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Abstract—This paper investigates the stability of Kalman
filtering over Gilbert–Elliott channels where random packet
drops follow a time-homogeneous two-state Markov chain
whose state transition is determined by a pair of failure and
recovery rates. First of all, we establish a relaxed condition
guaranteeing peak-covariance stability described by an in-
equality in terms of the spectral radius of the system matrix
and transition probabilities of the Markov chain. We further
show that the condition can be interpreted using a linear
matrix inequality feasibility problem. Next, we prove that
the peak-covariance stability implies mean-square stability,
if the system matrix has no defective eigenvalues on the
unit circle. This connection between the two stability no-
tions holds for any random packet drop process. We prove
that there exists a critical curve in the failure-recovery rate
plane, below which the Kalman filter is mean-square stable
and no longer mean-square stable above. Finally, a lower
bound for this critical failure rate is obtained making use
of the relationship we establish between the two stability
criteria, based on an approximate relaxation of the system
matrix.

Index Terms—Estimation, Kalman filtering, Markov pro-
cesses, stability, stochastic systems.

I. INTRODUCTION

A. Background and Related Works

W IRELESS communications are being widely used nowa-
days in sensor networks and networked control systems.

New challenges accompany the considerable advantages wire-
less communications offer in these applications, one of which is
how channel fading and congestion influence the performance
of estimation and control. In the past decade, this fundamen-
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tal question has inspired various significant results focusing on
the interface of control and communication and has become
a central theme in the study of networked sensor and control
systems [2]–[4].

Early works on networked control systems assumed that sen-
sors, controllers, actuators, and estimators communicate with
each other over a finite-capacity digital channel, e.g., [2] and
[5]–[13], with the majority of contributions focused on one or
both finding the minimum channel capacity or data rate needed
for stabilizing the closed-loop system, and constructing optimal
encoder–decoder pairs to improve system performance. At the
same time, motivated by the fact that packets are the funda-
mental information carrier in most modern data networks [3],
many results on control or filtering with random packet dropouts
appeared.

State estimation, based on collecting measurements of the
system output from sensors deployed in the field, is embedded in
many networked control applications and is often implemented
recursively using a Kalman filter [14], [15]. Clearly, channel
randomness leads to that the characterization of performance
is not straightforward. A burst of interest in the problem of the
stability of Kalman filtering with intermittent measurements has
arisen after the pioneering work [16], where Sinopoli et al. mod-
eled the statistics of intermittent observations by an independent
and identically distributed (i.i.d.) Bernoulli random process and
studied how packet losses affect the state estimation. Tremen-
dous research has been devoted to stability analysis of Kalman
filtering or the closed-loop control systems over i.i.d. packet
lossy packet networks in [17]–[22].

To capture the temporal correlation of realistic commu-
nication channels, the Markovian packet loss model has
been introduced to partially address this problem. Since the
Gilbert–Elliott channel model [23], [24], a classical two-state
time-homogeneous Markov channel model, has been widely
applied to represent wireless channels and networks in indus-
trial applications [25]–[27], the problem of networked control
over Gilbert–Elliott channels has drawn considerable attention.
Huang and Dey [28], [29] considered the stability of Kalman
filtering with Markovian packet losses. To aid the analysis,
they introduced the notation of peak covariance, defined by
the expected prediction error covariance at the time instances
when the channel just recovers from failed transmissions, as
an evaluation of estimation performance deterioration. The
peak-covariance stability (PCS) can be studied by lifting the
original systems at stopping times. Sufficient conditions for the
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PCS were proposed for general vector systems, and a necessary
and sufficient condition for scalar systems. The existing
literature [28]–[31] has however made restrictive assumptions
on the plant dynamics and the communication channel. We
show by numerical examples that existing conditions for PCS
only apply to relative reliable channels with low failure rate.
Moreover, existing results rely on calculating an infinite sum
of matrix norms for checking stability conditions.

The PCS describes covariance stability at random stopping
times, whereas the mean-square stability (MSS) describes co-
variance stability at deterministic times. In the literature, the
main focus is on MSS rather than PCS. This is partly because
the definition of the former is more natural and practically useful
than that of the latter. However, it is difficult to analyze MSS
over Gilbert–Elliott channels directly through the random Ric-
cati equation, due to temporal correlation between the packet
losses. If we could build clearer connections relating these two
stability notions, the MSS can be conveniently studied through
PCS. The relationship between the MSS and the PCS was pre-
liminarily discussed [29]. Improvements to these results can be
found in [30] and [31]. Particularly in [32], by investigating the
estimation error covariance matrices at each packet reception,
necessary and sufficient conditions for the MSS were derived for
second-order systems and some certain classes of higher order
systems. Although it was proved that with i.i.d. packet losses
the PCS is equivalent to the MSS for scalar systems and sys-
tems that are one-step observable [29], [31], for vector systems
with more general packet drop processes, this relationship is
unclear.

There are some other works studying distribution of error co-
variance matrices. Essentially, the probabilistic characteristics
of the prediction error covariance are fully captured by its prob-
ability distribution function. Motivated by this, Shi et al. [33]
studied Kalman filtering with random packet losses from a prob-
abilistic perspective where the performance metric was defined
using the error covariance matrix distribution function, instead
of the mean. Mo and Sinopoli [34] studied the decay rate of the
estimation error covariance matrix and derived the critical ar-
rival probability for nondegenerate systems based on the decay
rate. Weak convergence of Kalman filtering with packet losses,
i.e., that error covariance matrix converges to a limit distribu-
tion, were investigated in [35]–[37] for i.i.d., semi-Markov, and
Markov drop models, respectively.

B. Contributions and Paper Organization

In this paper, we focus on the PCS and MSS of Kalman filter-
ing with Markovian packet losses. We first derive relaxed and
explicit PCS conditions. Then, we establish a result indicating
that PCS implies MSS under quite general settings. We even-
tually make use of these results to obtain MSS criteria. The
contributions of this paper are summarized as follows.

1) A relaxed condition guaranteeing PCS is obtained de-
scribed by an inequality in terms of the spectral ra-
dius of the system matrix and transition probabilities of
the Markov chain, rather than an infinite sum of matrix
norms as in [28]–[31]. We show that the condition can

be recast as a linear matrix inequality (LMI) feasibility
problem. These conditions are theoretically and numer-
ically shown to be less conservative than those in the
literature.

2) We prove that PCS implies MSS if the system matrix has
no defective eigenvalues on the unit circle. Remarkably
enough this implication holds for any random packet drop
process that allows PCS to be defined. This result bridges
two stability criteria in the literature and offers a tool for
studying MSS of the Kalman filter through its PCS. Note
that MSS was previously studied using quite different
methods such as analyzing the boundness of the expec-
tation of a kind of randomized observability Gramians
over a stationary random packet loss process to establish
the equivalence between stability in stopping times and
stability in sampling times [32], and characterizing the
decay rate of the prediction covariance’s tail distribution
for so-called nondegenerate systems [34].

3) We prove that there is a critical p− q curve, with p be-
ing the failure rate and q being the recovery rate of the
Gilbert–Elliott channel, below which the expected pre-
diction error covariance matrices are uniformly bounded
and unbounded above. The existence of a critical curve
for Markovian packet losses is an extension of that of
the critical packet loss rate subject to i.i.d. packet losses
in [16]. However, the proof method of [16] does not ap-
ply to Markovian packet losses. In this paper, the critical
curve is proved via a novel coupling argument, and to the
best of our knowledge, this is the first time phase transi-
tion is established for Kalman filtering over Markovian
channels. Finally, we present a lower bound for the crit-
ical failure rate, making use of the relationship between
the two stability criteria we established. This lower bound
holds without relying on the restriction that the system
matrix has no defective eigenvalues on the unit circle. In
other words, we obtain an MSS condition for general lin-
ear time-invariant (LTI) systems under Markovian packet
drops.

We believe these results add to the fundamental understanding
of Kalman filtering under random packet drops.

The remainder of this paper is organized as follows. Section II
presents the problem setup. Section III focuses on the PCS.
Section IV studies the relationship between the peak-covariance
and mean-square stabilities, the critical p− q curve, and
presents a sufficient condition for MSS of general LTI systems.
Section V demonstrates the effectiveness of our approach com-
pared with the literature using two numerical examples. Finally,
Section VI concludes this paper.

Notations: N is the set of positive integers. Sn
+ is the set of

n by n positive semidefinite matrices over the complex field.
For a matrix X , σ(X) denotes the spectrum of X and λX
denotes the eigenvalue of X that has the largest magnitude.
X∗, X ′, and X are the Hermitian conjugate, transpose, and
complex conjugate of X , respectively. Moreover, ‖ · ‖ means
the 2-norm of a vector or the induced 2-norm of a matrix.⊗ is the
Kronecker product of two matrices. The indicator function of a
subset A ⊂ Ω is a function 1A : Ω → {0, 1}, where 1A(ω) = 1
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Fig. 1. Estimation over an erasure channel.

if ω ∈ A, otherwise 1A(ω) = 0. For random variables, σ(·) is
the σ-algebra generated by the variables.

II. KALMAN FILTERING WITH MARKOVIAN PACKET LOSSES

Consider an LTI system

xk+1 = Axk + wk (1a)

yk = Cxk + vk (1b)

where A ∈ Rn×n is the system matrix and C ∈ Rm×n is
the observation matrix, xk ∈ Rn is the process state vec-
tor and yk ∈ Rm is the observation vector, wk ∈ Rn and
vk ∈ Rm are zero-mean Gaussian random vectors with auto-
covariance E[wkwj ′] = δkjQ (Q ≥ 0), E[vkvj ′] = δkjR (R >
0), E[wkvj ′] = 0 ∀j, k. Here, δkj is the Kronecker delta func-
tion with δkj = 1 if k = j and δkj = 0 otherwise. The initial
state x0 is a zero-mean Gaussian random vector that is uncor-
related with wk and vk and has covariance Σ0 ≥ 0. We assume
that (C,A) is detectable and (A,Q1/2) is stabilizable. By apply-
ing a similarity transformation, the unstable and stable modes
of the considered LTI system can be decoupled. An open-loop
prediction of the stable mode always has a bounded estimation
error covariance, therefore, this mode does not play any key role
in the stability issues considered in this paper. Without loss of
generality, we assume that (A1) All the eigenvalues of A have
magnitudes no less than 1. Certainly A is nonsingular.

We consider an estimation scheme illustrated in Fig. 1, where
the raw measurements of the sensor {yk}k∈N are transmitted to
the estimator via an erasure communication channel over which
packets may be dropped randomly. Denote by γk ∈ {0, 1} the
arrival of yk at time k: yk arrives errorfree at the estimator if
γk = 1; otherwise γk = 0. Whether γk takes value 0 or 1 is
assumed to be known by the receiver at time k. Define Fk as
the filtration generated by all the measurements received by the
estimator up to time k, i.e., Fk � σ (γtyt , γt ; 1 ≤ t ≤ k) and
F = σ (∪∞

k=1Fk ). We will use a triple (Ω,F ,P ) to denote the
probability space capturing all the randomness in the model.

To describe the temporal correlation of realistic communica-
tion channels, we assume the Gilbert–Elliott channel [23], [24],
where the packet loss process is a time-homogeneous two-state
Markov chain. To be precise, {γk}k∈N is the state of the Markov
chain with initial condition, without loss of generality, γ1 = 1.
The transition probability matrix for the Gilbert–Elliott channel
is given by

P =
[

1 − q q
p 1 − p

]
(2)

where p � P (γk+1 = 0|γk = 1) is called the failure rate, and
q � P (γk+1 = 1|γk = 0) the recovery rate. Assume that (A2)
The failure and recovery rates satisfy p, q ∈ (0, 1).

The estimator computes x̂k |k , the minimum mean-squared
error estimate, and x̂k+1|k , the one-step prediction, accord-
ing to x̂k |k = E[xk |Fk ] and x̂k+1|k = E[xk+1 |Fk ]. Let Pk |k
and Pk+1|k be the corresponding estimation and prediction er-
ror covariance matrices, i.e., Pk |k = E[(xk − x̂k |k )(·)′|Fk ] and
Pk+1|k = E[(xk+1 − x̂k+1|k )(·)′|Fk ]. They can be computed
recursively via a modified Kalman filter [16]. The recursions for
x̂k |k and x̂k+1|k are omitted here. To study the Kalman filtering
system’s stability, we focus on the prediction error covariance
matrix Pk+1|k , which is recursively computed as

Pk+1|k = APk |k−1A
′ +Q

−γkAPk |k−1C
′(CPk |k−1C

′ +R)−1CPk |k−1A
′.

It can be seen that Pk+1|k inherits the randomness of {γt}1≤t≤k .
We focus on characterizing the impact of {γk}k∈N on Pk+1|k .
To simplify notations in the sequel, let Pk+1 � Pk+1|k , and
define the functions h, g, hk , and gk : Sn

+ → Sn
+ as follows

h(X) � AXA′ +Q (3)

g(X) � AXA′ +Q−AXC ′(CXC ′ +R)−1CXA′

hk (X) � h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸
ktimes

(X) and gk (X) � g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
ktimes

(X)

(4)

where ◦ denotes the function composition. The following sta-
bility notion is standard.

Definition 1: The Kalman filtering system with packet losses
is mean-square stable if supk∈N E‖Pk‖ <∞.

Define

τ1 � min{k : k ∈ N, γk = 0}
β1 � min{k : k > τ1 , γk = 1}

...

τj � min{k : k > βj−1 , γk = 0}
βj � min{k : k > τj , γk = 1}. (5)

It is straightforward to verify that {τj}j∈N and {βj}j∈N are
two sequences of stopping times because both {τj ≤ k} and
{βj ≤ k} are Fk−measurable; see [38] for details. Due to the
strong Markov property and the ergodic property of the Markov
chain defined by (2), the sequences {τj}j∈N and {βj}j∈N have
finite values P -almost surely. Then, we can define the so-
journ times at the state 1 and state 0, respectively, by τ ∗j and
β∗
j ∀j ∈ N as

τ ∗j � τj − βj−1 and β∗
j � βj − τj

where β0 = 1 by convention. A result given by [29, Lemma 2]
demonstrates that {τ ∗k}j∈N and {β∗

k}j∈N are mutually indepen-
dent and have geometric distribution. Let us denote the predic-
tion error covariance matrix at the stopping time βj by Pβj and
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Fig. 2. Road map of this work.

call it the peak covariance1 at βj . We introduce the notion of
PCS [29] as follows:

Definition 2: The Kalman filtering system with packet losses
is said to be peak-covariance stable if supj∈N E‖Pβj ‖ <∞.

Remark 1: In [32], the authors defined stability in stopping
times as the stability of Pk at packet reception times. Note that
{βj}j∈N , at which the peak covariance is defined, can also be
treated as the stopping times defined on packet reception times.
Clearly, in scalar systems, the covariance is at maximum when
the channel just recovers from failed transmissions; therefore,
peak covariance sequence gives an upper envelop of covariance
matrices at packet reception times. For higher order systems,
the relation between them is still unclear.

The results of this paper are organized as follows (cf., Fig. 2).
First of all, we present a relaxed condition for PCS (Theorem 1).
Then, we establish a result indicating that for general packet drop
processes PCS implies MSS under mild conditions (Theorem 2).
We continue to show that MSS inherits a sharp phase transition
reflected by a critical p− q curve (Theorem 3). We finally man-
age to combine all these results and conclude an MSS condition
for general LTI systems (Theorem 4).

III. PEAK-COVARIANCE STABILITY

In this section, we study the PCS [29] of the Kalman filter.
(9) shown at the bottom of this page.

We introduce the observability index of the pair (C,A).

1The definition of peak covariance was first introduced in [29], where the
term “peak” was attributed to the fact that for an unstable scalar system Pk
monotonically increases to reach a local maximum at time βj . This maximum
property does not necessarily hold for the multidimensional case.

Definition 3: The observability index Io is defined as the
smallest integer such that [C ′, A′C ′, . . . , (AIo−1)′C ′]′ has rank
n. If Io = 1, the system (C,A) is called one-step observable.

We also introduce the operator LK : Sn
+ → Sn

+ defined as

LK (X) = p

Io−1∑
i=1

(1−p)i−1(Ai+K(i)C(i))∗ΦX (Ai +K(i)C(i))

(6)
where ΦX is the positive definite solution of the Lyapunov equa-
tion (1 − q)A′ΦXA+ qA′XA = ΦX with |λA |2(1 − q) < 1,
and K = [K(1) , . . . ,K(Io−1) ] with each matrix K(i) having
compatible dimensions. It can be easily shown that LK (X)
is linear and nondecreasing in the positive semidefinite cone.

We have the following result.
Theorem 1: Suppose |λA |2(1 − q) < 1. If any of the follow-

ing conditions hold.
i) ∃K � [K(1) , . . . ,K(Io−1) ], where K(i)s are matrices

with compatible dimensions, such that |λH (K ) | < 1,
where

H(K) = qp
[
(A⊗A)−1 − (1 − q)I

]−1

·
Io−1∑
i=1

(Ai +K(i)C(i))

⊗ (Ai +K(i)C(i))(1 − p)i−1 . (7)

ii) There exists K � [K(1) , . . . ,K(Io−1) ] with each ma-
trix K(i) having compatible dimensions such that
limk→∞ LkK (X) = 0 for any X ∈ Sn

+ .
iii) There exist K � [K(1) , . . . ,K(Io−1) ] with each matrix

K(i) having compatible dimensions andP > 0 such that
LK (P ) < P .

iv) There exist F1 , . . . , FIo−1 , X > 0, Y > 0 such that⎡
⎣ Y

√
1 − qA′Y

√
qA′X√

1 − qY A Y 0√
qXA 0 X

⎤
⎦ ≥ 0 (8)

and Ψ > 0 where Ψ is given in (9).
Then, supj≥1 E‖Pβj ‖ <∞, i.e., the Kalman filtering system

is peak-covariance stable.
The proof of Theorem 1 is given in Appendix B. For con-

dition (i) of Theorem 1, a quite heavy computational overhead
may be incurred in searching for a satisfactory K. Condition
(iv), as an LMI interpretation of condition (i), makes it possi-
ble to check the sufficient condition for PCS through an LMI
feasibility criterion.

Remark 2: Theorem 1 establishes a direct connection be-
tween λH (K ) , p, q, the most essential aspects of the system

Ψ �

⎡
⎢⎢⎢⎣

X
√
p(A′Y + C ′F1) · · · √

p(1 − p)Io−2
(
(AIo−1)′Y + (C(i))′FIo−1

)
√
p(Y A+ F ∗

1C) Y · · · 0
...

...
. . .

...√
p(1 − p)Io−2

(
Y AIo−1 + F ∗

Io−1C
(i)

)
0 · · · Y

⎤
⎥⎥⎥⎦

(9)
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dynamic and channel characteristics on the one hand, and PCS
on the other hand. These results cover the ones in [28], [29],
and [31], as is evident using the subadditivity property of matrix
norm, and the fact that the spectral radius is the infimum of all
possible matrix norms. To see this, one should notice that

|λH (k) |

≤ qp
∥∥∥[(A⊗A)−1 − (1 − q)I

]−1∥∥∥
Io−1∑
i=1

(1 − p)i−1
∥∥∥(Ai +K(i)C(i)) ⊗ (Ai +K(i)C(i))

∥∥∥

≤ qp

∞∑
i=1

(1 − q)i−1‖Ai ⊗Ai‖

Io−1∑
i=1

(1 − p)i−1
∥∥∥(Ai +K(i)C(i)) ⊗ (Ai +K(i)C(i))

∥∥∥

= q

∞∑
i=1

(1 − q)i−1‖Ai‖2p

Io−1∑
i=1

(1 − p)i−1‖Ai +K(i)C(i)‖2

in which the first inequality follows from |λH (K ) | ≤ ‖H(K)‖
and the submultiplicative property of matrix norms, and
the last equality holds because, for a matrix X , ‖Xi ⊗
Xi‖ =

√
λ

(X
i
(X ′)i )⊗(X i (X ∗)i )

= λX i (X ∗)i = ‖Xi‖2 . Compar-

ison with the related results in the literature is also demonstrated
by Example I in Section V.

In addition, in [28], [29], and [31], the criteria for PCS are
difficult to check since some constants related to the operator
g are hard to explicitly compute. A thorough numerical search
may be computationally demanding. In contrast, the stability
check of Theorem 1 uses an LMI feasibility problem, which can
often be efficiently solved.

In the following proposition, we present another condition for
PCS, which is, despite being conservative, easy to check. The
new condition is obtained by making all K(i)s in Theorem 1
take the value zero.

Proposition 1: If the following condition is satisfied

pq|λA |2
Io−1∑
i=1

|λA |2i(1 − p)i−1 < 1 − |λA |2(1 − q), (10)

then the Kalman filtering system is peak-covariance stable.
Proof: The proof requires the following lemma.
Lemma 1 ([39, Th. 1.1.6]): Let p(·) be a given polynomial.

If λ is an eigenvalue of a matrix A, then, p(λ) is an eigenvalue
of the matrix p(A).

Define a sequence of polynomials of the matrix A⊗A as
{pn (A⊗A)}n∈N , where

pn (A⊗A) =
n∑
i=1

(A⊗A)i(1 − q)i−1q

×
Io−1∑
j=1

(A⊗A)j (1 − p)j−1p.

In light of Lemma 1, the spectrum of pn (A⊗A) is
given by σ (pn (A⊗A)) = {pn (λiλj ) : λi , λj ∈ σ(A)}. Since
A is a real matrix, its complex eigenvalues, if any, al-
ways occur in conjugate pairs. Therefore, |λA |2 must
be an eigenvalue of A⊗A, and the spectral radius of
pn (A⊗A) can be computed as |λpn (A⊗A) | =

∑n
i=1 |λA |2i(1 −

q)i−1q
∑Io−1

j=1 |λA |2j (1 − p)j−1p. It is evident that the sequence
{|λpn (A⊗A) |}n∈N is monotonically increasing. When |λA |2(1 −
q) < 1, we have

lim
n→∞ pn (A⊗A) = H(0) (11)

and

lim
n→∞ |λpn (A⊗A) | =

q|λA |2
1 − |λA |2(1 − q)

Io−1∑
j=1

|λA |2j (1 − p)j−1p.

(12)
As |λX | is continuous with respect to X , (11) and (12) alto-

gether lead to |λH (0) | = q |λA |2
1−|λA |2 (1−q)

∑Io−1
j=1 |λA |2j (1 − p)j−1p.

Letting K(i) = 0 ∀1 ≤ i ≤ Io − 1, the condition provided in
Theorem 1 becomes: (i) |λA |2(1 − q) < 1, and (ii) |λH (0) | < 1.
Since the left side of (10) is positive, it imposes the positivity of
1 − |λA |2(1 − q), whereby the conclusion follows. �

Although computationally friendly, Proposition 1 only pro-
vides a comparably rough criterion. It can be expected that,
given the ability of searching for K(i)s on the positive semidef-
inite cone, Theorem 1 is less conservative than Proposition 1;
this is demonstrated by Example I in Section V.

Remark 3: The left side of (10) is strictly positive when
Io ≥ 2, while it vanishes when Io = 1. In the latter case, plus the
necessity as shown in [30], |λA |2(1 − q) < 1 thereby becomes
a necessary and sufficient condition for PCS. This observation
is consistent with the conclusion of [31, Corollary 2].

Remark 4: Proposition 1 covers the result of [30, Th. 3.1].
To see this, notice that

q|λA |2
1 − |λA |2(1 − q)

Io−1∑
j=1

|λA |2j (1 − p)j−1p

=
∞∑
i=1

|λA |2i(1 − q)i−1q

Io−1∑
j=1

|ΛA |2j (1 − p)j−1p

≤
∞∑
i=1

‖Ai‖2(1 − q)i−1q

Io−1∑
j=1

‖Aj‖2(1 − p)j−1p,

which implies the less conservativity of [30, Th. 3.1].

IV. MEAN-SQUARE STABILITY

In this section, we will discuss MSS of Kalman filtering with
Markovian packet losses.

A. From PCS to MSS

Note that the PCS characterizes the filtering system at
stopping times defined by (5), whereas MSS characterizes the
property of stability at all sampling times. In the literature,
the relationship between the two stability notations is still an
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open problem. In this section, we aim to establish a connection
between PCS and MSS. First, we need the following definition
for the defective eigenvalues of a matrix.

Definition 4: For λ ∈ σ(A) where A is a matrix, if the alge-
braic multiplicity and the geometric multiplicity of λ are equal,
then λ is called a semisimple eigenvalue ofA. If λ is not semisim-
ple, λ is called a defective eigenvalue of A.

We are now able to present the following theorem indicating
that as long as A has no defective eigenvalues on the unit cir-
cle, i.e., the corresponding Jordan block is 1 × 1, PCS always
implies MSS. In fact, we are going to prove this connection
for general random packet drop processes {γk}k∈N , instead of
limiting to the Gilbert–Elliott model.

Theorem 2: Let {γk}k∈N be a random process over an un-
derlying probability space (S ,S, μ) with each γk taking its
value in {0, 1}. Suppose {βj}j∈N take finite values μ−almost
surely, and thatA has no defective eigenvalues on the unit circle.
Then, the PCS of the Kalman filter always implies MSS, i.e.,
supk∈N E‖Pk‖ <∞ whenever supj∈N E‖Pβj ‖ <∞.

Note that {βj}j∈N can be defined over any random packet loss
processes, therefore, the PCS with packet losses that the filtering
system is undergoing remains in accord with Definition 2.

Theorem 2 bridges the two stability notions of Kalman fil-
tering with random packet losses in the literature. Particu-
larly, this connection covers most of the existing models for
packet losses, e.g., i.i.d. model [16], bounded Markovian [40],
Gilbert–Elliott [28], and finite-state channel [25], [26]. Although
supk∈N E‖Pk‖ and supj∈N E‖Pβj ‖ are not equal in general,
this connection is built upon a critical understanding that, no
matter to which interarrival interval between two successive βj s
the time k belongs, ‖Pk‖ is uniformly bounded from above by
an affine function of the norm of the peak covariances at the
starting and ending points thereof. This point holds regardless
of the model of packet loss process. The proof of Theorem 2
was given in Appendix C.

We also remark that there is difficulty in relaxing the assump-
tion that A has no defective eigenvalues on the unit circle in
Theorem 2. This is due to the fact that As defective eigenvalues
on the unit circle will influence both the PCS and MSS in a
nontrivial manner (see Fig. 3).

Remark 5: In [29], for a scalar model with i.i.d. packet
losses, it has been shown that the PCS is equivalent to MSS,
whereas for a vector system even with i.i.d. packet losses, the
relationship between the two is unclear. In [31], the equivalence
between the two stability notions was established for systems
that are one-step observable, again for the i.i.d. case. Theorem 2
now fills the gap for a large class of vector systems under general
random packet drops.

B. The Critical p− q Curve

In this section, we first show that for a fixed q in the Gilbert–
Elliott channel, there exists a critical failure rate pc , such that if
and only if the failure rate is below pc , the Kalman filtering is
mean-square stable. This conclusion is relatively independent
of previous results, and the proof relies on a coupling argument
and can be found in Appendix D.

Fig. 3. Relationships between the PCS and MSS over the space of
the filtering systems under consideration. Theorem 2 indicates that the
intersection of the two sets, PCS and NoDEUC, is contained in the set
MSS.

Fig. 4. p − q plane is divided into MSS and non-MSS regions by the
critical curve fc (p, q) = 0. When p + q = 1, the Markovian packet loss
process is reduced to an i.i.d. process. As a result, the intersection point
of the curves fc (p, q) = 0 and p + q = 1 gives the critical packet drop
probability established in [16].

Proposition 2: Let the recovery rate q satisfy |λA |2(1 − q)
< 1. Then, there exists a critical value pc ∈ (0, 1] for the failure
rate in the sense that

i) supk∈N E‖Pk‖ <∞ for all Σ0 ≥ 0 and 0 < p < pc ;
and

ii) For each p ∈ (pc , 1), there exists Σ0 ≥ 0 such that
supk∈N E‖Pk‖ = ∞.

It has been shown in [32] that a necessary condition for MSS
of the filtering system is |λA |2(1 − q) < 1, which is only re-
lated to the recovery rate q. For Gilbert–Elliott channels, a crit-
ical value phenomenon with respect to q is also expectable.
Theorem 3 proves the existence of the critical p− q curve and
Fig. 4 illustrates this critical curve in the p− q plane. The proof,
analogous to that of Proposition 2, is given in Appendix E.
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Theorem 3: There exists a critical curve defined by
fc(p, q) = 0, which reads two nondecreasing functions p =
pc(q) and q = qc(p) with qc(·) = p−1

c (·), dividing (0, 1)2 into
two disjoint regions such that

i) If (p, q) ∈ {
fc(p, q) > 0

}
, then, supk∈N E‖Pk‖ <∞

for all Σ0 ≥ 0;
ii) If (p, q) ∈ {

fc(p, q) < 0
}

, then, there exists Σ0 ≥ 0 un-
der which supk∈N E‖Pk‖ = ∞.

Remark 6: If the packet loss process is an i.i.d. process,
where p+ q = 1 in the transition probability matrix defined
in (2), Proposition 2 and Theorem 3 recover the result of
[16, Th. 2]. It is worth pointing out that whether MSS holds
or not exactly on the curve fc(p, q) = 0 is beyond the reach of
the current analysis (even for the i.i.d. case with p+ q = 1):
such an understanding relies on the compactness of the stability
or nonstability regions.

C. MSS Conditions

We can now make use of the PCS conditions we obtained
in the last section, and the connection between PCS and MSS
indicated in Theorem 2, to establish MSS conditions for the con-
sidered Kalman filter. It turns out that the assumption requiring
no defective eigenvalues on the unit circle can be relaxed by an
approximation method. We present the following result.

Theorem 4: Let the recovery rate q satisfy |λA |2(1 − q) < 1.
Then, there holds p ≤ pc , where

p � sup
{
p : ∃(K,P ) s.t. LK (P ) < P,P > 0

}
(13)

i.e., for all Σ0 ≥ 0 and 0 < p < p, the Kalman filtering system
is mean-square stable.

The proof of Theorem 4 is given in Appendix F.
Remark 7: For second-order systems and certain classes of

higher order systems, such as nondegenerate systems, necessary
and sufficient conditions for MSS have been derived in [32]
and [34]. However, these results rely on a particular system
structure and fail to apply to general LTI systems. Theorem 4
gives a stability criterion for general LTI systems.

V. NUMERICAL EXAMPLES

In this section, we present two numerical examples to demon-
strate the theoretical results we established in Sections III
and IV.

A. Example I: A Second-order System

To compare with the works in [28]–[30], we will examine the
same vector example considered therein. The parameters are
specified as follows

A =
[

1.3 0.3
0 1.2

]
, C = [1, 1]

Q = I2×2 and R = 1. As illustrated in [29], it is easily checked
that Io = 2 and the spectrum ofA is σ(A) = {1.2, 1.3}, and that
λA = 1.3.

Note that |λA |2(1 − q) < 1 is a necessary condition for MSS.
We take q = 0.65 as was done in [29]. As for the failure rate

Fig. 5. Sample path of ‖Pk ‖ with p = 0.99, q = 0.65 in Example I.

Fig. 6. Sample path of ‖Pk ‖ with p = 0.45, q = 0.5 in Example II.

p, [29] concludes that p < 0.04 guarantees PCS; while Proposi-
tion 1 requires p < 1−|λA |2 (1−q)

|λA |4 q , which generates a less conser-
vative condition p < 0.22. Similarly, the example in [30] allows
p = 0.1191 at most. We also note that it is rather convenient to
check the condition in Proposition 1 even with manual calcula-
tion; in contrast, to check the conditions in [29] and [30] involves
a considerable amount of numerical calculation. Additionally,
we use the criterion established in Theorem 1 to check for the
PCS. We obtain that when p = 1, the LMI in (ii) of Theorem 1
is still feasible.2 Fig. 5 illustrates sample paths of ‖Pk‖ with
(p, q) = (0.99, 0.65), which shows that even a high value of p
may not affect the PCS in this example.

B. Example II: A Third-order System

To compare the work in Section IV with the result of[32]
and [34], we will use the following example, where the param-
eters are given by

A =

⎡
⎣1.2 0 0

0 1.2 0
0 0 −1.2

⎤
⎦ , C =

[
1 0 1
0 1 1

]
(14)

Q = I3×3 and R = I2×2 .
1) Mean-Square Stability: The system described in (14)

is observable and degenerate [22]. Therefore, the MSS condi-
tions presented in [32] and [34] for nondegenerate systems are
not applicable in this example. In contrast, our Theorem 4 pro-
vides a universal criterion for MSS. Fixing q = 0.5, we can
conclude from Theorem 4 that if p ≤ 0.465 the Kalman filter
is mean-square stable. Fig. 6 illustrates a stable sample path
of ‖Pk‖ with (p, q) = (0.45, 0.5). On the other hand, when
(p, q) = (0.99, 0.5) the expected prediction error covariance
matrices diverge (as illustrated in Fig. 7). One can check that

2To satisfy the assumption (A2), we need to configure p = 1 − ε for an
arbitrary small positive ε.
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Fig. 7. Divergence of E‖Pk ‖ with p = 0.99, q = 0.5 in Example II.

Fig. 8. Blue-colored crosses represent (p, q) points where the Kalman
filter is mean-square stable; the gray dots represent (p, q) points at
which the Kalman filter is mean-square unstable. Clearly a critical curve
emerges.

when (p, q) = (0.99, 0.5) the criterion in Theorem 4 is violated.
This verifies the contrapositive of Theorem 4.

2) Critical Curve: We now illustrate the result of
Theorem 3 by Monte Carlo simulations. We quantize the p− q
plane with a step size 0.025 along each axis. For each discretized
(p, q) value, we run Monte Carlo simulations for N = 100 000
repeated rounds, and each sample goes through 70 time steps.
Noticing that without packet loss, the norm of the steady esti-
mation error covariance is around 3.7, we use

Papp =
1
N

N∑
i=1

‖Pk (ωi)‖

with k = 70 as the empirical approximation of E[Pk ] and set
a criterion Papp ≤ 100 for MSS. Clearly the p− q plane con-
sists of a stable and another unstable regions, separated by an
emerging critical curve (see Fig. 8).

VI. CONCLUSION

We have investigated the stability of Kalman filtering over
Gilbert–Elliott channels. Random packet drops follow a time-
homogeneous two-state Markov chain where the two states
indicate successful or failed packet transmissions. We estab-
lished a relaxed condition guaranteeing PCS described by an
inequality in terms of the spectral radius of the system ma-
trix and transition probabilities of the Markov chain, and then
showed that the condition can be reduced to an LMI feasibility
problem. It was proved that PCS implies MSS if the system
matrix has no defective eigenvalues on the unit circle. This

connection holds for general random packet drop processes. We
also proved that there exists a critical region in the p− q plane
such that if and only if the pair of recovery and failure rates
falls into that region the expected prediction error covariance
matrices are uniformly bounded. By fixing the recovery rate, a
lower bound for the critical failure rate was obtained making
use of the relationship between two stability criteria for general
LTI systems. Numerical examples demonstrated significant im-
provement on the effectiveness of our approach compared with
the existing literature.

APPENDIX A
AUXILIARY LEMMAS

In this section, we collect some lemmas that are used in the
proofs of our main results.

Lemma 2 (Lemma A.1 in [33]): For any matrices X ≥ Y
≥ 0, the following inequalities hold

h(X) ≥ h(Y ) (15)

g(X) ≥ g(Y ) (16)

h(X) ≥ g(X) (17)

where the operators h and g are defined in (3) and (4),
respectively.

Lemma 3: Consider the operator

φi(K(i) , P ) � (Ai +K(i)C(i))X(·)∗

+[A(i) K(i) ]
[
Q(i) Q(i)(D(i))′

∗ D(i)(Q(i))(D(i))′ +R(i)

]
[A(i) K(i) ]∗

for all i ∈ N, whereC(i) = [C ′, A′C ′, . . . , (A′)i−1C ′]′,A(i) =
[Ai−1 , . . . , A, I], D(i) = 0 for i = 1 otherwise

D(i) =

⎡
⎢⎢⎢⎣

0 0 · · · 0
C 0 · · · 0
...

...
. . .

...
CAi−2 CAi−3 · · · 0

⎤
⎥⎥⎥⎦ ,

Q(i) = diag(Q, . . . , Q︸ ︷︷ ︸
i

), R(i) = diag(R, . . . , R︸ ︷︷ ︸
i

), and K(i) are

of compatible dimensions. For any X ≥ 0 and K(i) , it always
holds that gi(X) = minK ( i ) φi(K(i) ,X) ≤ φi(K(i) ,X).

Proof: The result is readily established when setting B = I
in [40, Lemmas 2 and 3]. For i = 1, The result is well known as
in [16, Lemma 1].

Lemma 4 ([41]): For any A ∈ Cn×n , ε > 0 and k ∈ N, it

holds that ‖Ak‖ ≤ √
n(1 + 2/ε)n−1

(
|λA | + ε‖A‖

)k
.

Lemma 5 (Lemma 2 in [42]): For any G ∈ Cn×n , there ex-
ist Gi ∈ Sn

+ , i = 1, 2, 3, 4 such that G = (G1 −G2) + (G3 −
G4)i, where i =

√−1.

APPENDIX B
PROOF OF THEOREM 1

The proof is lengthy and is divided into two parts. In the first
part, we will show that condition i) is a sufficient condition for
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PCS. In the second part, we will show the equivalence between
conditions i)–iv). The proof relies on the following two lemmas.

Lemma 6 ( [29, Lemma 5]): Assume that (C,A) is observ-
able and (A,Q1/2) is controllable. Define

Sn
0 � {P : 0 ≤ P ≤ AP0A

′ +Q, for some P0 ≥ 0}.

Then, there exists a constant L > 0 such that
i) for any X ∈ Sn

0 , gk (X) ≤ LI for all k ≥ Io; and
ii) for any X ∈ Sn

+ , gk+1(X) ≤ LI for all k ≥ Io
where the operator g is defined in (4).
Lemma 7: For q ∈ (0, 1) andA ∈ Rn×n , the series of matri-

ces
∑∞

i=1(A⊗A)i(1 − q)i−1q and
∑∞

i=1
∑i−1

j=0(A⊗A)j (1 −
q)i−1q converge if and only if |λA |2(1 − q) < 1.

Proof: First observe that
∑∞

i=1
∑i−1

j=0(A⊗A)j (1 −
q)i−1q =

∑∞
i=0(A⊗A)i(1 − q)i . The geometric series

generated by (A⊗A)(1 − q) converges if and only if
|λA⊗A |(1 − q) < 1. Therefore, the conclusion follows from the
fact that |λA⊗A | = max{|λiλj | : λi , λj ∈ σ(A)} = |λA |2 . �

Now, fix j ≥ 1. First note that, for any k ∈ [τj+1 , βj+1 − 1],
γk = 0. Hence, we have

Pβj + 1 =
∞∑
i=1

1{β ∗
j + 1 =i}hi(Pτj + 1 )

�
∞∑
i=1

1{β ∗
j + 1 =i}AiPτj + 1 (A

i)′ +
∞∑
i=1

1{β ∗
j + 1 =i}Vi (18)

where Vi �
∑i−1

l=0 A
lQ(Al)′. Now, let us consider the inter-

val [βj , τj+1 − 1] over which τ ∗j+1 packets are successfully re-
ceived. We will analyze the relationship between Pτj + 1 and Pβj
in two separate cases, which are τ ∗j+1 ≤ Io − 1 and τ ∗j+1 ≥ Io.
Computation yields the following result

Pτj + 1 =
Io−1∑
i=1

1{τ ∗
j + 1 =i}gi(Pβj ) +

∞∑
l= Io

1{τ ∗
j + 1 = l}gl(Pβj )

≤
Io−1∑
i=1

1{τ ∗
j + 1 =i}φi(K(i) , Pβj ) + LI

∞∑
l= Io

1{τ ∗
j + 1 = l}

=
Io−1∑
i=1

1{τ ∗
j + 1 =i}(Ai +K(i)C(i))Pβj (A

i +K(i)C(i))∗

+ LI
∞∑
j= Io

1{τ ∗
j + 1 = l} +

Io−1∑
i=1

1{τ ∗
j + 1 =i}[Ai K(i)]Ji [Ai K(i)]∗

� (Ai +K(i)C(i))Pβj (A
i +K(i)C(i))∗ + U (19)

where Ji �
[

Q(i) Q(i)(D(i))′

D(i)(Q(i)) D(i)(Q(i))(D(i))′ +R(i)

]
and

U � LI
∞∑
j= Io

1{τ ∗
j + 1 = l} +

Io−1∑
i=1

1{τ ∗
j + 1 =i}[Ai K(i) ]Ji [Ai K(i) ]∗

is bounded. The first inequality is from Lemmas 3 and 6. By
substituting (19) into (18), it yields

Pβj + 1 ≤W +
∞∑
i=1

1{β ∗
j + 1 =i}Ai

×
[

Io−1∑
l=1

1{τ ∗
j + 1 = l}(·)Pβj (Al +K(l)C(l))∗

]
(Ai)′ (20)

where W �
∑∞

i=1 1{β ∗
j + 1 =i}AiU(Ai)′ +

∑∞
i=1 1{β ∗

j + 1 =i}Vi .
To facilitate discussion, we force Pβj + 1 in (20) to take the
maximum. For other cases in (20), the subsequent conclusion
still holds as it renders an upper envelop of {Pβj }j∈N by
imposing (20) to take equality.

We introduce the vectorization operator. Let X =
[x1 x2 · · · xn ] ∈ Cm×n where xi ∈ Cm . Then, we define
vec(X) � [x′1 , x

′
2 , . . . , x

′
n ]′ ∈ Cmn . Notice that vec(AXB) =

(B′ ⊗A)vec(X). For Kronecker product, we have (A1A2) ⊗
(B1B2) = (A1 ⊗B1) (A2 ⊗B2). Take expectations and vec-
torization operators over both sides of (20). From [29,
Lemma 2], we obtain

E[vec(Pβj + 1 )] = E[vec(W )]

+
∞∑
i=1

(A⊗A)i(1 − q)i−1q

·
Io−1∑
l=1

(Al +K(l)C(l)) ⊗ (·)p(1 − p)l−1 E[vec(Pβj )].

(21)

In the above-mentioned equation E[vec(W )] can be written as

E[vec(W )]=
∞∑
i=1

(A⊗A)i(1 − q)i−1q vec(U)

+
∞∑
i=1

i−1∑
l=0

(A⊗A)l(1 − q)i−1q vec(Q). (22)

In Lemma 7, we show that both of the two terms in (22) converge
if |λA |2(1 − q) < 1.

For j = 1, following the similar argument as abovemen-
tioned, we have

E‖Pβ1 ‖ ≤ E‖Pτ1 ‖
∞∑
i=1

‖Ai‖2(1 − q)i−1q

+
∥∥∥

∞∑
i=1

(1 − q)i−1qVi

∥∥∥
where Vis are defined in (18). Moreover, by Lemma 6 and (17),
it holds that

E‖Pτ1 ‖ ≤ ‖LI‖ +
Io∑
i=1

‖gi(Σ0)‖(1 − p)i−1p

≤ ‖LI‖ + ‖Σ0‖
Io∑
i=1

‖Ai‖2(1 − p)i−1p+ ‖VIo‖
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showing that E‖Pτ1 ‖ is bounded. To sum up, E‖Pβ1 ‖ is
bounded if |λA |2(1 − q) < 1. By applying the Cauchy–Schwarz
inequality to the inner product of random variables, the bound-
ness of E‖Pβ1 ‖ implies the boundness of each element of
E[Pβ1 ]. So is E[vec(Pβ1 )] if |λA |2(1 − q) < 1.

We have shown that E[vec(Pβj )] for j ∈ N evolves fol-
lowing (21), and that E[vec(W )] in (21) and E[vec(Pβ1 )] are
bounded if |λA |2(1 − q) < 1. We conclude that if |λA |2(1 −
q) < 1 and there exists an K � [K(1) , . . . ,K(Io−1) ] such that
|λH (K ) | defined in (7) is less than 1, then the spectral radius of

∞∑
i=1

(A⊗A)i(1 − q)i−1q

Io−1∑
l=1

(Al +K(l)C(l)) ⊗ (·)(1 − p)l−1p

is less than 1, all the above-mentioned observations lead to
supj≥1 E[veci(Pβj )] <∞ ∀1 ≤ i ≤ n2 , where veci(X) repre-
sents the ith element of vec(X). In addition, there holds

E‖Pβj ‖ ≤ E
[
tr(Pβj )

]
= [e′1 , . . . , e

′
n ] E[vec(Pβj )]

where ei denotes the vector with 1 in the ith coordinate and 0s
elsewhere, so the desired result follows.

ii) ⇒ i). It suffices to show |λH ∗(K ) | < 1. The hypothesis
means that for any X ∈ Sn

+

lim
k→∞

(H∗(K))k vec(X) = 0. (23)

In light of Lemma 5, for any G ∈ Cn×n there ex-
ist G1 , G2 , G3 , G4 ∈ Sn

+ such that G = (G1 −G2) + (G3 −
G4)i. It can been seen from (23) that

lim
k→∞

(H∗(K))k vec(G)

= lim
k→∞

(H∗(K))k (vec(G1) − vec(G2))

+ lim
k→∞

(H∗(K))k (vec(G3) − vec(G4)) i = 0

which implies i).
i) ⇒ iii). Since |λH ∗(K ) | < 1 by the hypothesis in (i), (I −

H∗(K))−1 exist and it equals to
∑∞

i=0 (H∗(K))i . Due to the
nonsingularity of (I −H∗(K))−1 and the one-to-one corre-
spondence of vectorization operator, for any positive definite
matrix V ∈ Cn×n , there exists a unique matrix P ∈ Cn×n such
that

vec(V ) = (I −H∗(K)) vec(P ). (24)

The property of Kronecker product gives vec(V ) =
vec (P − LK (P )) . Since, vectorization is one-to-one corre-
spondence, we then have V = P − LK (P ) > 0. It still remains
to show P > 0. It follows from (25) that

vec(P ) = (I −H∗(K))−1 vec(V )

=
∞∑
i=0

(H∗(K))i vec(V )

= vec

( ∞∑
i=0

LiK (V )

)
(25)

which yields P =
∑∞

i=0 LiK (V ) > 0.

iii) ⇒ ii). If there exist K = [K(1) , . . . ,K(Io−1) ] with each
matrix K(i) having compatible dimensions and P > 0 such
that LK (P ) < P , then there must exist a μ ∈ (0, 1) satisfying
LK (P ) < μP . Choose c > 0 such that X ≤ cP . Then, due to
the linearity and nondecreasing properties of LK (X) with re-
spect to X on the positive semidefinite cone, for k ∈ N

LkK (X) ≤ LkK (cP ) = cLkK (P ) < cLk−1
K (μP ) < · · · < cμkP

which leads to limk→∞ LkK (X) = 0.
iii) ⇒ iv). The proof is similar to the proof of b) ⇒ c) in [16,

Th. 5] and is omitted here.
iv) ⇒ iii). Note that, by the Schur complement lemma and

X,Y > 0, (8) holds if and only if

Y ≥ (1 − q)A′Y A+ qA′XA. (26)

Similarly, (9) holds if and only if

p

Io−1∑
i=1

(1 − p)i−1(Ai +K(i)C(i))∗Y (Ai +K(i)C(i)) < X

(27)
where K(i) = Y −1F ∗

i , i = 1, . . . , Io − 1. Applying the in-
equality of (26) for k times, it results in

Y ≥ (1 − q)k (A′)kY Ak + q

k∑
j=1

(1 − q)j−1(A′)jXAj .

As Y is bounded, taking limitation on the right sides, it yields

Y ≥ q
∞∑
j=1

(1 − q)j−1(A′)jXAj . (28)

Combining (27) and (28), we obtain LK (X) < X .

APPENDIX C
PROOF OF THEOREM 2

To prove this theorem, we need some preliminary lemmas.
Lemma 8: Suppose that there exist constants d1 ,

d0 ≥ 0 such that, for any j ∈ N and k ∈ [βj , βj+1],
‖Pk‖ ≤ max

i=j,j+1
{d1‖Pβi ‖ + d0} holds μ−almost surely.

If supj∈N E‖Pβj ‖ <∞, then supk∈N E‖Pk‖ <∞ holds.
Proof: Since supj∈N E‖Pβj ‖ <∞, there exists a uniform

bound α for {E‖Pβj ‖}j∈N , i.e., E‖Pβj ‖ ≤ α for all j ∈ N. By
the definition of βj in (5), k should be no larger than βk for all
k ∈ N. Then, one obtains

E‖Pk‖ = E

⎡
⎣k−1∑
j=0

E
[
‖Pk‖ | βj ≤ k ≤ βj+1

]
1{βj ≤k≤βj + 1 }

⎤
⎦

≤
k−1∑
j=0

E

[
max

i=j,j+1
{d1‖Pβi ‖ + d0} | βj ≤ k ≤ βj+1

]
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·μ(βj ≤ k ≤ βj+1)

≤
k−1∑
j=0

(
d1E‖Pβj ‖ + d1E‖Pβj + 1 ‖ + d0

)

·μ(βj ≤ k ≤ βj+1)

≤
(

2d1 sup
j≤k

E‖Pβj ‖ + d0

)
k−1∑
j=0

μ(βj ≤ k ≤ βj+1)

≤ 2d1α+ d0

which completes the proof. �
Before proceeding to the proof of the theorem, let us provide

some properties related to the discrete-time algebraic Riccati
equation (DARE). The proof, provided in [43], is omitted.

Lemma 9: Consider the following DARE

P = APA′ +Q−APC ′(CPC ′ +R)−1CPA′. (29)

If (A,Q1/2) is controllable and (C,A) is observable, then, it
has a unique positive definite solution P̃ andA+ K̃C is stable,
where K̃ = −AP̃C ′(CP̃C ′ +R)−1 .

Fix j ≥ 0. First of all, we shall show that, for k ∈ [βj +
1, τj+1], ‖Pk‖ is uniformly bounded by an affine function of
‖Pβj ‖. By Lemmas 3 and 9, we have g(Pk−1) ≤ φ1(K̃, Pk−1)
and that A+ K̃C is stable. In light of (16) in Lemma 2, we fur-
ther obtain gi(Pk−1) ≤ φi1(K̃, Pk−1) for all i ∈ N. Therefore,
an upper bound of ‖Pk‖ is given as follows:

‖Pk‖ = ‖gk−βj (Pβj )‖ ≤ ‖φk−βj1 (K̃, Pβj )‖

≤
∥∥∥(A+ K̃C)k−βj Pβj (A

′ + C ′K̃∗)k−βj
∥∥∥

+
∥∥∥
k−βj −1∑
i=0

(A+ K̃C)i(Q+ K̃RK̃∗)(A′ + C ′K̃∗)i
∥∥∥

≤ ‖(A+ K̃C)k−βj ‖2‖Pβj ‖

+
k−βj −1∑
i=0

‖(A+ K̃C)i‖2‖Q+ K̃RK̃∗‖

≤ m0 α
2k−2βj
0 ‖Pβj ‖ +m0‖Q+ K̃RK̃∗‖

k−βj −1∑
i=0

α2i
0

where α0 = |λA+K̃ C | + ε0‖A+ K̃C‖ and m0 = n(1 +
2/ε0)2n−2 with a positive number ε0 satisfying |λA+K̃ C | +
ε0‖A+ K̃C‖ < 1 (such an ε0 must exist because |λA+K̃ C |
< 1), and the last inequality holds due to Lemma 4. Observe
that

∑k−βj −1
i=0 α2i

0 ≤ 1
1−α2

0
. As α0 < 1, α2k−2βj

0 < 1 for any

k ∈ [βj + 1, τj+1]. Therefore

‖Pk‖ ≤ m0‖Pβj ‖ + n0 (30)

where n0 � m 0
1−α2

0
‖Q+ K̃RK̃ ′‖.

Next, we shall show that, for k ∈ [τj+1 + 1, βj+1], ‖Pk‖ is
bounded by an affine function of ‖Pβj + 1 ‖. To do this, let us look
at the relationship between Pβj + 1 and Pk . Since γk = 0 for all

k ∈ [τj+1 , βj+1 − 1], the relation is given by

Pβj + 1 = Aβj + 1 −jPk (A′)βj + 1 −k +
βj + 1 −k−1∑

i=0

AiQ(A′)i

from which we obtain Pβj + 1 ≥ Aβj + 1 −kPk (A′)βj + 1 −k . Then, it
yields

‖Pβj + 1 ‖ ≥ ‖Aβj + 1 −kPk (A′)βj + 1 −k‖

≥ 1
n

Tr(Aβj + 1 −kPk (A′)βj + 1 −k )

=
1
n

Tr(P 1/2
k (A′)βj + 1 −kAβj + 1 −kP 1/2

k )

≥ 1
n
‖Ak−βj + 1 ‖−2Tr(Pj )

≥ 1
n
‖Ak−βj + 1 ‖−2‖Pk‖

where the second and the last inequality allows from the fact that
‖X‖ = λX ≥ 1

nTr(X) and Tr(X) ≥ ‖X‖ for anyX ∈ Sn
+ ; the

third one holds since

(A′)βj + 1 −kAβj + 1 −k ≥ minσ
(
Aβj + 1 −k (·)′)I

=
1

λAk −β j + 1 (·)′
I

= ‖Ak−βj + 1 ‖−2I.

If A has no eigenvalues on the unit circle, by Lemma 4, there
holds ‖Ak−βj + 1 ‖ ≤ n1 α

βj + 1 −k
1 where n1 � √

n(1 + 2/ε1)n−1

and α1 � |λA−1 | + ε1‖A−1‖ with a positive number ε1 so that
α1 < 1 (such an ε1 must exist since |λA−1 | < 1 by assump-
tion (A1)). As α1 < 1, ‖Ak−βj + 1 ‖ ≤ n1 α

βj + 1 −k
1 < n1 for all

k ∈ [βj + 1, τj+1]. If A has semisimple eigenvalues on the unit
circles, we denote the Jordan form of A as J = diag(J11 , J22),
where J11 has no eigenvalues on the unit circle and J22 is diago-
nal with all semisimple eigenvalues on the unit circle, i.e., there
exists a nonsingular matrix S ∈ Rn×n such that J = SAS−1 .
In this case

‖Jk−βj + 1 ‖ = max
{
‖Jk−βj + 1

11 ‖, ‖Jk−βj + 1
22 ‖

}
≤ n1

where, similarly, n1 � √
n(1 + 2/ε1)n−1 with a positive num-

ber ε1 so that |λJ −1
1 1
| + ε1‖J−1

11 ‖ = 1. Since ‖S−1 · S‖ can be
considered a matrix norm, we have

‖Ak−βj + 1 ‖ = ‖S−1Jk−βj + 1 S‖ ≤ c‖Jk−βj + 1 ‖ ≤ cn1

where c = supX∈Cn ×n
‖S−1XS‖

‖X ‖ <∞ due to the equivalence of
matrix norms on a finite dimensional vector space. Then, we
have the following upper bound for ‖Pk‖ for all k ∈ [τj+1 +
1, βj+1]

‖Pk‖ ≤ n‖Ak−βj + 1 ‖2‖Pβj + 1 ‖ ≤ m1‖Pβj + 1 ‖ (31)

where m1 � nc2n2
1 .

According to (30) and (31), it can be seen that, when k ∈
[βj , βj+1], ‖Pk‖ ≤ max{m0 ,m1}max

{‖Pβj ‖, ‖Pβj + 1 ‖
}

+
n0 . Since, j is arbitrarily chosen, by invoking Lemma 8, the
desired conclusion follows.
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Fig. 9. Transitions of the Markov chain {(zk , z̃k )}k∈N when p2 + q ≤ 1.

APPENDIX D
PROOF OF PROPOSITION 2

If p = 0, we have the standard Kalman filter, which evidently
converges to a bounded estimation error covariance. On the other
hand, if p = 1, then the Kalman filter reduces to an open-loop
predictor after time step k = 2, which suggests that there exists
a transition point for p beyond which the expected prediction
error covariance matrices are not uniformly bounded. It remains
to show that with a given q this transition point is unique. Fix
0 ≤ p1 < 1 such that supk∈N Ep1 ‖Pk‖ <∞ ∀Σ0 ≥ 0. It suf-
fices to show that, for any p2 < p1 , supk∈N Ep2 ‖Pk‖ <∞ for
all Σ0 ≥ 0. To differentiate two Markov chains with different
failure rates in (2), we use the notation {γk (pi)}k∈N instead to
represent the packet loss process so as to indicate the configura-
tion p = pi in (2). We will prove the aforementioned statement
using a coupling argument. We define a sequence of random
vectors {(zk , z̃k )}k∈N over a probability space (G ,G, π) with
G = {(0, 0), (0, 1), (1, 1)}N and Gk representing the filtration
generated by (z1 , z̃1), . . . , (zk , z̃k ). We also define

ϕ1({zk , z̃k}k=1:t) = ψzt ◦ · · · ◦ ψz1 (Σ0)

and

ϕ2({zk , z̃k}k=1:t) = ψz̃t ◦ · · · ◦ ψz̃1 (Σ0)

where ψz = zg + (1 − z)h with h, g defined in (3), (4), and
z = {0, 1}. Due to Lemma 2 and zk ≤ z̃k in G , we have
ϕ1 ({zk , z̃k}k=1:t) ≥ ϕ2 ({zk , z̃k}k=1:t).

When p2 + q ≤ 1, we let the evolution of {(zk , z̃k )}k∈N fol-
low the Markov chain illustrated in Fig. 9, whereby it can
seen that π(zk+1 = j|zk = i)s for i, j = {0, 1} are constants
independent of z̃k s, and conversely that π(z̃k = j|z̃k = i)s
for i, j = {0, 1} are constants independent of zk s. Therefore,
both the marginal distributions of {zk}k∈N and {z̃k}k∈N are
Markovian, and moreover

π(zk+1 = j|zk = i) = Pp1 (γk+1(p1) = j|γk (p1) = i)

and

π(z̃k+1 = j|z̃k = i) = Pp2 (γk+1(p2) = j|γk (p2) = i)

for all i, j = {0, 1} and k ∈ N. It can be seen that the Markov
chain in Fig. 9 is ergodic and has a unique stationary distribution

π∞ ((0, 0)) =
p2

p2 + q
, π∞ ((0, 1)) =

p1

p1 + q
− p2

p2 + q

π∞ ((1, 1)) =
q

p1 + q
. (32)

We assume that the Markov chain starts at the stationary distri-
bution. Then, the distribution of (zk , z̃k ) for k ≥ 2 is the same
as (z1 , z̃1), which gives

E∞
p1
‖Pk‖ =

∫
Ω

∥∥ψγk (p1 ) ◦ · · · ◦ ψγ1 (p1 )(Σ0)
∥∥ dPp1

=
∫

G

∥∥ϕ1({zj , z̃j}j=1:k )
∥∥dπ

≥
∫

G

∥∥ϕ2({zj , z̃j}j=1:k )
∥∥dπ

=
∫

Ω

∥∥ψγk (p2 ) ◦ · · · ◦ ψγ1 (p2 )(Σ0)
∥∥ dPp2

= E∞
p2
‖Pk‖

where E∞ means that the expectations is taken conditioned on
the stationarily distributed γ1 .

When p2 + q > 1, we abuse the definition of probability mea-
sure and allow the existence of negative probabilities in the
Markov chain described in Fig. 9, generating {(zk , z̃k )}k∈N . It
can be easily shown by direct computation that the eigenvalues
of transition probability matrix, denoted by M ∈ R3×3 , of this
Markov chain are 1 − q − p1 , 1 − q − p2 , and 1, respectively.
As a result, Mk converges to a limit as k tends to infinity indi-
cating that the generalized Markov chain has a unique station-
ary distribution, which is the same as the one given in (32).
Therefore, although the Markov chain is only formally de-
fined without corresponding physical meaning with p2 + q > 1,
the most important basic property for this coupling still holds,
that is

π(z1 = i1 , · · · , zt = it) = Pp1 (γ1 = i1 , · · · , γt = it)

and

π(z̃1 = i1 , · · · , z̃t = it) = Pp2 (γ1 = i1 , · · · , γt = it)

for all t ∈ N and i1 , · · · , it ∈ {0, 1}. Thus, the inequality
E∞
p1
‖Pk‖ ≥ E∞

p2
‖Pk‖ still proves true in this case.

Finally, in order to show supk∈N Ep2 ‖Pk‖ <∞ with packet
losses initialized by γ1 = 1, we only need to recall the following
lemma.

Lemma 10 (Lemma 2 in [32]): The statement holds that
supk∈N E∞‖Pk‖ <∞ if and only if supk∈N E1‖Pk‖ <∞ and
supk∈N E0‖Pk‖ <∞, where E1 and E0 denote the expecta-
tions conditioned on γ1 = 1 and 0, respectively.

The proof is now complete.

APPENDIX E
PROOF OF THEOREM 3

Let p = pc(q) be the critical value established in Propo-
sition 2. For any given p, fix 1 − 1/|λA |2 < q1 < 1 so that
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supk∈N Eq1 ‖Pk‖ <∞ for all Σ0 ≥ 0. From a symmetrical
coupling argument as the proof of Proposition 2, for any
q1 ≤ q2 < 1, supk∈N Eq2 ‖Pk‖ <∞ also holds for all Σ0 ≥ 0.
As a result, pc(q) is a nondecreasing function of q. Consequently,
pc(·) yields an inverse function, denoted by qc(·), which is also
nondecreasing. The desired conclusion then follows immedi-
ately, e.g., we can simply choose fc(p, q) = pc(q) − p.

APPENDIX F
PROOF OF THEOREM 4

We shall first show that

lim
η→1+

p(η) = p (33)

holds where η > 1 is properly taken so that η2 |λA |2(1 − q) < 1,
and

p(η) � sup
{
p : ∃(K,P ) s.t. L(ηA,K,P, p) < P,P > 0

}

with the notation L(A,K,P, p) used to alter LK (P ) in the
proof so as to emphasize the relevance of LK (P ) to A and p.
To this end, first note that p(η) is a nonincreasing function of
η. Thus, limη→1+ p(η) must exist. To show the equality in (33),
we require the following lemma.

Lemma 11: Suppose X, X̃ > 0 are the solutions to the fol-
lowing Lyapunov equations, respectively:

X = (1 − q)AXA′ + Q̃, η−1X̃ = (1 − q)AX̃A′ + Q̃

where Q̃ > 0, 0 < q < 1 and η > 1 are properly taken so that
η(1 − q)|λA |2 < 1. Then, for any ε > 0 there always exists a
δ > 0 such that η ≤ 1 + δ implies X̃ ≤ (1 + ε)X.

Proof: First we shall find an upper bound for X and a lower
bound for X̃ . It is straightforward that

X ≥ Q̃ ≥ ‖Q̃−1‖−1I. (34)

Let d �
[
(1 − q)|λA |2

]−1/4
> 1 and restrict 1 < η ≤ d. By

Lemma 4, we have

X̃ =
∞∑
i=0

ηi(1 − q)iAiQ̃(Ai)′ ≤ ‖Q̃‖
∞∑
i=0

ηi(1 − q)i‖Ai‖2I

≤ n‖Q̃‖(1 + 2/ε)2n−2
∞∑
i=0

di(1 − q)i(|λA | + ε‖A‖)2iI

for any ε > 0. Taking ε = (d−1)|λA |
‖A‖ , it yields that X̃ ≤ cd

d−1 ‖Q̃‖
with c = n(1 + 2/ε)2n−2 . Note that X̃ −X is bounded in the
following way

X̃ −X = (1 − q)A(X̃ −X)A′

+ (η − 1)
[
(1 − q)AX̃A′ + Q̃

]

≤ (1 − q)A(X̃ −X)A′ + (η − 1)X̃

...

≤ (1 − q)kAk (X̃ −X)(·)′

+(η − 1)
k−1∑
i=0

(1 − q)iAiX̃(Ai)′.

Taking limitation on both sides, we obtain that X̃ −X ≤ (η −
1)

∑∞
i=0(1 − q)iAiX̃(Ai)′, which by Lemma 4 and (34) gives

X̃ −X ≤ (η − 1)‖Q̃‖ cd

d− 1

∞∑
i=0

(1 − q)i‖Ai‖2 I

≤ c2d3

(d2 − 1)(d− 1)
(η − 1)‖Q̃‖ I

≤ c2d3

(d2 − 1)(d− 1)
(η − 1)‖Q̃‖‖Q̃−1‖X

where the last inequality holds because of (34). Due to the
positive definiteness of Q̃, the assertion follows by letting 1 <
η ≤ min

{
(d2 −1)(d−1)
c2 d3 ‖Q̃‖‖Q̃−1 ‖ε+ 1, d

}
.

By the definition of p one can verify that for any 0 < ε < p
there always exists at least a p ∈ (p− ε, p) so that there existK
and P > 0 satisfying L(A,K,P, p) < P ; otherwise it contra-
dicts (13). We take an ε > 0 so that (1 + ε)L(A,K,P, p) < P
still holds. Then, from Lemma 11, there always exists an η0 > 1
satisfying Φη0 ≤ √

1 + εΦ where Φ and Φη0 are the positive
definite solutions to the following equations, respectively:

Φ = (1 − q)A′ΦA+A′PA,

η−2
0 Φη0 = (1 − q)A′Φη0A+A′PA.

In addition, there exists an η1 > 1 such that η2Io−2
1 ≤ √

1 + ε.
Letting η̃ = min{η0 , η1}, we have

P > (1 + ε)L(A,K,P, p)

≥ p

Io−1∑
i=1

(1 − p)i−1(η̃iAi + η̃iK(i)C(i))∗(Φη̃ )(·)

which implies that L(η̃A,Kη̃ , P, p) < P with Kη̃ �
[η̃K(1) , · · · , η̃Io−1K(Io−1) ] and therefor that p(η̃) > p− ε. As
ε is any positive real number, limη→1+ p(η) = p consequently
holds. Since ηA has no defective eigenvalues on the unit circle,
combining Theorems 1 and 2, we obtain that pc(ηA,C, q) ≥
p(η) holds.

To conclude, we also need to establish the following lemma.
Lemma 12: For a given recovery rate q satisfying |λA |2(1 −

q) < 1, denote qc(A,C, q) as the critical value of qc for a system
(C,A). Then, we have

pc(A,C, q) ≥ lim
η→1+

pc(ηA,C, q). (35)

Proof: To emphasize the relevance of h(X) and g(X) to
A, we will change the notations h(X) and g(X) into h(A,X)
and g(A,X), respectively, in the proof. Note that h(ηA,X)
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and g(ηA,X) are both nondecreasing function of η > 1, where
η is properly chosen so that η2 |λA |2(1 − q) < 1, since, for all
1 ≤ η1 ≤ η2 ≤ 1 + δ and X ≥ 0, one has

h(η2A,X) − h(η1A,X) = (η2
2 − η2

1 )AXA′ ≥ 0

and

(η2A,X) − g(η1A,X)

= (η2
2 − η2

1 )(AXA′ −AXC ′(CXC ′ +R)−1CXA′) ≥ 0.

According to the fact that Pk = (1 − γk )h(A,Pk−1) +
γkg(A,Pk−1) and that h(A,X) and g(A,X) are nondecreasing
functions ofX from Lemma 2, we can easily show by induction
that Pk is also nondecreasing in η. Therefore, the limitation on
the right side of (35) always exists, and then, the conclusion
follows. �

From Lemma 12 and what has been proved previously, it can
be seen that limη→1+ pc(ηA,C, q) and limη→1+ p(η) exist and
moreover that

pc(A,C, q) ≥ lim
η→1+

pc(ηA,C, q) ≥ lim
η→1+

p(η) = p

whereby the desired result follows.
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tems over unreliable communication links,” Automatica, vol. 42, no. 9,
pp. 1429–1439, 2006.

[19] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, and S. Sastry, “Op-
timal linear LQG control over lossy networks without packet acknowl-
edgment,” Asian J. Control, vol. 10, no. 1, pp. 3–13, 2008.

[20] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. Sastry,
“Foundations of control and estimation over lossy networks,” Proc. IEEE,
vol. 95, no. 1, pp. 163–187, Jan. 2007.

[21] K. Plarre and F. Bullo, “On Kalman filtering for detectable systems with
intermittent observations,” IEEE Trans. Automat. Control, vol. 54, no. 2,
pp. 386–390, Feb. 2009.

[22] Y. Mo and B. Sinopoli, “Towards finding the critical value for Kalman
filtering with intermittent observations,” arXiv:1005.2442, 2010.

[23] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. J.,
vol. 39, no. 5, pp. 1253–1265, 1960.

[24] E. Elliott, “Estimates of error rates for codes on burst-noise channels,”
Bell Syst. Tech. J., vol. 42, no. 5, pp. 1977–1997, 1963.

[25] H. S. Wang and N. Moayeri, “Finite-state Markov channel–A useful model
for radio communication channels,” IEEE Trans. Veh. Technol., vol. 44,
no. 1, pp. 163–171, Feb. 1995.

[26] Q. Zhang and S. A. Kassam, “Finite-state Markov model for rayleigh
fading channels,” IEEE Trans. Commun., vol. 47, no. 11, pp. 1688–1692,
Nov. 1999.

[27] A. Willig, “Recent and emerging topics in wireless industrial communica-
tions: A selection,” IEEE Trans. Ind. Informat., vol. 4, no. 2, pp. 102–124,
May 2008.

[28] M. Huang and S. Dey, “Kalman filtering with Markovian packet losses
and stability criteria,” in Proc. 45th IEEE Conf. Decis. Control, 2006,
pp. 5621–5626.

[29] M. Huang and S. Dey, “Stability of Kalman filtering with Markovian
packet losses,” Automatica, vol. 43, pp. 598–607, 2007.

[30] L. Xie and L. Xie, “Peak covariance stability of a random Riccati equa-
tion arising from Kalman filtering with observation losses,” J. Syst. Sci.
Complexity, vol. 20, no. 2, pp. 262–272, 2007.

[31] L. Xie and L. Xie, “Stability of a random Riccati equation with Marko-
vian binary switching,” IEEE Trans. Automat. Control, vol. 53, no. 7,
pp. 1759–1764, Aug. 2008.

[32] K. You, M. Fu, and L. Xie, “Mean square stability for Kalman filtering with
Markovian packet losses,” Automatica, vol. 47, no. 12, pp. 2647–2657,
2011.

[33] L. Shi, M. Epstein, and R. M. Murray, “Kalman filtering over a packet-
dropping network: A probabilistic perspective,” IEEE Trans. Automat.
Control, vol. 55, no. 3, pp. 594–604, Mar. 2010.

[34] Y. Mo and B. Sinopoli, “Kalman filtering with intermittent observa-
tions: Tail distribution and critical value,” IEEE Trans. Automat. Control,
vol. 57, no. 3, pp. 677–689, Mar. 2012.

[35] S. Kar, B. Sinopoli, and J. M. Moura, “Kalman filtering with intermittent
observations: Weak convergence to a stationary distribution,” IEEE Trans.
Automat. Control, vol. 57, no. 2, pp. 405–420, Feb. 2012.

[36] A. Censi, “Kalman filtering with intermittent observations: Convergence
for semi-Markov chains and an intrinsic performance measure,” IEEE
Trans. Automat. Control, vol. 56, no. 2, pp. 376–381, Feb. 2011.

[37] L. Xie, “Stochastic comparison, boundedness, weak convergence, and
ergodicity of a random Riccati equation with Markovian binary switching,”
SIAM J. Control Optim., vol. 50, no. 1, pp. 532–558, 2012.

[38] R. Durrett, Probability: Theory and Examples. Cambridge, U.K.:
Cambridge Univ. Press, 2010.

[39] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

[40] N. Xiao, L. Xie, and M. Fu, “Kalman filtering over unreliable communi-
cation networks with bounded Markovian packet dropouts,” Int. J. Robust
Nonlinear Control, vol. 19, no. 16, pp. 1770–1786, 2009.

[41] V. Solo, “One step ahead adaptive controller with slowly time-varying
parameters,” Dept. of EECS, John Hopkins Univ., Baltimore, MD, USA,
Tech. Rep., 1991.



WU et al.: KALMAN FILTERING OVER GILBERT–ELLIOTT CHANNELS: STABILITY CONDITIONS AND CRITICAL CURVE 1017

[42] O. L. V. Costa and M. Fragoso, “Comments on “stochastic stability of
jump linear systems”,” IEEE Trans. Automat. Control, vol. 49, no. 8,
pp. 1414–1416, Aug. 2004.

[43] P. Lancaster and L. Rodman, Algebraic Riccati Equations. London, U.K.:
Oxford Univ. Press, 1995.

Junfeng Wu received the B.Eng. degree from
the Department of Automatic Control, Zhejiang
University, Hangzhou, China, and the Ph.D. de-
gree in electrical and computer engineering from
Hong Kong University of Science and Technol-
ogy, Hong Kong, in 2009, and 2013, respectively.

From September to December 2013, he was a
Research Associate in the Department of Elec-
tronic and Computer Engineering, Hong Kong
University of Science and Technology. From Jan-
uary 2014 to June 2017, he was a Postdoctoral

Researcher in the ACCESS (Autonomic Complex Communication nEt-
works, Signals and Systems) Linnaeus Center, School of Electrical En-
gineering, KTH Royal Institute of Technology, Stockholm, Sweden. He
is currently in the College of Control Science and Engineering, Zhe-
jiang University, Hangzhou, China. His research interests include net-
worked control systems, state estimation, and wireless sensor networks,
multiagent systems.

Dr. Wu received the Guan Zhao-Zhi Best Paper Award at the 34th
Chinese Control Conference in 2015. He was selected to the national
“1000-Youth Talent Program” of China in 2016.

Guodong Shi received the B.Sc. degree in
mathematics and applied mathematics from the
School of Mathematics, Shandong University,
Ji’nan, China, and the Ph.D. degree in sys-
tems theory from the Academy of Mathemat-
ics and Systems Science, Chinese Academy
of Sciences, Beijing, China, in 2005 and 2010,
respectively.

From 2010 to 2014, he was a Postdoctoral
Researcher in the ACCESS Linnaeus Centre,
KTH Royal Institute of Technology, Stockholm,

Sweden. Since May 2014, he has been with the Research School of En-
gineering, The Australian National University, Canberra, ACT, Australia,
where he is now a Senior Lecturer and Future Engineering Research
Leadership Fellow. His research interests include distributed control sys-
tems, quantum networking and decisions, and social opinion dynamics.

Brian D. O. Anderson (M’66–SM’74–F’75–
LF’07) was born in Sydney, Australia. He
received the degree in mathematics and elec-
trical engineering from Sydney University, Syd-
ney, NSW, Australia, and the Ph.D. degree in
electrical engineering from Stanford University,
Stanford, CA, USA, in 1966.

He is an Emeritus Professor in the Australian
National University, Canberra, ACT, Australia
(having retired as a Distinguished Professor in
2016), a Distinguished Professor in Hangzhou

Dianzi University, and a Distinguished Researcher in the National In-
formation and Communications Technology Australia. He is a Past
President of the International Federation of Automatic Control and the
Australian Academy of Science. His research interests include dis-
tributed control, sensor networks, and econometric modeling.

Dr. Anderson is a Fellow of the Australian Academy of Science, the
Australian Academy of Technological Sciences and Engineering, the
Royal Society, and a Foreign Member of the U.S. National Academy of
Engineering. He received the IEEE Control Systems Award of 1997, the
2001 IEEE James H. Mulligan, Jr., Education Medal, and the Bode Prize
of the IEEE Control System Society in 1992, as well as several IEEE and
other best paper prizes. He holds honorary doctorates from a number
of universities, including Universit Catholique de Louvain, Belgium, and
ETH, Zrich.

Karl Henrik Johansson (F’13) received the
M.Sc. and Ph.D. degrees in electrical engineer-
ing from Lund University, Lund, Sweden.

He is the Director of the Stockholm Strate-
gic Research Area, Information and Communi-
cations Technology, The Next Generation, and
a Professor in the School of Electrical En-
gineering, KTH Royal Institute of Technology,
Stockholm, Sweden. He has held visiting posi-
tions at the University of California, Berkeley, the
California Institute of Technology, the NTU, the

Institute of Advanced Studies, Hong Kong University of Science and
Technology, and the Norwegian University of Science and Technology.
He is also an IEEE Distinguished Lecturer. His research interests include
networked control systems, cyber-physical systems, and applications in
transportation, energy, and automation.

Dr. Johansson is a member of the IEEE Control Systems Society
Board of Governors, the International Federation of Automatic Con-
trol (IFAC) executive board, the European Control Association Council,
and the Royal Swedish Academy of Engineering Sciences. He received
several best paper awards and other distinctions, including a ten-year
Wallenberg Scholar Grant, a Senior Researcher Position with the
Swedish Research Council, the Future Research Leader Award from
the Swedish Foundation for Strategic Research, and the triennial Young
Author Prize from the IFAC.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


