-to-point
communication from the centralized entity to each node. This
not only represents high computation and communication costs,
but it also results in a single point of failure: the centralized en-
tity. Therefore, this centralized approach does not enjoy the
usual benefits of distributed solutions: increased scalability,
modularity, and failure tolerance. In the next section, we propose
an optimal distributed solution to the reconfiguration problems
(11) and (12).

IV. DISTRIBUTED SENSOR AND ACTUATOR

RECONFIGURATION

In this section, we propose a distributed algorithm to solve the
reconfiguration problem. We begin by rewriting the equivalent
centralized sensor and actuator reconfiguration problems (14)
and (15), respectively, as quadratic optimization problems with
a separable cost function and a global equality constraint. First,
the following notation is introduced. Consider a set of l vectors
ηi ∈ Rr and matrices Hi ∈ Rn2 ×r , for i = 1, . . . , l, and define
H = [H1 . . . Hl ] and η = [η�1 . . . η�l ]�. Defineω ∈ Rn2

and
let S ∈ Rl×l be a diagonal matrix with non-negative entries.

Lemma 3: The sensor and actuator reconfiguration prob-
lems (14) and (15) can be rewritten in the following form:

min
η1 ,...,η l

l∑
i=1

Sii‖ηi‖2

s.t.
l∑

i=1

Hiηi = ω. (17)

For the sensor case, we have l = p, T̃ =
[
η1 . . . ηp

]
, H =

(C�Γ�
y ) ⊗ L, ω = vec(LTC), and Sii = [Γy ]iiVii .

The actuator case is retrieved with l = m, K̃ = [η1 . . . ηm ]�,
H = (I ⊗BΓu )P−1

r , with Pr ∈ Rmn×mn being a permutation
matrix such that vec(K̃) = P−1

r η, ω = vec(BK) and Sii =
[Γu ]iiRii .

Proof: The proof is given in the Appendix. �
Remark 1: The variables ηi ∈ Rr and ωi ∈ Rn2

have the
following interpretation. For the case of sensor reconfiguration,
each ηi represents the aggregation matrix T̃ components for the
ith sensor (ith column of T̃ ), that is, how sensor i transforms its
information to be transmitted to each of the fusion nodes that
it is connected to. In the same manner, each η�i corresponds to
the ith actuator state-feedback matrix K̃ components, that is,
the ith row of K̃. The value of ω corresponds to the vectoriza-
tion of the estimation error dynamics and closed-loop system
dynamics before a fault occurs, for the case of sensor and actu-
ator reconfiguration, respectively. This represents the quantity
that ideally must be maintained by the combination of all sensor
(actuator) nodes during the reconfiguration, which refers to the
model-matching constraint.

The optimization problem (17) may be solved distributively
using dual decomposition and iterative algorithms [30], [31].
A requirement is that the network remains connected when
faults occur. Using dual decomposition methods, the optimal
solution to problem (17) is guaranteed to be achieved asymp-
totically in the number of iterations [31]. The main drawback
is that the global equality constraint of the problem is only
ensured asymptotically. Therefore, model matching is not guar-
anteed at every iteration. Due to this fact, we later analyze the
stability of the system under the distributed reconfiguration in
Section V.

To solve the dual optimization problem of (17), we resort
to the distributed alternating direction method of multipliers
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(ADMM) algorithm [31]. In the following text, the decision
variable η at each iteration k ≥ 0 is denoted as η[k].

Theorem 1: Consider the equivalent form of the sensor and
actuator reconfigurations problems (11) and (12), respectively,
presented in Lemma 3. Define q1 , . . . , ql ∈ Rn2

such that∑l
i=1 qi = ω and the local variables ζ1 , . . . , ζl ∈ Rn2

. Let

ηi [k] =
1
2
S−1
ii H

�
i ζi [k] (18)

where ζi [k] is computed by the following algorithm:

ζi [k + 1] =
(

1
2
HiS

−1
ii H

�
i + ρ|Ni |I

)−1

×
⎛
⎝qi − ρ

∑
j∈Ni

μi,(i,j ) [k] − π(i,j ) [k]

⎞
⎠

ξi,(i,j ) [k + 1] = αζi [k + 1] + (1 − α)π(i,j ) [k]

π(i,j ) [k + 1] =
1
2
(
ξi,(i,j ) [k + 1] + μi,(i,j ) [k]

+ ξj,(i,j ) [k + 1] + μj,(i,j ) [k]
)

μi,(i,j ) [k + 1] = μi,(i,j ) [k] + ξi,(i,j ) [k + 1] − π(i,j ) [k + 1]
(19)

where ρ > 0 is the step size,α ∈ (0, 2) is a relaxation parameter,
ρμi,(i,j ) is the Lagrange multiplier of node i associated with the
constraint ζi = π(i,j ) , and ξi,(i,j )(k) is an auxiliary variable
private to node i associated with the edge (i, j). Then, η[k]
converges to the solution of (17), η� , from which the solution to
the sensor and actuator reconfigurations problems, (11) and (12),
can be retrieved as T̃ � = [η1 . . . ηp ] and K̃� = [η1 . . . ηm ]�,
respectively.

Note that the ADMM algorithm in Theorem 1 is distributed,
since it only requires communication between neighbors to ex-
change local variables. Methods to choose the parameters ρ and
α to increase the convergence speed are given in [32].

To prove Theorem 1, we first derive the dual form of (17).
Lemma 4: Let fi(ηi) = Siiη

�
i ηi . The optimization prob-

lem (17) can be rewritten in the following dual form:

min
{ζi }, {π ( i , j ) }

l∑
i=1

(
1
4
S−1
ii ζ

�
i HiH

�
i ζi − q�i ζi

)

s.t. ζi = π(i,j ) , ∀i ∈ V, j ∈ Ni . (20)

Proof: [Proof of Theorem 1]: The value of η[k] is ob-
tained as η[k] = argminϕi

fi(ϕi) − ζT Hiϕi = 1
2S

−1
ii H

�
i ζi [k].

The ADMM algorithm (19) follows from [31] and is thus
omitted. �

Remark 2: The variables qi ∈ Rn2
and ζi ∈ Rn2

have the
following interpretation. The vector qi describes how the vec-
torization of the closed-loop dynamics, that is, ω, is assigned
among all nodes in the network. Note that the assignment is
only constrained by the condition

∑l
i=1 qi = ω, thus admitting

several solutions. The variable ζi , only available at node i, is
a local copy of the Lagrange multiplier associated with the
model-matching constraint Hη = ω.

Fig. 4. Networked control system with distributed sensor and actu-
ator reconfiguration. Faults are detected by the sensors and actua-
tors, which are responsible for the reconfiguration. Reconfiguration is
achieved through the communication among sensors and among actu-
ators in a distributed manner through the sensor and actuator network,
respectively.

Algorithm 1: Distributed sensor/actuator reconfiguration.
1) Detect and isolate sensor/actuator faults and disconnect

the faulty nodes at t = 0;
2) Locally compute qi as per Lemma 5;
3) Compute the optimal solution ζ�i to the dual

problem (20) using the algorithm in Theorem 1;
4) Compute the primal optimal solution η�i = 1

2S
−1
ii H

�
i

ζi(k);
5) Each sensor/actuator node i applies η�i .

The following result indicates how the parameters qi can be
updated locally by the healthy nodes after a fault has occurred.

Lemma 5: Let j ∈ Vf be an arbitrary faulty node, denote
J ⊆ Nj ∩ Vh as a subset of its healthy neighbors, and assume
J is not empty. Given the set {q̄i}i∈V such that

∑
i∈V q̄i = ω,

the set {qi}i∈V satisfying
∑

i∈Vh qi = ω can be computed as

qi =

{
q̄i , i �∈ J
q̄i + νi q̄j , i ∈ J (21)

where νi ≥ 0 for all i ∈ J and
∑

i∈J νi = 1.
The distributed reconfiguration algorithm can be summarized

in Algorithm 1. An illustration of the distributed sensor and ac-
tuator reconfiguration is shown in Fig. 4, where a fault occurs
at sensor S3 and actuator A2 at t = t0 . The sensors locally in-
fer that sensor S2 is no longer functioning, so sensors S1 and
S3 reconfigure themselves. This is performed locally by each
sensor computing the value of T̃1 and T̃3 , and calculating T̃1y1
and T̃3y3 . Each component [T̃iyi ]j is sent to the jth aggrega-
tor, allowing each aggregator node to compute zj and transmit
this value to the controller node. Similarly, the actuators locally
infer that actuator A2 is faulty, so actuators A1 and A3 recon-
figure themselves. This is a local operation where each actuator
computes the value of K̃1 and K̃3 .

V. CLOSED-LOOP STABILITY UNDER DISTRIBUTED

RECONFIGURATION

The proposed distributed algorithm converges to the optimum
asymptotically as it solves the dual problem. Primal feasibility
(model matching), that is, Hη[k] = ω, is only achieved in the
limit as the number of iterations k grows to infinity. Therefore,
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one relevant concern is the system’s stability when the dual algo-
rithm is terminated in a finite number of iterations. The results
of this section are twofold. First, assuming that, on average,
faults occur sufficiently far apart in time, we provide results that
guarantee global exponential stability if the gain matrix pro-
duced by the reconfiguration algorithm in finite time yields a
Hurwitz closed-loop system matrix with a known decay rate.
Second, we derive an upper bound on the number of iterations,
which ensures that a Hurwitz closed-loop system matrix with
a prescribed decay rate is obtained when the dual algorithm is
terminated.

A. Stability Analysis

Consider the system model (1) and (2) without noise, together
with the control law (5) and the estimator (6), which may be
affected by faults occurring at different times. Next, we describe
the behavior of the reconfiguration scheme, under only actuator
faults, for simplicity, and analyze its stability. Similar results
can be derived for the general case of both sensor and actuators
faults.

Under the proposed reconfiguration scheme, after each fault i
occurs, the distributed reconfiguration algorithm in Theorem 1
is run for a finite number of iterations k̄ and a suboptimal gain
matrix is applied, yielding the closed-loop systemAc + Δ(i) [k̄]
with Δ(i) [k̄] defined by vec

(
Δ(i) [k̄]

)
= Hη[k̄] − ω. The algo-

rithm may continue to run if no new fault occurs, and when the
optimal gain matrix is obtained, it is applied to the system to
recover the nominal dynamics, Ac .

Denoting t(i)f as the time instant at which the ith fault oc-
curs, the system dynamics under multiple faults and the pro-
posed reconfiguration scheme can be expressed by the switched
system

ẋ(t) = (A−BΓ(i)
u K)x(t), for t ∈ [t(i)f , t(i)r )

ẋ(t) = (Ac + Δ(i) [k̄])x(t), for t ∈ [t(i)r , t(i)n )

ẋ(t) = Acx(t), for t ∈ [t(i)n , t
(i+1)
f ) (22)

with initial condition x(t0) = x0 , where t(i)r and t(i)n are the time
instants at which the finite-time and optimal gain matrices are
applied, with t0 ≤ t

(i)
f ≤ t

(i)
r ≤ t

(i)
n and t(i)n ≤ t

(i+1)
f for all i.

Note that the nonstrict inequalities allow for new faults to occur
at different stages of the reconfiguration.

Recall that (22) is globally exponentially stable if there exist
positive scalar c and λ such that ‖x(t)‖ ≤ ce−λ(t−t0 )‖x0‖. Next,
we provide sufficient conditions establishing the global stability
of the switched system (22) when the faulty system is unstable
and Ac + Δ(i) [k̄] is Hurwitz.

We make the following definitions and assumptions on the
occurrence of faults. Let Nf (t0 , t) be the number of faults oc-
curring within (t0 , t), τf the average dwell time between faults,
and N0 the chatter bound.

Assumption 2: The occurrence of faults is such that the
following inequality holds: Nf (t0 , t) ≤ N0 + t−t0

τf
.

Assumption 3: There exist a ≤ 0 and positive scalars λf ,
λr , and λn such that

‖e(A−BΓ( i )
u K )t‖ ≤ ea+λf t , for all i

‖e(Ac +Δ( i ) [k̄ ])t‖ ≤ ea−λr t , for all i

‖eAc t‖ ≤ ea−λn t .

Furthermore, we assume that λn ≥ λr holds, which captures
the fact that the nominal system decays faster than the system
reconfigured with a gain computed in finite time.

Remark 3: Given the system matrices of (22) for each i,
Zhai et al. [33] describe methods to determine the scalars a,
λf , λr , and λn satisfying Assumption 3. While these methods
can be executed to compute λf and λn , by enumerating all

possible Γ(i)
u , they cannot be used to determine λr since Δ(i) [k̄]

is unknown. In Section V-B, we provide a way to determine a
and λr satisfying the second inequality in Assumption 3 for any
matrix Δ(i) [k̄] satisfying ‖Δ(i) [k̄]‖F ≤ δ.

Let τc(k̄) be the time required for completing k̄ iterations of
the reconfiguration algorithm.

Assumption 4: There exists some λ� ∈ (0, λr ) such that the
following inequality holds:

τf > max
{

λf + λr

λr − λ�
τc(k̄),

a

λ�

}
.

Theorem 2: Consider the system dynamics under multi-
ple faults and the proposed reconfiguration scheme described
in (22), with Ac and Ac + Δ(i) [k̄] being Hurwitz for all i. The
switched system (22) is globally exponentially stable if the oc-
currence of faults is such that Assumption 2 holds with an
arbitraryN0 > 0 and with an average dwell time between faults

τf > τc(k̄) + a+λf τc (k̄)
λr

.
Proof: The proof may be found in the Appendix. �
Theorem 2 guarantees global exponential stability for a suf-

ficiently large average dwell time between faults, even if the
faulty systems have unstable dynamics. Apart from the require-
ments on the dwell time, the main required conditions are that
Ac + Δ[k̄] is Hurwitz and that one knows its decay rate λr .
Next, we tackle these aspects by providing criteria to terminate
the reconfiguration algorithm in finite time while ensuring that
the computed gain matrix yields a Hurwitz closed-loop matrix
with a prescribed decay rate.

B. Criteria for Finite-Time Termination

Note that the closed-loop system dynamics and the estima-
tion error dynamics may each be described by a generic sys-
tem υ̇ = (D + Δ)υ with D stable and uncertainty Δ, where
vec (Δ) = Hη[k] − ω. For the sensor reconfiguration analy-
sis, we have υ = x̂, D = Ae , H = (C�Γ�

y ) ⊗ L, and ω =
vec (LTC). Similarly, in the actuator reconfiguration case,
υ = x, D = Ac , H = (I ⊗BΓu )P−1

r , and ω = vec (BK).
First, based on [34], we recall a sufficient condition for robust

stability with bounded uncertainties that further ensures a given
decay rate, thus complying with Assumption 3.
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Lemma 6: Given a Hurwitz matrix D and λr > 0, if there
exists a positive-definite matrix X such that

D�X +XD +XX + δ2I + 2λrX ≺ 0

then, for any norm-bounded uncertainty ‖Δ‖F ≤ δ with δ > 0,
the matrix D + Δ is Hurwitz, and there exists a scalar a > 0
such that ‖e(D+Δ)t‖ ≤ ea−λr t .

Theorem 3: Consider the sequence of vectors {η[k]} con-
verging to η� ∈ H = {η : Hη = ω} and define Δ[k] such that
vec (Δ[k]) = Hη[k] − ω.

Suppose there exist matrices X � 0 and M � 0 satisfying
the matrix equationD�X +XD +X2+2λrX +M = 0 and a
positive decreasing function ofk, ε[k] > 0, such that ‖Δ[k]‖F ≤
ε[k]‖Δ[0]‖F holds for all k.

Define the integer k̄ such that the following inequality holds:

ε[k̄] <

√
λmin(M)

‖Hη[0] − ω‖ . (23)

Then, the system matrix D + Δ[k] is Hurwitz with a decay rate
λr ≥ 0 if the termination iteration k satisfies k ≥ k̄.

Proof: Suppose that ‖Δ[k]‖F ≤ ε[k]‖Δ[0]‖F and let δ[k] =
‖Δ[k]‖F . From Lemma 6, the closed-loop system matrix at
iteration k is guaranteed to be Hurwitz with decay rate λr ≥ 0
ifD�X +XD +X2 + 2λrX + δ[k]2I = −M + δ[k]2I ≺ 0,
which is ensured for k̄ when ε[k̄]δ[0] <

√
λmin(M). Recalling

that ε[k] is decreasing concludes the proof. �
The above result provides a method to terminate the dual

algorithm while ensuring stability. It only requires knowledge
of the convergence properties of the dual algorithm, namely the
function ψ[k] and the initial distance ‖Δ[0]‖F . The latter can
be computed when the reconfiguration algorithm is initialized,
since it only depends on the nominal controller and the initial
condition of the algorithm, η[0], which is determined by the
identification of the faulty nodes.

Convergence properties of distributed algorithms, and charac-
terization of their respective functionsψ[k], are readily available
in the literature (see [31], [32], and [35]). Next, we combine the
results of Theorem 3 with the distributed ADMM algorithm
described in Theorem 1, and the respective convergence prop-
erties analyzed in [32], to derive an explicit lower bound on k̄
that ensures robust stability with a given decay rate.

Lemma 7: Consider the optimization problem (17), its
equivalent dual formulation (20), and the ADMM algorithm de-
scribed in Theorem 1. Let ζ� = limk→∞ ζ[k] be the optimal so-
lution to (20). Then, we have ‖ζ[k] − ζ�‖ ≤ ψ‖ζ[k − 1] − ζ�‖
for all k with ψ ∈ [0 1).

Proof: The proof follows directly from [32, Th. 1], where
the decay rate ψ can be found. �

Theorem 4: Consider the optimization problem (17), its
equivalent dual formulation (20), and the ADMM algorithm
described in Theorem 1. The closed-loop system matrix ob-
tained at the iteration k from η[k] is guaranteed to be Hurwitz
with decay rate λr ≥ 0 for all k ≥ k̄ with

k̄ =

⌈
log(

√
λmin(M)) − log

(‖Hη[0] − ω‖κ(HS−1H�)
)

log(ψ)

⌉
.

Proof: Since Hη[k] = −1/2HS−1H�ζ[k] for all k, we
can derive the following bound ‖Hη[k] −Hη�‖ ≤ ‖1/2HS−1

H�‖2‖(ζ[k] − ζ�)‖. Using Lemma 7, we have

‖Hη[k] −Hη�‖2 ≤ κ(HS−1H�)ψk‖Hη[0] −Hη�‖.

Recalling that ‖Δ[0]‖F = ‖Hη[0] − ω‖ = ‖Hη[0] −Hη�‖
and applying Theorem 3, we observe that the closed-loop matrix
satisfies the desired properties for all k such that

ψk <

√
λmin(M)

‖Hη[0] −Hη�‖κ(HS−1H�)
.

The proof concludes by taking the logarithm of both sides
and rearranging the terms. �

Next, we compute the matrices X and M that maximize the
magnitude of the uncertainty for which it is ensured thatD + Δ
is Hurwitz with decay rate λr ≥ 0.

Proposition 3: DenoteX� and σ� as the optimal solution to
the convex optimization problem

max
X�0, σ>0

σ

s.t. 0 � D�X +XD + σI+2λrX

0 ≺
[
−D�X −XD − σI−2λrX X

X I

]
. (24)

Then, matrix X� satisfies the robust stability constraint
D�X +XD +X2 + δ2I + 2λrX ≺ 0 with δ2 = σ� being the
largest disturbance magnitude for which it is ensured thatD + Δ
is Hurwitz with decay rate λr ≥ 0. Additionally, we have that
the optimal matrix M is given by M� = −D�X� −X�D −
2λrX

� −X� 2 � 0.
Proof: The proof follows from Lemma 6. �
The value k̄ assures that stability can be achieved in a finite

iterations. We remark that the lower bound k̄ obtained from
Theorem 4 is expected to be conservative, which will be illus-
trated in the numerical example.

The calculation of k̄ as per Theorem 4 can be efficiently
performed in a centralized manner, by using the knowledge of
which nodes are faulty to computeH and η[0], which could then
be broadcast to all nodes. A more conservative value of k̄ can be
obtained in a distributed manner, by setting η[0] = 0 and using
an upper bound of κ(HS−1H�) and ψ.

VI. NUMERICAL EXAMPLE

This section provides a numerical example that illustrates
the proposed distributed reconfiguration method. For an exper-
imental evaluation of the proposed methods in a room-heating
scenario with a network of actuators, see [36, Ch. 7].

A. Networked Control System Setup

In the following example, the aim is to control an unstable
second-order system with nine sensors and four actuators. The
system dynamics, measured outputs, and aggregated outputs are
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Fig. 5. Sensor and actuator network graph. The healthy nodes are
colored black and the faulty nodes are colored red. (a) Sensor network—
no fault. (b) Sensor network—fault. (c) Actuator network—no fault. (d)
Actuator network—fault.

given by (1)–(3), respectively, where

A =
[

9 2.5
4 0

]
, B =

[
2.83 4.01 0.21 −0.58
−0.16 −0.64 2.86 4.73

]

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.1
−2 −0.2
4 0.4

0.1 1
−0.5 −5
0.3 3
1 1
1 1

0.5 0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.36 0.26 0
0.04 0.17 0
0.24 0 0.52
0 0.88 0.73

0.24 0 0.86
0 0.62 0.60
0 0.60 0.14
0 0.64 0.63

0.64 0 0.18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

.

To enable reference tracking, the plant is augmented with two
integral states, representing the integral error at each physical
state. The control cost parameters are

R =

⎡
⎢⎢⎣

50 0 0 0
0 100 0 0
0 0 150 0
0 0 0 200

⎤
⎥⎥⎦ , Q = 100I

while the noise covariances are V = 0.4I and W = I . More-
over, the state estimate and control input are given by (6) and
(5), respectively. The initial gains L and K are the solutions to
the LQG controller design problem. The ADMM parameters in
(19) are set to ρ = 1 and α = 1.5.

The sensor network graph is given in Fig. 5(a) and (b), while
the actuator network is depicted in Fig. 5(c) and (d), for the
nominal and faulty cases, respectively.

B. Convergence of the Distributed Reconfiguration
Algorithm

We start by analyzing the performance of the distributed re-
configuration scheme presented in Section IV for the sensor and

Fig. 6. Performance of the distributed sensor and actuator recon-
figuration method for the networks depicted in Fig. 5, with λr [k] �
maxi{�{λi (A( ·) [k])}}.

actuator faults depicted in Fig. 5. As performance indicators,
we consider the normalized objective function errors |Je [k] −
J�e | and |Jc [k] − J�c |, the errors in the model-matching con-
straint ‖Heη[k] − we‖ and ‖Hcη[k] − wc‖, and the maximum
real part of the eigenvalues of Ae [k] = A− LT̄ [k]ΓyC and
Ac [k] = A−BΓuK̄[k] that relates to the stability of the in-
termediate reconfiguration solutions.

The results are depicted in Fig. 6. As it can be seen,
the distributed method asymptotically achieves the optimal
cost and guarantees the model-matching constraint. Moreover,
the state estimation error dynamics is unstable for the first
two steps, that is, λr [k] = maxi{�{λi(Ae [k])}} > 0, k = 1, 2,
while the closed-loop dynamics are unstable for only the first
step since λr [k] = maxi{�{λi(Ac [k])}} > 0, k = 1. Apply-
ing Theorem 4 from Section V, with λr = 0, we obtain the
guarantee thatAe [k] is stable for k ≥ k̄ = 53 steps andAc [k] is
stable for k ≥ k̄ = 8 steps. Since Lemma 6 provides a conserva-
tive stability guarantee, the obtained k̄ is expected to be conser-
vative. The distributed sensor reconfiguration takes 15 steps to
converge to |Je [k] − J�e | < 10−3 and ‖Heη[k] − we‖ < 10−1 .
Similarly, the distributed actuator reconfiguration takes approx-
imately 16 steps to converge.

C. Simulation Results

The time responses of the closed-loop system under the faults
in Fig. 5 are depicted in Fig. 7, which include the state trajec-
tories x(t), the control inputs u(t), and the running control cost
Jc(t) defined in (4). In Fig. 7, we depict three cases: 1) no
faults occur (solid line); 2) faults occur and detection and isola-
tion are instantaneous, but reconfiguration is performed in real
time and intermediate reconfiguration solutions are utilized at
each time step (dash-dotted line); and 3) faults occur, but no
reconfiguration is performed (dashed line).

The second case aims at demonstrating the impact of apply-
ing the reconfigured output before the reconfiguration algorithm
has converged to a stable closed-loop system. Therefore, to bet-
ter observe the impact of a slow real-time reconfiguration in
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Fig. 7. Time response of the state and estimation error trajectories
and control input for the scenarios in Fig. 5. The reference value to be
tracked is depicted by the dotted line. Sensor faults occur at time t = 20 s
and actuator faults at t = 100 s. Three cases are compared: no faults
(solid), real-time reconfiguration (dash-dotted), and no reconfiguration
(dashed). The control signals for the fault scenarios with and without
reconfiguration are denoted as uR (t) and uP I (t), respectively.

the system dynamics, the following two settings are considered.
First, the control law under reconfiguration is set to zero imme-
diately after the fault, which results in an unstable open-loop
system. Second, each iteration of the reconfiguration is set to
take 6 s to run, which includes both computation and commu-
nication time. However, in practice, much smaller computation
and communication times can be obtained, while the control pol-
icy under reconfiguration may be, for instance, initialized at the
prefault policy, thus improving the performance of a real-time
reconfiguration.

The sensor faults occur at time t = 20 s and the actuator faults
at t = 100 s. Observe that sensor faults have a small influence
in all of the cases, as verified in the plots of x(t) and Jc(t).
However, as it can be seen around t = 40 s, the state trajectory
x(t) when no reconfiguration is performed has a large deviation
from the nominal trajectory, which does not occur when the
proposed reconfiguration scheme is applied.

Fig. 7 shows that the actuator fault has a more severe impact
in the second and third cases. In the second case, when real-
time reconfiguration is performed, we observe that the state
trajectory x(t) immediately deviates from the nominal trajec-
tory. This deviation is mainly due to the initialization of the
reconfiguration algorithm, where the control law of each actu-
ator is initially set to zero; see the control signal plot uR (t)
for t ∈ [100, 106] s. However, as seen in the plot of uR (t), the
reconfiguration scheme reaches a stabilizing control law after
τ = 12 s (i.e., when two iterations are completed; cf., Fig. 6)
and x(t) begins converging to the nominal trajectory.

On the other hand, the third case with no reconfiguration has
a better transient behavior, but worse performance in the long
term. In fact, as seen in the plot of Jc(t) for t ∈ [110, 150] s, the
system without reconfiguration has a lower running cost than the
reconfigured system. However, as time runs on, the trajectories

without reconfiguration substantially deviate from the nominal
trajectories (i.e., trajectories of the system without faults); see
the plots for x(t) and uP I (t) from t = 140 s onwards. This
is further corroborated by the behavior of the cost Jc(t) for
t ∈ [160, 300] s.

VII. CONCLUSION

In this work, we developed a distributed reconfiguration
method for networked control systems under sensor and actuator
faults. The proposed approach guarantees a model-matching re-
configuration while minimizing the steady-state estimation error
covariance and a quadratic control cost. The distributed recon-
figuration method is guaranteed to achieve the same solution
as the centralized reconfiguration, while only requiring local
cooperation among healthy sensors and actuators. A numerical
example demonstrates the effectiveness of our approach.

APPENDIX

A. Proof of Lemma 1

The first constraint in (14) is the model-matching constraint,
which is derived as follows. Following Section II-B, model
matching is guaranteed if the closed-loop matrix before fault is
the same as after the fault, that is,A− LT̃ΓyC = Ae . Moreover,
the objective function and last constraint follow are given as
follows. The objective function Je in (9) is equivalent to Je =
tr(Σ̃), where Σ̃ is the steady-state covariance of the estimation
error after a fault and defined as Σ̃ = limt→∞ E{ẽ(t)ẽ(t)�}.
Additionally, under any given estimator gain L, Σ̃ is given by
the following Lyapunov equation (see [23] for details):

AeΣ̃ + Σ̃A�
e +W + LT̃ΓyV Γy�T̃�L� = 0.

The solution of the above Lyapunov equation can also
be expressed as Σ̃ =

∫∞
0 eAe t(W + LT̃ΓyV Γy T̃�L�)eA

�
e tdt.

Noticing that the termW + LT̃ΓyV Γy T̃�L� is independent of
time, one can arrive to the following equivalence of the cost Je
= tr(Σ̃) = tr((W + LT̃ΓyV Γy T̃�L�)

∫∞
0 eA

�
e teAe tdt). The

proof concludes by noticing that Ze =
∫∞

0 eA
�
e teAe tdt is the

solution to the Lyapunov equation A�
e Ze + ZeAe + I = 0.

B. Proof of Lemma 3

In order to prove Lemma 3, we rewrite the sensor and actuator
reconfiguration problems (14) and (15) as quadratic optimiza-
tion problems with equality constraints. Next, we derive the
proof for the sensor reconfiguration, while the actuator case is
omitted for brevity.

Lemma 8: Define T̃ =[η1 · · · ηp ], ηi ∈Rs and let
Hi ∈Rn2 ×s for i = 1, . . . , p. Denoting H = [H1 . . . Hp ] =
(C�Γ�

y ) ⊗ L and ω = vec(LTC), the optimization prob-
lem (14) can be rewritten as

min
η1 ,...,ηp

p∑
i=1

[Γy ]iiVii‖ηi‖2

s.t.
p∑
i=1

Hiηi = ω. (25)
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Proof: Recall that the cost Je in (7) is given by Je =
tr(Σ̃) = tr((W + LT̃ΓyV ΓyT�L�)Ze), as derived in (14). As
shown in Proposition 1, the optimal solution is independent
of the constant terms W and L�ZeL, which can be replaced
with 0 and I , respectively. Since V and Γ are diagonal, one
can write the new objective function as tr(T̃ΓyV Γy T̃�) =
tr(
∑p

i=1[Γy ]iiViiηiη
�
i ) =

∑p
i=1[Γy ]iiVii‖ηi‖2 . The model-

matching constraint follows directly by applying the vector-
ization operation. �

C. Proof of Theorem 2

The proof closely follows that of [33, Th. 1]. For
t > t0 such that t(q)n ≤ t < t

(q+1)
f , we have x(t) =

∏q+1
i=1

eAc (t−t( i )n )e(Ac +Δ( i ) [k̄ ])(t( i )n −t( i )r )e(A−BΓ( i )
u K )(t( i )r −t( i )0 )x0 . Using

Assumption 3, we derive the upper bound

‖x(t)‖ ≤
q+1∏
i=1

(ea) e−λn Tn (t)e−λr Tr (t)eλf Tf (t)‖x0‖

where Tf (t), Tr (t), and Tn (t) are the total time for which
the corresponding modes in (22) are active, with t− t0 =
Tf (t) + Tr (t) + Tn (t). Note that, by design of the reconfig-

uration scheme, t(i)r − t
(i)
0 ≤ τc(k̄) holds for all i; thus, Tf (t)

is upper-bounded by Tf (t) ≤ Nf (t0 , t)τc(k̄). From this bound,
supposing λr ≤ λn , and Assumptions 2 and 4, we have

Tf (t)
t− t0

≤ τc(k̄)
τf

+
N0τc(k̄)
t− t0

≤ N0τc(k̄)
t− t0

+
(
1− τc(k̄)

τf

)
λr− λ�

λf + λ�

≤ N0τc(k̄)
t− t0

+
λr − λ�

λf + λ�
Tr (t)
t− t0

+
λn − λ�

λf + λ�
Tn (t)
t− t0

.

Thus, we reach the inequality λf Tf (t) − λrTr (t) − λnTn (t) ≤
−λ�(t− t0) + (λf + λ�)N0τc(k̄). Defining c = a(N0 + 1) +
(λf + λ�)N0τc(k̄), the proof follows by using Assumption 2

to derive the inequality ‖x(t)‖ ≤ ce
−(λ� − a

τ f
)(t−t0 )‖x0‖ and

Assumption 4 to observe that λ�− a
τf
>0. The proof concludes

by observing that the lower bound on τf stated in the theorem
satisfies Assumption 4 with λ� =arg maxλ{λf +λr

λr −λ
τc(k̄), aλ}<λr .
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