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Abstract—In this article, we study an energy-regulation
trade-off that delineates the fundamental performance
bound of a feedback control system over a noisy chan-
nel in an unreliable communication regime. The channel
and process are modeled by an additive white Gaussian
noise channel with fading and a partially observable Gauss-
Markov process, respectively. Moreover, the feedback con-
trol loop is constructed by designing an encoder with a
scheduler and a decoder with a controller. The scheduler
and controller are the decision makers deciding about the
transmit power and control input at each time, respectively.
Associated with the energy-regulation trade-off, we char-
acterize an equilibrium at which neither the scheduler nor
the controller has incentive to deviate from its policy. We
argue that this equilibrium is a general one as it attains
global optimality without any restrictions on the informa-
tion structure or the policy structure, despite the presence
of signaling and dual effects.

Index  Terms—communication channels, energy-
regulation trade-off, feedback control, global optimality,
packet loss, power adaptation, stochastic processes.

[. INTRODUCTION

IRELESS COMMUNICATION can provide an effec-

tive solution for feedback control systems [1]. Exploit-
ing the unique characteristics of wireless communication, one
can realize unprecedented wireless control systems in which
sensors are connected to actuators via wireless channels. Such
control systems are envisioned to have abundant applications
in automotive, automation, healthcare, and space exploration.
Nevertheless, wireless channels, which are to close the feed-
back control loops in these systems, are highly subject to noise.
A direct consequence of the channel noise in real-time tasks'
is packet loss*>, which severely degrades the performance of
the underlying control system or even yields instability. To
decrease the packet error rate, for any fixed rate, bandwidth,
and modulation, the transmit power needs to increase. This in
turn raises the energy consumption of the transmitter, which
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!"This implies that block codes or message retransmissions that cause delays
more than a threshold are prohibited. Note that reliable communication in the
capacity limit is attained when delay can be arbitrarily large.

’In the context of our study, a packet (or equivalently a message) is defined
as a unit of bits corresponding to sensory information about the state of
the process under control at each time. Moreover, packet loss refers to the
phenomenon where one of these bits is detected erroneously.

U
Authorized licensed use limited to: KTH Royal Institute of Technglogy. Downloade

ires IEEE permission. See http://www.ieee.or

General Equilibrium

ndra Hirche, and Karl H. Johansson

is often afflicted with a constrained energy budget. Therefore,
minimizing the cost of communication and minimizing the
cost of control become conflicting objectives. Such a dilemma
motivates us in the present article to study an energy-regulation
trade-off that delineates the fundamental performance bound
of a feedback control system over a noisy channel in an
unreliable communication regime.

A. Related Work

Previous research has already recognized the severe effects
of packet loss on stability. Majority of works have considered
independent and identically distributed (i.i.d.) erasure chan-
nels [2]-[7]. In a seminal work, Sinopoli et al. [2] studied
mean-square stability of Kalman filtering over an i.i.d. erasure
channel, and proved that there exists a critical point for the
packet error rate above which the expected estimation error
covariance is unbounded. Later, Schenato et al. [3] extended
this work to optimal control, and showed that there exists
a separation between estimation and control when packet
acknowledgment is available. Moreover, several works have
employed Gilbert-Elliott channels to capture the temporal cor-
relation of wireless channels [8]-[11]. Notably, Wu et al. [8]
addressed stability of Kalman filtering over a Gilbert-Elliott
channel, and proved that there exists a critical region de-
fined by both recovery rate and failure rate outside which
the expected prediction error covariance is unbounded. The
corresponding optimal control problem was addressed by
Mo et al. [9] where they showed that the separation principle
still holds when packet acknowledgment is available. Even-
tually, a number of works have employed fading channels in
order to take into account the time variation of the strengths of
wireless channels [12]-[14]. In particular, Quevedo et al. [12]
investigated stability of Kalman filtering over a fading channel
with correlated gains, and established a sufficient condition
that ensures the exponential boundedness of the expected
estimation error covariance. Besides, Elia [13] studied the
stabilization problem in the robust mean-square stability sense
over a fading channel by modeling the fading as stochastic
model uncertainty, and designed a controller with the largest
stability margin.

Power adaptation for energy efficient transmission of sen-
sory information over noisy channels in estimation and control
tasks has also been addressed in the literature, and vari-
ous schedulers have been designed3 [15]-[21]. In particu-

3Throughout our study, schedulers and controllers refer to the entities that
decide about transmit powers and control inputs, respectively. The former are
also known as transmission power controllers in the literature.
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lar, Leong et al. [15] studied the estimation of a Gauss-
Markov process over a fading channel, and derived the op-
timal scheduling policy that minimizes the estimation outage
probability subject to a constraint on the average total power.
Quevedo et al. [16] investigated the estimation of a Gauss-
Markov process over a fading channel, and derived the optimal
scheduling policy that minimizes the average total power
subject to a stability condition ensuring that the expected
estimation error covariance is exponentially bounded. Later,
Nourian et al. [17] and Li et al. [18] extended the above works,
and obtained the optimal scheduling policy that minimizes
the trace of the average expected estimation error covariance
subject to an energy harvesting constraint. The fact is that
the adopted scheduling policies in [15]-[18] depend on the
estimation error covariances, and not on the outputs of the
process. In contrast, scheduling policies that depend on the
outputs of the process can obviously take advantage of all
available sensory information. These policies, which are of
interest to our study, have been considered in [19]-[21]. More
specifically, Ren et al. [19] studied the estimation of a first-
order Gauss-Markov process over a fading channel based
on the common information approach, and proved that the
optimal scheduling policy is deterministic symmetric and the
optimal estimator is linear. Chakravorty and Mahajan [20]
found a similar structural result for the estimation of a first-
order autoregressive process with symmetric noise over a
channel modeled by a finite-state Markov chain. In addition,
Gatsis et al. [21] addressed the control of a first-order Gauss-
Markov process over a fading channel by restricting the
information structure such that a separation between estima-
tion and control is achieved, and showed that the optimal
scheduling policy is deterministic and the optimal control
policy is certainty equivalent.

B. Contributions and Outline

In this article, we study the energy-regulation trade-off
without restricting the information structure or the policy
structure. We model the channel and process by an additive
white Gaussian noise channel with fading and a partially
observable Gauss-Markov process, respectively. The goal we
seek in the energy-regulation trade-off, which is in general
an intractable problem, is to find an optimal policy profile
consisting of a scheduling policy and a control policy. Our
study is different from that in [21] where the information
structure is restricted, or from those in [15]-[18] where the
policy structure is confined. It is also unlike the studies in [19],
[20] where the results are restricted to first-order processes
with no feedback control. In our study, the outputs of the
process are subject to noise, and both scheduler and controller
need to infer the state of the process. This model generalizes
the model used in [19]-[21] where the scheduler observes the
exact value of the state of the process. As a result, in contrast
to the above studies, three types of estimation discrepancies
can be considered here: the discrepancy between the state of
the process and the state estimate at the scheduler, discrepancy
between the state of the process and the state estimate at the
controller, and that between the state estimates at the scheduler
and the controller.
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Fig. 1: Communication over an additive white Gaussian noise
channel with fading. The input aj is transmitted over the
channel, and the output by, is reconstructed.
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Fig. 2: Control of a partially observable Gauss-Markov pro-
cess. The output y is observed, and the input uy is applied
to the process.

Our main contributions, in summary, are as follows. We
characterize an equilibrium in the energy-regulation trade-off
at which neither the scheduler nor the controller has incentive
to deviate from its policy. We argue that this equilibrium
is a general one as it attains global optimality without any
restrictions on the information structure or the policy structure,
despite the presence of signaling* and dual effects. We show
that at our equilibrium the scheduling policy is a determin-
istic symmetric policy and the control policy is a certainty-
equivalent policy. As we will see, such structural attributes
dramatically reduce the complexity of the design. Finally,
we discuss the computational aspects of our equilibrium, and
propose an approximation procedure for synthesizing a subop-
timal scheduling policy with a probabilistic upper bound on its
performance. Our analysis in this study is based on backward
induction for dynamic games with asymmetric information
(see e.g., [22]), and on the symmetric decreasing rearrange-
ment of asymmetric measurable functions (see e.g., [23]).

The remainder of the article is organized in the following
way. We introduce the models of the channel and the process,
and formulate the energy-regulation trade-off in Section II.
Then, we characterize an equilibrium in Section III, and
prove its global optimality in Section IV. We discuss the

4Signaling here refers to the process of exchanging implicit information
via actions.
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computational aspects of the equilibrium and propose an ap-
proximation procedure in Section V, and provide a numerical
example in Section VI. Finally, we make concluding remarks
in Section VII.

C. Preliminaries

In the sequel, the sets of real numbers and non-negative
integers are denoted by R and N, respectively. For z,y € N
and z < y, the set N[, ) denotes {z € Nlz < z < y}.
The sequence of vectors xg, ..., xj is represented by x;. The
symmetric decreasing rearrangement of a Borel measurable
function f(z) vanishing at infinity is represented by f*(x).
The tail function of the standard Gaussian distribution is
defined as Q(z) = \/% [ e~¥*/2 dy. The indicator function
of a subset A of a set X is denoted by 14 : X — {0, 1}.
The probability measure of a random variable = is concisely
represented by P(x), its probability density or probability mass
function by p(x), and its expected value and covariance by
E[z] and cov|x], respectively.

Let (2, F, P) be a probability space, and x be an integrable
random variable defined on this space. We will use conditional
expectations of the form E[x|y,y] where y and ~ are random
variables such that the latter takes on values in {0, 1} and that
o(y,7v) € F. By the Radon-Nikodym theorem and the Doob-
Dynkin lemma, z = E[z|y, ] satisfying E[(x — 2)1g] = 0
for every G € o(y,~) exists, and can be represented by a
measurable function ¢(y,~). Accordingly, given a realization
of v, conditional expectations E[x|y,y = 0] and E[z|y,y = 1]
also exist, and can be represented by ¢(y,y = 0) and ¢(y,y =
1), respectively.

We will adopt stochastic kernels to represent decision poli-
cies. Let (X, Bx) and (), By) be two measurable spaces. A
Borel measurable stochastic kernel P : By x X — [0,1] is
a mapping such that A — P(A|z) is a probability measure
on (Y,By) for any x € X, and z — P(A|z) is a Borel
measurable function for any A € By.

Besides, we will use two different notions of optimality. For
a given team game with two decision makers, let v' € G' and
72 € G2 be the decision policies of the decision makers where
G' and G? are the sets of admissible policies, and L(vy!,~?)
be the associated loss function. A policy profile (y'*,~2*)
represents a Nash equilibrium if

L(Wl*m?*) < L(Wl,wg*), for all 4! € G*,

L(y"*,7**) < L(y"*,~?), forall v* € G2,

However, a policy profile (y'*,7?*) is a globally optimal
solution if

L(y", %) < L(y',~?), forall 4! € G' 4% € G2

Clearly, a globally optimal solution is necessarily a Nash
equilibrium, but the converse need not hold.

[I. ENERGY-REGULATION TRADE-OFF

Consider an additive white Gaussian noise (AWGN) channel
with fading with the discrete-time input-output relation

Tk = \/GkSk + N, (1)

Authorized licensed use limited to: KTH
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Fig. 3: Feedback control over a noisy channel. The channel is
additive white Gaussian noise with fading, and the process is
partially observable Gauss-Markov. The encoder consists of a
filter, a scheduler, and a channel encoder. The decoder consists
of a channel decoder, a filter, and a controller.

for k € Njg n) where 7 is the channel output, g > 0 is the
channel gain, sj is the channel input, n is a white Gaussian
noise with zero mean and power spectral density Ny, and NN is
a finite time horizon. The channel gain g, is a random variable
representing the effects of path loss, shadowing, and multipath,
which can change at each time with or without correlation
over time according to any probability distribution satisfying
the Markov property. The bit sequence corresponding to a
message ajp is modulated by the encoder into the carrier
signal, and is transmitted over the channel. The signal is then
detected by the decoder, and the message by is reconstructed
after one step delay (see Fig. 1). It is assumed that the
channel is block fading, that the channel gain g is known
at both decoder and encoder before transmission at time k
given a feedback channel, and that the quantization error is
negligible. For our purpose, we focus on uncoded square
M-ary quadrature amplitude modulation (MQAM) signaling®
with M € {4,16,64,...} for which the packet error rate at
time £ is determined exactly as

per, =1— (1 - COQ(\/ClEk/NO))QL/b, 2)

with parameters co = 2(1 — 27%/2), ¢; = 3b/(2° — 1), and
b = log, M where per, € C = [0,1—27%] is the packet error
rate, ) is the received average energy per bit, and L is the
packet length in bits. The MQAM signaling is desirable for its
high spectral efficiency. However, given a mapping between
the packet error rate and received average energy per bit, any
other signaling with or without coding can be adopted. Then,
from (1) and (2), we can obtain the required transmit power
at time k for a given packet error rate as

520 (-0 ) o

where py, is the transmit power, R is the communication rate,
and we used the fact that £}, = gxpi/ R. Note that the function
in (3) is decreasing in terms of per;, and that there exists a
transmit power pj. at each time k for which per,, = ¢ where

SSignaling here refers to the process of mapping digital sequences to
signals.
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€ is a negligible probability. In addition, from the definition
of per,, we can model packet loss according to a random
variable ~y;, such that v, = 1 if the message aj, is successfully
received after one time step and v, = 0 otherwise, and that
the probability of v, = 0 is per,. Therefore, we have

bry1 = {

for k € Njg,n7 with by = @. Note that v, for all k¥ € N
are conditionally independent given all previous and current
channel gains and transmit powers. It is assumed that the
acknowledgment of a message that is successfully received
at time k is available at the encoder at the same time via the
feedback channel.

Now, consider a partially observable Gauss-Markov
(POGM) process with the discrete-time state and output equa-
tions

Ak,
%)

if Y = 1,
otherwise,

“)

3

5)
(6)

for k € Njg ) with initial condition zo where z) € R" is
the state of the process, Ay € R™*™ is the state matrix, By €
R™*™ ig the input matrix, u; € R™ is the control input, wy, €
R™ is a Gaussian white noise with zero mean and covariance
Wi = 0, yx € RP is the output of the process, Cj, € RP*" ig
the output matrix, and v € RP is a Gaussian white noise with
zero mean and covariance Vi, > 0. The output y;, is observed
by a sensor, and the input uy is applied to the process by an
actuator (see Fig. 2). It is assumed that z( is a Gaussian vector
with mean mg and covariance My, and that xg, wi, and v
are mutually independent for all k € Njg nj.

The sensor is connected to the actuator via the channel.
Fig. 3 illustrates a schematic view of the system of interest
in which the encoder consists of a filter, a scheduler, and
a channel encoder, and the decoder consists of a channel
decoder, a filter, and a controller. In this system, the scheduler
and controller are the decision makers deciding about the
transmit power and control input at each time, respectively.
The filters should be required since the process is partially
observable. The message that is transmitted to the controller
at time k, i.e., ag, is the minimum mean-square-error (MMSE)
state estimate at the scheduler at time k. This state estimate
condenses all previous and current outputs of the process
into a single message. This implies that from the MMSE
perspective the controller is able to develop a state estimate
upon the receipt of a message that would be the same if
it had all previous outputs of the process, which is in fact
the best possible case. Finally, the location of the controller
in the system is nominal. The case in which the controller
and actuator are connected via another channel can essentially
be converted to the case in which those are collocated [24].
The reason is that the information that would be transmitted
from the controller to the actuator should be processed again
at the actuator, and from the data-processing inequality (see
e.g., [25]), it is always better to process the transmitted MMSE
state estimate directly at the actuator. Hence, the two channels
can in effect be modeled by a single channel.

Tip1 = A + Bruk + wy,

yr = Crxy + vi,

U
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The decision variables of the scheduler and the controller
at time k are per,® and uy, respectively. These decisions are
decided based on the causal information sets of the scheduler
and the controller, which are expressed by

t €Ny, t' € N[o,k—u},

I = {ytabtagta pery, Y, Uy

= {bmgta%/,ut’ t € Ny, t' € N[o,k—u},

respectively. Clearly, Z;; C Z;. We say that a policy profile
(m, ) consisting of a scheduling policy © and a control
policy 4 is admissible if 7 = {P(vx|Z;)}., and u
{P(ur|Zg) Y, where P(v4|Z;) and P(uy|Z¢) are Borel mea-
surable stochastic kernels. We represent the set of admissible
policy profiles by P x M where P and M are the sets of
admissible scheduling policies and admissible control policies,
respectively. For the system described above, we are interested
in an energy-regulation trade-off that is cast as an optimization
problem with the loss function

X(T{', :u) = (1 - /\)E(ﬂ-hu) + /\J(ﬂ',,u), (7

over the space of admissible policy profiles (7, 1) € P x M,
given a trade-off multiplier A € (0, 1), and for

E(m,p) = 57 E {Zszo gkpk},

J(m ) = vy B[S0 ol Quan + D0y of Rewe], 9)

where ¢, is a weighting coefficient, and @ = 0 and Ry > 0
are weighting matrices.

Remark 1: The energy-regulation trade-off, which is for-
mulated based on the weighted sum approach (see e.g., [26]),
is a trade-off between two objective functions. The objective
function in (8) penalizes the transmit power per packet, while
the objective function in (9) penalizes the state deviation and
control effort. Note that the associated optimization problem
is in general an intractable problem due to the non-classical
information structure, signaling effect, and dual effect of the
control. These issues prohibit the direct application of the
traditional methods in stochastic optimal control. Despite these
difficulties, in the subsequent sections, we develop a new
method for the characterization of a solution (7*, u*) to this
problem. Although the problem we study is over a finite time
horizon, the extension of our result to an infinite time horizon
is straightforward provided the channel gain has a stationary
distribution and the process is time-invariant, controllable, and
observable.

I1l. EXISTENCE OF AN EQUILIBRIUM

Certainly, the main technical obstacle to the characterization
of any solution in the energy-regulation trade-off is that the
design of the stochastic kernels P(~yx|Z;) and P(uy|Z;) is in
general intertwined with the structures of the conditional dis-
tributions P(xy|Z;) and P(xy|Zf). Our goal in the following
is to overcome this obstacle by investigating a separation in
the design of these stochastic kernels. Let & and Zj, unless
otherwise stated, denote the MMSE state estimates’ at the

)

®Note that according to (3), given gj, and pery,, one can find py.
TWe recall that given an information set Zj at time k, the MMSE state
estimate at time k is achieved by E[xy|Zx].
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scheduler and the controller, respectively. Accordingly, we
define

€ 1= X — Tk, (10)
ék = .I'k—i'k, (11)
e = T — Tk, (12)

where éj, is the estimation error from the perspective of the
scheduler, é, is the estimation error from the perspective of
the controller, and €; is the estimation mismatch. The main
result of this section is given by the next theorem, which
characterizes a Nash equilibrium in the energy-regulation
trade-off at which a separation in the design is guaranteed. The
proof relies on backward induction for dynamic games with
asymmetric information. For the statement of the theorem,
we need the following lemma related to the dynamics of
the conditional means and conditional covariances, and the
subsequent definition of two value functions with respect to
the information sets.

Lemma 1: The conditional mean % = Elzp|Z]] and
conditional covariance Y}, = cov|xy|Z}| satisfy

Trg1 = Mig1 + K1 (Yngr — Crog1mitr), (13)
My4+1 = Aty + Brug, (14)
Yiy1 = (Ml;rll + CI?HijrlleJrl)_lv (15)
M1 = AV AF + W, (16)

Jor k € Nyg ny with initial conditions Ty = mo + Ko(yo —
Como) and Yy = (My*' + CIVy'Co)™t where Kj, =
Vi,CLVt, my, = E[wg|ZE ], and My, = cov(zx|Z{ ). In
addition, the conditional mean &, = E[xy|Z;] and conditional
covariance Py, = cov[zy|Z{] satisfy

Tpy1 = Aplr + Brug + veArér + (1 —y)w,  (17)
Py = AP AL + W,
(18)
— Y A(Py — Vi) AL — (1 = 3)Ek,
for k € Ng,nj with initial conditions To = mo and Py =

My where 1, = AR E[ég|Z, v = 0] and Zf, = Ap(Py —
cov[zy|Z¢, v = 0])AL.

The proof of Lemma 1 is in Appendix A.

Definition 1 (Value functions): Let S > 0 be a matrix
satisfying the algebraic Riccati equation

Sk = Qr + AL Sky1 Ak — AL Sk41By,
(19)
x (B Spy1By + Ry) ' BY S A,

for k € N ) with initial condition Sy 1 = Qx+1 and with
the exception of Sy = 0 for k ¢ Njg y1]. The value functions
VE(Zy) and VS(Z5) are defined as

Vi@) = _min B[S 0ptanlZ]. @)
VE@) = _min B[S fpe tafZE]. @D

Authorized licensed use limited to: KTH Royal Institute of Technol
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for k € Njg 7 given a policy profile (7*, u*) where
Gk = Ek(l - )\)/)\,

_ T
Sk = (uk —+ (BgSkJrlBk + Rk) lBgSkJrlAkxk)
X (B,?SkHBk + Rk)

X (uk + (B,?SkJrlBk + Rk)ilBgSkJrlAka),

for k € Njg ) with the exception of 0 := 0 and ¢ := 0 for
k: ¢ N[O)N].

Theorem 1: There exists at least one Nash equilibrium
(m*,u*) in the energy-regulation trade-off such that the
scheduling policy 7 is a deterministic symmetric policy with
respect to €y, determined by

perj, = argmicn{ per;, (4 AL i1 Arér, + ok)
peri €

2
I 9,25\;11% (Q_l(% _ %(1 _ perk)b/QL)) }7

where 'y, = A}fSkHBk(B,{SkHBk—i—Rk)_lB;{SkHAk and

Ok = E[Viﬂ(fziﬂ)lfz,% = 0] - E[V;fﬂ(fziﬂ)lfia% =

1], and the control policy p* is a certainty-equivalent policy
determined by

u; = _(Bgsk+1Bk + Rk)ilBgS]vklAkjkv

(22)

(23)

where T}, is the MMSE state estimate at the controller satis-
fing Tpr1 = ApZk + Brug + v Agéy for k € N[O,N] with
initial condition Ty = my.

The proof of Theorem 1 is in Appendix B.

Remark 2: Note that contrary to the conditional distribu-
tion P(z|Z;), the conditional distribution P(z4|Zf) is non-
Gaussian and is influenced by the signaling effect. According
to Lemma 1, the existence of the signaling residuals 2, and
Zk in (17) and (18) implies that the controller might be able
to decrease its uncertainty even when a packet loss occurs.
However, the fact that at the equilibrium (7*, /*) characterized
in Theorem 1 the MMSE state estimate j, satisfies (17) with
1, = 0 asserts that the controller’s inference about the state
of the process when a packet loss occurs has no contribution
from the MMSE perspective. This is an important property as
it consequently leads to a linear structure for the filter at the
controller, to a separation in the design of the scheduler and
the controller with respect to each other and with respect to
the filters, and to the neutrality of the control (see e.g., [27]).
It is also interesting to note that at the equilibrium (7*, p*)
the transmission of the MMSE state estimate & becomes
equivalent to the transmission of the estimation mismatch
é, or the innovation v, := y, — Ci E[zg]|Z;_,] because
ék = jk — ik = Kkl/k when Ye—1 = 1.

IV. GLOBAL OPTIMALITY OF THE EQUILIBRIUM

Although Theorem 1 proves the existence of a Nash equi-
librium, due to non-convexity, there might exist other Nash
equilibria with better performance in the energy-regulation
trade-off. Unfortunately, there is no direct way to the charac-
terization of all these equilibria (if any). However, this is not
required for our purpose if we could show that the equilibrium
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(7*, ) was globally optimal. The main result of this section
is provided by the next theorem, which in fact proves that this
equilibrium is dominant in the set of admissible policy profiles.
The proof relies on the symmetric decreasing rearrangement
of asymmetric measurable functions.

Theorem 2: The Nash equilibrium (7*, u*) characterized
in Theorem 1 associated with the energy-regulation trade-off
is globally optimal.

The proof of Theorem 2 is in Appendix C.

Remark 3: The global optimality result in Theorem 2 is
important as it guarantees that there exist no other equilibria
in the energy-regulation trade-off that can outperform the
equilibrium (7*, u*) for any given A. Note that the result
does not rule out the possibility of existence of other equi-
libria with equal performance. However, even in that case,
the equilibrium (7*, u*) is preferable because as mentioned
above it possesses unique structural attributes that dramatically
reduce the complexity of the design. We should emphasize that
the energy-regulation trade-off studied in this article can be
reduced to a rate-regulation trade-off when per,, is restricted
to take values only in {0,1}. In such a problem, which we
have studied in [28], [29], instead of the energy the packet
rate is penalized, and the scheduler’s decision at each time is
to transmit a message or not to transmit. Hence, our result here
generalizes the result in [28], [29], where we found an optimal
policy profile consisting of a symmetric threshold triggering
policy and a certainty-equivalent control policy.

V. COMPUTATION AND APPROXIMATION

In this section, we look at the computational aspects of
the equilibrium (7*, *). From Theorem 1, we see that there
are some variables in the design of the optimal policies that
can be computed offline, and some that must be computed
online at the scheduler and/or the controller. In particular,
the optimal control policy p* can readily be computed based
on the algebraic Riccati equation (19) and on the following
recursive linear equation:

Tp+1 = ArTr + Bruk + YAk,

for k € Njg ) with initial condition Zg = my. In addition,
the optimal scheduling policy 7* can be computed with an
arbitrary accuracy by solving recursively and backward in time
the following optimality equation:

Vks (ék, gk) = min {Hkpk(perk, gk) + per;, égAngJrlAkék

per, €C

+ tr(AZ:FkJrlAkYk + Dt Wk)
+ pery, E [Vkerl(ékJrla ngrl)‘ékv 9k, Tk = O}

+ (1= pery) E [V (Ert1s Grr1) | €k gy Y = 1] },

for k € N ) with initial condition V5 (ént1,9n+1) =0
in conjunction with the probability distribution of the channel
gain, and with the following recursive linear equation:

€rt1 = (1 — ) Arér + Kip1Vit1,

U
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Fig. 4: The energy-regulation trade-off curve in feedback
control over a noisy channel. The area above the trade-off
curve represents the achievable region.

for k € Ny nj with initial condition éy = Kovp where vy
is a Gaussian white noise with zero mean and covariance
Ny = CkMkC,Z + V. Let (é, gr) and per, be discretized
in grids with d?“ and dy points, respectively, and the asso-
ciated expected value be obtained based on a weighted sum
of d3 samples. The complexity of this computation is then
O(Nd?*tdyds). Note that the associated computational re-
quirements can be overwhelming especially when n increases.
In practice, one might be interested in a suboptimal scheduling
policy with cheaper computation. The following proposition
synthesizes such a policy with a probabilistic upper bound on
its performance.
Proposition 1: Let m* be a scheduling policy given by

perz = argmin{ pery, é;;FA;;FI‘kHAkék

per, €C 2 (24)
+ BB (L (L — L(1 — per,)?/2t) ) |,
Then, the loss x(n", u*) is upper bounded by
X = zlv;ﬁ iv;Ol Lipy + NLH{mOTSOmO
Ftr(Sne1My+1) + Sho tr (QrY) (25)

+ Ziv:() tr (Sk+1Kk(CkMkCE + Vk)Kg) },

with probability (1 — €)™,
The proof of Proposition 1 is in Appendix D.

VI. NUMERICAL EXAMPLE

In this section, we provide a simple example to demonstrate
the energy-regulation trade-off curve. In our example, we
choose the parameters of the channel, the process, and the
loss function as follows: the data rate R = 4 Kbps, noise
power spectral density Ng = —120 dB, modulation order
M = 16, packet size L = 128 bits, state coefficient Ay = 1.1,
input coefficient By, = 1, output coefficient C}, = 1, process
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noise variance Wj = 3, output noise variance V; = 1 for
k € Njg, 1, mean and variance of the initial condition mg = 0
and My = 1, weighting coefficients Qn1 = 1, { = 1,
Qr =1, and R, = 0.1 for k € N[O,N]’ and terminal time
N = 100. In addition, we express the fading by the combined
path loss and shadowing model

—92 -8
gk:(4ﬂ'£do) (d%) 102/10,

for k € Njg n) where the carrier frequency f = 2.4 GHz,
reference distance dy = 1 m, speed of light ¢ = 3 X 105 km/s,
transmitter-receiver relative distance d = 20 m, path loss
exponent 5 = 3, and shadowing random variable oy has
a Gaussian distribution with zero mean and variance 5 dB.
For this system, the energy-regulation trade-off curve was
computed numerically using different values of the trade-off
multiplier A € (0,1), and is depicted in Fig. 4. As specified,
the area above the trade-off curve represents the achievable
region. Note that the performance of any policy profile should
be assessed with respect to the trade-off curve, and that
there exists no policy profile with performance outside the
achievable region.

VII. CONCLUSION

In this article, we studied an energy-regulation trade-off that
can express the fundamental performance bound of a feedback
control system over a noisy channel in an unreliable commu-
nication regime. The central focus was on the characterization
of an equilibrium at which the filter at the controller becomes
linear, the design of the scheduler and the controller becomes
separated with respect to each other and with respect to the
filters, and the control becomes neutral. We proved that this
equilibrium, which is composed of a deterministic symmetric
scheduling policy and a certainty-equivalent control policy,
cannot be outperformed by any other equilibria. Our result
can be interpreted as another manifestation of symmetry and
certainty equivalence in the design of a class of stochastic
systems with components that are widely used for modeling
of physical phenomena in communications and control. We
propose that future research should be undertaken on the
extension of this study to wireless control systems with other
models of the channel and the process. It would of course
be interesting to see if any equilibrium resemble to the one
characterized here exists in other classes of systems.
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APPENDIX A
PROOF OF LEMMA 1

Proof: For the first part of the claim, it is easy to
verify that, given the information set of the scheduler Z;, the

conditional mean ¥ and conditional covariance Y}, satisfy the
standard Kalman filter equations (see e.g., [30]).

Moreover, for the second part of the claim, given the
information set of the controller Z; and from the state equation
(5), we can obtain the propagation equations as

ii?k+1 = Ak E[Ik |I]$+1] + BkUk, (26)

Pry1 = Ag COV[I‘;C|I]$+1]A£ + Wg. 27

By definition, v at each time can be either one or zero. If
v = 1, the controller receives & at time k + 1. In this case,
we have

p(zk|Tiy 1) = p(xr|Zy, bry1 = Tk, Gry1, Yo = 1, ug)
= p(zk|Zk, Vi)
= p(xﬂI,i),

where we used the fact that {#, Y} } is statistically equivalent
to Z;;. Hence, we obtain E[x4|Z}, || = Z1 and cov[zx|Z}, ] =
Y. However, if 7, = 0, the controller receives nothing at time
k + 1. In this case, we have

p('rk|Il§+1) = p('rk|I]§abk+l =9, 0k+1,Vk = O,Uk)

p(zk|Zg, v = 0)

P(vk = O|Zf, xx) p(xx|Zf)
p(ve = O|Z)

Note that for any admissible scheduling policy 7, it is possible
to calculate p(yx = 0|Z5, x) and p(yx = 0|Z5). Let us define
&), = E[zk|Z;, v = 0] — &, and P, := P, — cov(zi|Zf, v =
0]. As a result, for any value of -y, we can obtain the update
equations as

Elze|Zi ] = @k + (@ — 2k) + (1 — )3y, (28)

cov[wy|Ziy1] = P — ve(Po — Vi) = (L= )P (29)

Finally, we obtain the result by substituting (28) and (29)
in (26) and (27), respectively, and by defining the signaling
residuals 1, 1= Agd}, and =), := Ay P AL, ]

APPENDIX B
PROOF OF THEOREM 1

Proof: Applying few operations on the state equation (5)
and the algebraic Riccati equation (19), we see that

xfﬂSkaHl = (Apzp + Brug + wi)
X Sky1(Arzr + Brui + wi),
o} Sy = o} (Qr + A Sk Ay,
— L} (BF Sk41By + Ri)Ly,) i,

T T
TN 41 SNHITN+1 — T SoTo

N T N T
=D 50 T 1 Sk+1Tht1 = D _p—g Tp, SkTh-
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Let us now define the loss function x'(7, 1) as
X (m,p) :=E [fo:o {%pk(Pe"kagk)
+ (ug, + (B Sky1 By + Ri) "B ki1 Agay)
X (B;{SkJrlBk + Rk)
x (ug + (B Sps1Bi + Rk)71B£Sk+1Ak$k)}}-

Using the above identities, it is easy to see that x/(m, u) is
equivalent to x(m,p) in the sense that it yields the same
optimal policies. Hence, it suffices to show that the policy
profile (7*, u*) satisfies

X' (7%, 1*) < ¥ (m, p*), for all T € P,
X (7% 1%) < X (7%, ), for all pe M.
Incorporating the control policy p* in the loss function

X/(ﬂ',,u) when 7, satisfies :Ek+1 = Apii + Brug + "YkAkék
for k € Ng ) with initial condition Zo = mo, we find

X' (m,p*) =E [fozo {%pk(perk,gk)
+ e Li, (Bj Sk41Bi + Rk)LkékH ,

where Ly, = (B Si41Bk + Ri) !B} Si11Ay. Pertaining to
X' (m, *), we can write the value function V;*(Z}) as

VE(T}) = o mi|II15) E |0kpr(pery, gr)

(ke k

zi).

for k € Njg n) with initial condition V5, (Z3 ;) = 0. We
need to check that the solution of the above minimization is the
scheduling policy 7*. Moreover, incorporating the scheduling
policy 7* in the loss function x'(mw, ) when & satisfies
Tpq1 = Apip + Brug + Y Ager + (1 =) for k € Nyg
with initial condition &g = mg, we find

X' (7", u) = E {Ziv:o {91@]91@(51@791@)

+ e Théer + Vi (Th)

+ (uk + kak)TAk(uk + kak)}} ,

where A, = B}'Sy11By + Ry, Pertaining to X' (7%, 1), we
can write the value function V,°(Z5) as
Vi (Zi) =

min E |0p_1pp_1(€k_ _
P(urIZ5) k—1Pk 1( k—1,9k 1)

+ (uk + L) " Ag(uk + Lyar) + V§+1(I£+1)‘I§}a

for k € Njg n) with initial condition V¢, (Z% ;) = 0. We
need to check that the solution of the above minimization is
the control policy p*.

First, we prove by induction that V;*(Z;}) depends on é; and
gk, and is symmetric with respect to €. The claim is satisfied
for time N + 1. We assume that the claim holds at time &+ 1.

Given the dynamics of zj, in this case, we observe that é; and
€ should satisfy

ery1 = Aplr — M Arer + wy, (30)
€1 = (1 — ) Arer + Kpqp1vpy1, (3D
for k € N,y with initial conditions éy = zp — mo and

€g = Koy where v, is a Gaussian white noise with zero
mean and covariance Ny, = C), M, C,F;F + Vi. It follows that

E [é£+1rk+1ék+1’12:| = p<I=_Er [perk égAngJrlAkék
k

+tr(ATT 1 ApYs + Fk+1Wk)} ;

where we used (30) and the facts that E[éx|Z;] = éx,
cov[éx|Zi] = Y, and wy is independent of é;. Moreover,
applying the law of total expectation, we find

E {Vksﬂ(fziﬂ)‘fzi} = peErJPerk E[Vks+1(I,§+1)|I,j,% = 0]

+ (1= pery) E[Vit: (Zi)IZ8 e = 1]].

Note that E[V}? |77, v = 0] and E[V}? ||Z7, v = 1] are
independent of per;. Accordingly, we deduce that

Vi (Z) = min
k

+ tr(Ang+1AkYk + Dt Wk)

{%pk(Pel’ka i) + pery &f AL T 1 Agéy,

+ pery, E[Vi 1 (Zi )Tk, v = 0]

(1= pery) [Vt (T T v = 114

for k € Njg n) where V), and W), are independent of per,.
Hence, the minimizer is obtained as

pery = argmin{é’kpk (pery, gk)
per, €C

+ per, (6} AL Tiy1 Aréy + ox) }7

where oy = BVt (TR )15 v = 0] —
E[Vii 1 (Zig )T, v = 1]. In addition, we can write

E [Vks+1(ék+1,gk+1)‘11§,7k}
=E V& (1 =) Arér + Kig1Vks1, Grr1) ‘Iimk]

=E VP (= —m)Arér — Kri1Ves1, Ghi1) ‘Iia%}

=E V& (= (1 =) Arér + Kpgp1Vkt1, Grs1) ‘Iia%},

where the first equality comes from (31), the second equality
from the hypothesis assumption, and the last equality from the
properties of v. Therefore, E[V;? | (Z7, )T}, v&] is symmet-
ric with respect to €. This implies that perj is also symmetric
with respect to €. In addition, note that gx4; depends only
on gi. Hence, we conclude that V,*(Z;) depends on é; and
gk, and is symmetric with respect to €. This completes the
first part of the proof.
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Now, we prove by induction that V,°(Zf) is independent of
uy_1. The claim is satisfied for time N + 1. We assume that
the claim holds at time k£ + 1. Given the dynamics of j in
this case, we observe that é; and € should satisfy

Cry1 = Apér — Arer + wr — (1 — i), (32)
€1 = (1 — ) Arér + Kig1vip1 — (1 —yi)we,  (33)
for k € Ny nj with initial conditions éy = xp — mo and

éo = Kovp where v, = E[éx|Z{, & = 0]. Since 7 under 7*
is a function of €y, we recursively infer from (32) and (33)
that €5 and €y, are independent of the control inputs. Moreover,
using the identity = = ), + éx, we find

E {(uk + Lkl'k)TAk(uk + kak)‘Ig}

=E [tr(FkPk) + (uk + kak)TAk(uk + Lk:f?k) ,
ug
where we used the facts that E[Z;|Z{] = 2 and E[é|Z;] = 0.
Accordingly, we deduce that

VEEE) = min {01 Elpio (@, go-)IZE]
Uk
+ tr(CrPy) + (ug + Lkik)TAk
X (g + i) + EVies (T 25

for k € Nyg ] where pr._1(€x—1,9x—1) and Py = cov[éx|Tf]
are independent of the control inputs because €;_; and éy
are independent of the control inputs, respectively. Hence, the
minimizer is obtained as u} = — L2}, and we conclude that
Vi€(Zf) is independent of ug_1. We now proceed the proof by
showing that the signaling residual 12, = 0 for all k € Nyg nj.
Note that éy and €y are Gaussian vectors with zero mean. We
assume that 7, = 0 for all £ € Ng ;). For any value of 1,
we have

P(Er|ZE, vk = 0) o< p(yr = Olér, Tg) p(ex|Z). (34

By the hypothesis assumption and using the scheduling policy
7*, we see that p(éx|Zg) and p(yx = 0|ég, Z5) are symmetric
with respect to é;. Hence, p(éx|Z;, & = 0) is also symmetric
with respect to €. This implies that E[é;|Z7, vz = 0] = 0.
Note that we can write

E e |76 7 = B[ Elew izt ml| 76

E | Efew |75,
=E {ék‘zﬁﬁk},

where the first equality comes from the tower property of the
conditional expectations and the second equality from the fact
that 3, is a function of Z;. Therefore,

1 = Ak E {ék‘Lﬁ,% = 0} =0.

This completes the second part of the proof, and establishes
that (7*, u*) is a Nash equilibrium. |

APPENDIX C
PROOF OF THEOREM 2

We shall need the following technical lemmas for the proof.
For the proofs of these lemmas, see e.g., [31] and [32].

Lemma 2 (Hardy-Littlewood Inequality): Let f and g be
non-negative functions defined on R" that vanish at infinity.
Then,

Jon f(@)g(x)de < [o, f*(x)g* (z)dz. (35)

Lemma 3: Let B(r) C R" be a ball of radius r centered
at the origin, and [ and g be non-negative functions defined
on R"™ that vanish at infinity and satisfy

Jo Fr(@)dz <[5, 9% (2)dz, (36)
for all r > 0. Then,
Jay @) f* (@)dx < [, h(x)g" (w)d, (37)

for any symmetric non-increasing function h.
We now present the proof of Theorem 2.
Proof: Without loss of generality, assume that mg = 0.
For mgy # 0, one can use a simple transformation, and find
the same result. To prove global optimality of the equilibrium
(m*, ), we need to show that

x(m*, 1) < x(mw,p) forall m € P,y € M.

Let (w°, u°) denote a globally optimal policy profile. In the
light of Theorem 1, this policy profile indeed exists.

First, we will show that, given the control policy 1°, we can
find an innovation-based scheduling policy o that is equivalent
to 7°. From the definition of v, we have y, = v+ FErXi_1+
Fyuj_1 where Ej and Fj, are matrices of proper dimensions.
By Lemma 1, we have X, = Gy + Hyug—1 where Gy, and
Hj, are matrices of proper dimensions. Besides, from (4), we
know that by, depends on X;_; and ~,_;. As a result, it is
possible to write

Pro (’YHL?) = Pro (7k|yk7 Yi—1>Uk—1, gk)v

p#o(wcllié) = P#o(uk|Vk71,’)’k717ukfhgk)-

Accordingly, any realizations of 7, and wuj can be ex-
pressed as i = Yk (TkiVk; Vi 1, Uk—1,8k) and up =
U ((k; Vi—1,Yp—1, Uk—1, gk) where 7, and (; represent ran-
dom variables, independent of any other variables, that are
used in the generation of the realizations of v, and wyg,
respectively. Therefore, it is possible to recursively con-
struct p, (Ve|Vks Yi—1,Cr_1,&k) such that it is equivalent to
Pro(Vk|Z;). This establishes that x (o, u°) = x(7°, u°). Note
that although the scheduling policy o is constructed associated
with the control policy 1, it depends only on vy, v _1, 1>
and gy, at each time k € N ny.

Now, given the scheduling policy o, we will find an optimal
control policy &, and prove that £ is certainty equivalent. Recall
that, by Lemma 1, é;, and éj in general satisfy

érr1 = Arér — YeArér + wi — (1 — v,

err1 = (1 — i) Arer + Kpr1vkrr — (1 —y)u,
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for k € N ) with initial conditions éy = xo and ¢y = Kovp
where 1, = Ay E[éx|Z;, v = 0]. It is easy to see that é; and
ér are independent of the control inputs under o. Then, by
a similar argument used in the proof of Theorem 1, one can
show that the value function V,¢(Z;) under o should satisfy
Vii(Zy) = min

up €ER™

{91@71 Elpr—1(pery_1, 9r—1)|Z5)
+ tr(DuPy) + (ug + Lidy) T A
X (uk + Lie) + E[ViE (T ZE]

for k € Njg ) with initial condition Vg, ;(Z% ;) = 0 where
Pr—1(pery_1,9x—1) and P, = cov[é|Z;] are independent of
the control inputs, and that the minimizer is obtained as u}, =
— Ly This establishes that x(o,¢&) < x(o, pu°).

Next, we will show that x(w,&) < x(0,£) where w is a
special type of o that is symmetric. Let AV be the set on which
vy, is defined, B(r) be a ball of radius r centered at the origin
and of proper dimension, and r), denote (v, ) where vy, =
Tygt1vi € N for a given Ty1. For any fixed ¢;,_; and s,
we construct w with p,(Dg|y, = 0) as a radially symmetric
function of 7 such that the following conditions are satisfied:

fjwc Po,(Vk = Olvk, Y4y = 0) sk (vi)dvy

(38)
= [ir Po( = Olvk, vy = 0) qi (Vi) dvi,
f/\/’k pk(pw(ﬁyk = O|Vk77k71 = O)) Sk(l/k)dl/k
(39)
< Jare Pk (P (ke = Olvi, y4—y = 0)) qg (i) dvg,
fB(r) (pw(ﬁ)/k = 0[P, vp_1 =0) Sk(Dk))*de
(40)

> fB(T) (Po (i = O0lZk, )y = O)qk(f/k))*dfjka

for k € Njg ) and all 7 > 0 where si(.) := p,,(. |vx_1 = 0)
and q;(.) :=p, (. |vx_1 =0). Observe that

Skr1(Vht1) = = p(Viy1)
X P, (Ve = 0|vk, iy = 0) sp(vp),
Apey1 (Vit1) = é P(Vk+1)

X Po (e = OlVk, Ym1 = 0) qi (i),

for k € Ny nj where ¢, = p, (% = 0]v,_; = 0) and
¢o = py(7& = 0]v,_1 = 0) with initial conditions so(vp) =
qo(v0) = p(vo). We can write

Po(7k = 071 = 0)

= fjwc Po (Ve = Olvk, Y1 = 0) py (Vi|Vi—1 = 0)dvy,

= [r P (V6 = 0wk, Yi—y = 0) pu (Vi |v4—y = 0)duy,

= Pw(”Yk = Oh’kfl = 0)7

8For brevity, hereafter we omit the dependency on ¢j,_; and gy.
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where the second equality is by (38). Hence, ¢, = c.
In addition, note that siii(Px41) and g ;(Px4+1) can be
obtained based on sy 1(Vk41) and q; | (Vr41), respectively.

To make use of the above construction, we shall introduce
an equivalent loss function. It is possible to write

X (0,6) = S0 E [Oupr(pery) + el Téa |
= YhooE [9kpk(Perk) + E[éffkékﬂiﬂ

= Ziv:() E [ekpk(pel’k) —+ égl—‘kék + tr(l"kYk)] ,

where in the second equality we used the tower property of
conditional expectations. As stated in the proof of Theorem 1,
X' (0, &) is equivalent to x (o, £). Let us define the loss function
TM(&p) as

TM (@) == oty Eo |Orpr(pery) + X Txér |,

for M € Ny . Since Yy, is independent of o, it is enough to
prove that YM (&) < T (&) for any M € {0,..., N} and
for any Gaussian vector €.

Note that ¢g = Koy is the same under both ¢ and w.
Moreover, we have

Eo [pO(pero)} = [ po( P, (0 = 0[1p)) p(ro)dro
>[5 Po(Pu(v0 = 0[10)) p(vo)dro

=E, [Po(Pero)}a

where the inequality is by (39). Hence, the claim holds for
the time horizon 0. We assume that it also holds for all time
horizons from 1 to M —1. Applying the law of total probability,
we see that

Ps (70 =1) 4+ p (7. =0)
+ e Pe(Mir = 0 = 1) = 1,
for any ¢ € Njg ). Using the above identities, we can obtain
T (E0) = S0l {6k o (Vier = 0) Eolpi(per) iy = 0)
+Po (Vi1 = 0) Eo[ex Tréxlvyy = 0]
+Po (Vi1 =0, =1)
X Eo[ X5 M @n)lyis = 0,3 = 11},
where the cost-to-go is given by
ThM(@E) = S Es [etpt(PEft) + ézrtét}v

for M € Npg ). In the following, we will compare the proba-
bility coefficients, transmit power terms, estimation mismatch
terms, and cost-to-go terms in the above loss function, which
are under o, with those under w.

Since ¢, = ¢, we have p,(v,_; = 0) = p, (Vi1 =
0) and p, (V-1 = 0,9 = 1) = p,(Ve—1 = O, = 1)

at 13:45:46 UTC from IEEE Xplore. Restrictions apply.
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Hence, all the probability coefficients remain the same under
w. Moreover, for the transmit power terms, we get

= [pk(PEVk)”qu = O}
= [y Pi(Po (Ve = OlVi, vy = 0)) i (vi)dvy,
> ka Pk(Pw(% = O|Vku7k—1 = 0)) Sk(Vk)de

=E, {pk(perk)lkal = 0}

where the inequality is by (39). We proceed the proof for the
estimation mismatch terms by first showing that the signaling
residual 7 = 0 for all & € Nyg ) under w. We assume that
1w = 0 for all ¢ € Njg;_1). Let 74 denote the time elapsed
since the last successful transmission when we are at time k.
By Lemma 1, we can express ¢ as

u = A By [ZZQO Dk—th—t"Yk—Tk =0,...,m = 0}

= A > 1F o Di—t Eo {Vk—t%/k—ﬂc =0,...,% = 0},

where Dy, is a matrix depending on A, for ' € Npp—t,6-1
and Kj_s. As p,(7x|v, = 0) has zero mean, we deduce
that p,(Vk—rys .- Vk|[Yk—r, = 0,...,7% = 0) has also zero
mean. This implies that ¢, = 0 for all k& € Ny n) under
w. Hence, given v,_; = 0, we find that é;, = Zyvi_1 +
Kiv, + ¢, under o, and that ¢, = Zpvi_1 + Kivi under
w for a suitable matrix ;. and a suitable vector c; both
independent of v. Let us now use the decomposition I'y, =
LIUG UL Ly, choose T, = Ul'LyZy, and define functions
fo(Uk—1,vk) == (Fp—1 + Ul Lyex)? (k-1 + Ul Lier) +
UgKgrkKka, fw(ﬂk—lu Vk) = ﬂ]z,l’;k—l +U£KgrkKkUk,
9o (.) = z—min_{z, f5(.)},and g, (.) := z—min.{z, f,(.)}.
Clearly, for any fixed z, g, (Vx—1, V) and g, (¥x—1, V) vanish
at infinity. It follows that

E, [égrkék

Ye-1 = O} = f/\/k+1 Jo k-1, v1)
X Py (Pk—1]V—1 = 0) p(Vi)dDj—1dVy.
In addition, we can write
Sve 9o (D1, vr)
X Py (Vo1 = 0|Vk—1,7p—2 = 0) Qg1 (Pk—1)dDj—1
< [ivr 9o (-1, k)
X (Po(Vem1 = 0Zk—1, 7o = 0) a1 (Vr—1)) dg_1
= f/\/k gw(pkfla Vk)
X (Py(Ye—1 = 01Fk—1, Y42 = 0) Qpy (Ph—1)) dig 1
< [ivr 9o (-1, Vi)

X Pu(Ve—1 = 0|Pk—1,Yp_o = 0) Sp—1(Dp—1)dvp_1,

where in the first inequality we used the Hardy-Littlewood
inequality with respect to 7j_1, in the equality the fact that

95 (Uk—1,vk) = gw(Pk—1,vk), and in the second inequality
Lemma 3 and (40). This implies that

ka minz{zu fo(ﬂk—layk)} pa(’_/k—ll'kal = O)d’_jk—l

> ka minz{za fw(Dk—la Vk)} pw(pk—lh/k—l = O)d’_jk—l'

Taking z to infinity, we conclude that

Sne o k1, v) P (Pr—1 Y1 = 0)dDi

> ka fo(Tr—1,v%) Py Pr—1]Yp—1 = 0)dDj_1.

Furthermore, for the cost-to-go terms, we find

= [T§+1’M(ék+1)"7k—1 =0,%= 1}

= ka+1 T§+1’M(ék+l)

X Py(Vrs1 Vi1 = 0,7 = 1)dvi1.

Note that €x41 = Kj41v,+1 under both o and w when vy, = 1.
Let T (&) denote a loss function that is structurally similar
to TM(&y) but with different parameter values. Clearly, if
TM(Ey) > TM(&p), then YM(&y) > TM(&y). We can write

T§+1,M(

fj\/k+1 Kk+1Vk+l)

X Py (Vkt1|Vp—1 = 0,7 = D)dvi 41
= [ TV K p1vpg1) p(es1)dvig

> [ TN (K avig1) p(Vkg1)dvia

TE}Jrl,M(

= ka+1 KkJerkJrl)

X Py, (Vs Ve—1 = 0,7 = 1)dvpya,

where in the equalities we used the facts that TM—*=1(¢)
can be defined such that it is equal to T*+1M (&) for any
Gaussian vector ¢, that v is independent of ~,, and the
Fubini’s theorem; and in the inequality we used the hypothesis
TM=k=1(g) > YM=k=1(¢) for any Gaussian vector ¢é. This
establishes that T (&) < TM(&y) and x(w, &) < x(0,&).

Finally, we will conclude that the equilibrium y (7%, u*) is
globally optimal. Note that by a similar argument used in the
proof of Theorem 1, one can show that the value function
Vi (Z3;) under £ in conjunction with 2 = 0 for & € Nyg n
should satisfy

Vi (Zy) = pmigc {%Pk(loe% gk) + pery, e AL T i1 Aréy,
erk
+ (AL Thr1 ApYi + T W)
+ pery, E[Vi 1 (Zi s )1 Z5s ve = 0]

(1= pen) B[V (T )1 T v = 114

for k € Ny with initial condition V3, ,(Zx,,) =
0, and that the minimizer is obtained as per; =
argminye,, cc{Okpk (pery, gr) -+ pery (€4 AL Tiy1 Aréy +or)}.
This establishes that x(7*, u*) < x(w, &), and hence com-
pletes the proof. [ ]
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APPENDIX D
PROOF OF PROPOSITION 1

Proof: Let 7 be a scheduling policy with p, = pj. fork €
N[O,Nfl]’ for which per;, = ¢, and with py = 0. In addition,
let 7+ be a scheduling policy that is obtained according to
(22) in Theorem 1 except that g is now substituted with a
new function based on 7, i.e., g = E[V] {1 (Z;, )| L5, v =
0| —E[V,™  (Zi1)|Z5, i = 1] where Vi (Z) is the cost-to-go
associated with x (7, 1*). We shall prove that

x(mt, ) < x(r, pb).

To do so, it suffices to show V7 (Z3) < V(Z;) where
Vk”+(I,j) is the cost-to-go associated with x (7", u*). Note
that VJGL( sa1) = Va1 (@ay1) = 0. We assume that the
claim holds for k + 1. We can write

E [ekpk(pw+ (e = 01Z3), gk )
+ 61 Ths18rg + kal (Zr41)| T8
<E [ekpk(p,r+ (v = O|Z3), gx)
+ ép i D1 + Vi (Zign) | Z5

<E [ekpk(pﬁ(w = 0Z})., &)

+ ép 1 D1t + Vi (Zig) | Zi |

where the first inequality comes from the induction hypothesis
and the second inequality from the definition of the suboptimal
policy 7. This implies that Vk”+(I,j) < VE(TP).

Note that, under 7, v, = 1 for all k£ € N[O,Nfl] with
probability (1 — €). In that condition, it is easy to verify
that x (7, u*) = X (see e.g., [33]), and that é; satisfies

Erp1 = Arly + wy,

for t € N1 ny—1)- The latter implies that é; for all ¢ €
N{x42,n] are independent of ~x. Hence, we get g = 0, and
this completes the proof. [ |
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