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Infinite Horizon Optimal Transmission Power
Control for Remote State Estimation Over
Fading Channels

Xiaogiang Ren ', Junfeng Wu
Guodong Shi

Abstract—This paper studies the joint designh over an
infinite horizon of the transmission power controller and re-
mote estimator for state estimation over fading channels. A
sensor observes a dynamic process and sends its observa-
tions to a remote estimator over a wireless fading channel
characterized by a time-homogeneous Markov chain. The
successful transmission probability depends on both the
channel gains and the transmission power used by the sen-
sor. The transmission power control rule and the remote
estimator should be jointly designed, aiming to minimize an
infinite-horizon cost consisting of the power usage and the
remote estimation error. We formulate the joint optimization
problem as an average cost belief-state Markov decision
process and prove that there exists an optimal determinis-
tic and stationary policy. We then show that when the mon-
itored dynamic process is scalar or the system matrix is
orthogonal, the optimal remote estimates depend only on
the most recently received sensor observation, and the op-
timal transmission power is symmetric and monotonically
increasing with respect to the norm of the innovation error.

Index Terms—Estimation, fading channel, Kalman filter-
ing, Markov decision process, power control.

|. INTRODUCTION

N NETWORKED control systems, control loops are often
I closed over a shared wireless communication network. This
motivates research on remote state estimation problems, where
a sensor measures the state of a linear system and transmits
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its observations to a remote estimator over a wireless fading
channel. Such monitoring problems appear in a wide range of
applications in environmental monitoring, space exploration,
smart grids, intelligent buildings, among others. The challenges
introduced by the networked setting lie in the fact that non-
ideal communication environment and constrained power sup-
plies at sensing nodes may result in overall system performance
degradation. The past decade has witnessed tremendous re-
search efforts devoted to communication-constrained estimation
problems, with the purpose of establishing a balance between
estimation performance and communication cost.

A. Related Work

Wireless communications are being widely used nowadays
in sensor networks and networked control systems. The inter-
face of control and wireless communication has been a central
theme in the study of networked sensing and control systems
in the past decade. Early works assumed finite-capacity digi-
tal channels and focused on the minimum channel capacity or
data rate needed for feedback stabilization, and on constructing
encoder—decoder pairs to improve performance, e.g., [1]-[3].
Motivated by the fact that packets are the fundamental infor-
mation carrier in most modern data networks [4], networked
control and estimation subject to packet delays [5] and packet
losses [6], [7] has been extensively studied.

State estimation is embedded in many networked control ap-
plications, playing a fundamental role therein. For networked
state estimation subject to limited communication resource, the
research on controlled communication has been extensive, see
the survey [4]. Controlled communication, in general referring
to reducing the communication rate intentionally to obtain a
desirable tradeoff between the estimation performance and the
communication rate, is motivated from at least two facts: 1) wire-
less sensors are usually battery-powered and sparsely deployed,
and replacement of battery is difficult or even impossible, so the
amount of communication needs to be kept at a minimum as
communication is often the dominating on-board energy con-
sumer [8]; and 2) traffic congestion in a sensor network may
lead to packet losses and other network performance degra-
dation. To minimize the inevitable enlarged estimation error
due to reduced communication rate, a communication schedul-
ing strategy for the sensor is needed. Two lines of research
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directions are present in the literature. The first line is known
as time-based (offline) scheduling, whereby the communica-
tion decisions are simply specified only according to the time.
Informally, a purely time-based strategy is likely to lead to a
periodic communication schedule [9], [10]. The second line is
known as event-based scheduling, whereby the communication
decisions are specified according to the system state. The idea
of event-based scheduling was popularized by Lebesgue sam-
pling [11]. Deterministic event-based transmission schedules
have been proposed in [12]-[18] for different application sce-
narios, and randomized event-based transmission schedules can
be found in [19] and [20]. Essentially, event-based scheduling is
asequential decision problem with a team of two agents (a sensor
and an estimator). Due to the nonclassical information structure
of the two agents, joint optimization of the communication con-
troller and the estimator is hard [21], and the interested readers
are referred to [22] and references therein to see more on the
team decision theory. Most works [12], [13], [15]-[18] bypassed
the challenge by imposing restricted information structures or
by approximations, while some authors have obtained structural
descriptions of the agents under the joint optimization frame-
work, using a majorization argument [14], [16] or an iterative
procedure [18]. In all these works, communication models were
highly simplified, restricted to a binary switching model.
Fading is nonignorable impairment to wireless communica-
tion [23]. The effects of fading have been taken into account
in networked control systems [24], [25]. There are works that
are concerned with transmission power management for state
estimation [26]—[28]. The power allocated to transmission af-
fects the probability of successful reception of the measurement,
thus affecting the estimation performance. In [28], imperfect
acknowledgments of communication links and energy harvest-
ing were taken into account. In [26], power allocation for the
estimation outage minimization problem was investigated in
estimation of a scalar Gauss—Markov source. In all of the afore-
mentioned works, the estimation error covariances are a Markov
chain controlled by the transmission power, so the Markov de-
cision process (MDP) theory is ready for solving this kind of
problems. Gatsis ef al. [27] considered the case when plant state
is transmitted from a sensor to the controller over a wireless
fading channel. The transmission power is adapted to the chan-
nel gain and the plant states. Due to nonclassical information
structure, joint optimization of plant input and transmit power
policies, although desired, is difficult. A restricted information
structure was, therefore, imposed, i.e., only a subset of the full
information history available at the sensor is utilized when de-
termining the transmission power, to allow separate design at
expense of loss of optimality. It seems that such a challenge
involved in these joint optimization problems always exists.

B. Contributions

In this paper, we consider a remote state estimation scheme,
where a sensor measures the state of a linear time-invariant
discrete-time process and transmits its observations to a remote
estimator over a wireless fading channel characterized by a time-
homogeneous Markov chain. The successful transmission prob-
ability depends on both the channel gain and the transmission

power used by the sensor. The objective is to minimize an infi-
nite horizon cost consisting of the power consumption and the
remote estimation error. In contrast to [27], no approximations
are made to prevent loss of optimality, which however renders
the analysis challenging. We formulate our problem as an in-
finite horizon belief-state MDP with an average cost criterion.
Contrary to the ideal “send or not” communication scheduling
model considered in [14] and [16], for which the majorization
argument applies for randomized policies, a first question facing
our fading channel model with an infinite horizon is whether or
not the formulated MDP has an optimal stationary and deter-
ministic policy. The answer is yes provided certain conditions
given in this paper. On top of this, we present structural results
on the optimal transmission power controller and the remote
estimator for some special systems, which can be seen as the
extension of the results in [14], [16], and [18] for the power man-
agement scenario. The analysis tools used in this paper (i.e., the
partially observable Markov decision process (POMDP) formu-
lation and the majorization interpretation) is inspired by [16]
(the majorization technique of which is a variation of [14] and
[29]). Nevertheless, the contributions of the two works are dis-
tinct. In [16], the authors mainly studied the threshold structure
of the optimal communication strategy within a finite horizon,
while this paper focuses on the asymptotic analysis of the joint
optimization problem over an infinite horizon. A slightly more
general model than [16] is studied in [30] under infinite time
horizon, where the focus was on explicit characterization of
the threshold policy with a Markov chain source and symmet-
ric noises assumed a priori. The existence establishment of
the solution (stationary and deterministic) relied heavily on the
threshold structure. The general modeling of the monitored pro-
cess and the fading channel, however, makes our analysis much
more challenging.

In summary, the main contributions of this paper are listed as
follows. We prove that a deterministic and stationary policy is
an optimal solution to the formulated average cost belief-state
MDP. We should remark that the abstractness of the considered
state and action spaces (the state space is a probability measure
space and the action space a function space) renders the analysis
rather challenging. Then, we prove that both the optimal estima-
tor and the optimal power control have simple structures when
the dynamic process monitored is scalar or the system matrix
is orthogonal. To be precise, the remote estimator synchronizes
its estimates with the data received in the presence of successful
transmissions, and linearly projects its estimates a step forward
otherwise. For a certain belief, the optimal transmission power
is a symmetric and monotonically increasing function of the
norm of the innovation error. Thanks to these properties, both
the offline computation and the online implementation of the
optimal transmission power rule are greatly simplified, espe-
cially when the available power levels are discrete, for which
only thresholds of switchings between power levels are to be
determined.

This paper provides a theory in support of the study of infi-
nite horizon communication-constrained estimation problems.
Deterministic and stationary policies are relatively easy to com-
pute and implement, thus, it is important to know that an optimal
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solution that such a policy exists. The structural characteristic
of the jointly optimal transmission power and estimation poli-
cies provides insights into the design of energy-efficient state
estimation algorithms.

C. Paper Organization

In Section II, we provide the mathematical formulation of
the system model adopted, including the monitored dynamic
process, the wireless fading channel, the transmission power
controller, and the remote estimator. We then present the con-
sidered problem and formulate it as an average cost MDP in
Section III. In Section IV, we prove that there exists a determin-
istic and stationary policy that is optimal to the formulated MDP.
Some structural results about the optimal remote estimator and
the optimal transmission power control strategy are presented in
Section V. In Section VI, we discuss about the practical imple-
mentation of the whole system. Concluding remarks are given
in Section VII. All the proofs and some auxiliary background
results are provided in the appendixes.

C. Notation

NandR, (R, ;) are the sets of nonnegative integers and non-
negative (positive) real numbers, respectively. S", (and S/ )
is the set of n by n positive semidefinite matrices (and positive
definite matrices). When X € S"_ (and S ), we write X = 0
(and X >~ 0). X =Y if X —-Y € S" . Tr(-) and det(-) are
the trace and the determinant of a matrix, respectively. Ay ax (+)
represents the eigenvalue, having the largest magnitude, of a
matrix. The superscripts ' and ~! stand for matrix transposition
and matrix inversion, respectively. The indicator function of a
set A is defined as

1, we A
la(w) = 0, w¢g A

The notation p(x; ) represents the probability density function
(pdf) of arandom variable x with z as the input variable. If being
clear in the context, x is omitted. For a random variable x and a
pdf 6, the notation x ~ 6 means that x follows the distribution
defined by 6. For measurable functions f, g : R" — R, we use
f * g to denote the convolution of f and g. For a Lebesgue
measurable set A C R”, £(A) denotes the Lebesgue measure
of A. Let ||z|| denote the L? norm of a vector x € R". §;; is
the Dirac delta function, i.e., §;; equals to 1 when i = j and 0
otherwise. In addition, P(-) (or P(-|-)) refers to (conditional)
probability.

Il. SYSTEM MODEL

In this paper, we focus on dynamic power control for remote
state estimation. We consider a remote state estimation scheme
as depicted in Fig. 1. In this scheme, a sensor measures a linear
time-invariant discrete-time process and sends its measurement
in the form of data packets, to a remote estimator over a wireless
link. The remote estimator produces an estimate of the process
state based on the received data. When sending packets through
the wireless channel, transmissions may fail due to interfer-
ence and weak channel gains. Packet losses lead to distortion
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Fig. 1. Remote state estimation scheme.

of the remote estimation and packet loss probabilities depend
on transmission power levels used by the transmitter and on the
channel gains. Lower loss probabilities require higher transmis-
sion power usage; on the other hand, energy saving is critical to
expand the lifetime of the sensor. The wireless communication
overhead dominates the total power consumption, therefore, we
introduce a transmission power controller, which aims to bal-
ance the transmission energy cost and distortion penalty as the
channel gain varies over time.

In what follows, the attention is devoted to laying out the
main components in Fig. 1.

A. State Process

We consider the following linear time-invariant discrete-time
process:

Tpyp1 = Axy + wy (1)

where £ € N, x; € R" is the process state vector at time k,
wy, € R™ is zero-mean independent and identically distributed
(i.i.d.) noises, described by the probability density function (pdf)
fu, with Efwy w;ﬂ =W (W = 0). We further assume that the
support of the noise distribution is unbounded, i.e., for any
C > 0, there holds waHZC fw (w)dw > 0. The initial state x,
independent of wy, k € N, is described by the pdf §,,, with
mean E[z(] and covariance 3. Without loss of generality, we
assume E [x¢] = 0, as nonzero-mean cases can be translated into
zero-mean one by coordinate change x} = z; — E[zg]. The
system parameters are all known to the sensor as well as the
remote estimator. Notice that we do not impose any constraint
on the stability of the process in (1), i.e., |Amax(A)| may take
any value in R .

B. Wireless Communication Model

The sensor measures and sends the process state xj, to the re-
mote estimator over an additive white Gaussian noise (AWGN)
channel that suffers from channel fading (see Fig. 2)

Y = grX + v

where g;. is a random complex number, and vy, is additive white
Gaussian noise; x represents the signal (e.g., xj;) sent by the
transmitter and y the signal received by the receiver. Let the
channel gain h;, = |g;.|* take values in a finite set h C R, |,
where [ is the size of h, and {hy }rcn possess temporal cor-
relation modeled by a time-homogenous Markov chain. The
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Fig.2. Wireless communication model, where g;. is a random complex
number, and v, is additive white Gaussian noise.

one-step transition probability for this chain is denotedby
E(]):h xh+—[0,1].

The function Z(-|-) is known a priori. We assume the remote
estimator or the sensor can access the channel state informa-
tion (CSI), so the channel gain hy is available at each time
before transmission. This might be achieved by channel reci-
procity techniques, which are typical in time-division-duplex-
based transmissions [23]. The estimation errors of the channel
gains are not taken into account in this paper.

To facilitate our analysis, the following assumption is made.

Assumption 1 (Communication model).

1) The channel gain Ay, is independent of the system param-
eters.

2) The channel is block fading, i.e., the channel gain remains
constant during each packet transmission and varies from
block to block.

3) The quantization effect is negligible and does not effect
the remote estimator.

4) The receiver can detect symbol errors.! Only the data
reconstructed error free are regarded as successfully re-
ception. The receiver perfectly realizes whether the in-
stantaneous communication succeeds or not.

5) The Markov chain governing the channel gains, Z(|), is
aperiodic and irreducible.

Assumption 1-1)—4) are standard for fading channel model.
Note that Assumption 1-1), 3), 4) were used in [6] and [27],
and that Assumption 1-2) was used in [25]. From Assumption
1-4), whether or not the data sent by the sensor is successfully
received by the remote estimator is indicated by a sequence
{V }ren of random variables, where

_J 1, if @y isreceived error free at time k @
k= 0, otherwise (regarded as dropout)

initialized with ~p = 1. Assumption 1-5) is a technical re-
quirement for our analysis. One notes that both the i.i.d.
channel gains model and the Gilbert-Elliott model with the
good/bad state transition probability not equal to 1 satisfy
Assumption 1-5).

C. Transmission Power Controller

Letu; € R . be the transmission power at time k, the power
supplied to the radio transmitter. Due to constraints with respect
to radio power amplifiers, the admissible transmission power
is restricted. Let u;, take values in &/ C R, which may be an

'In practice, symbol errors can be detected via a cyclic redundancy check
code.

infinite or a finite set depending on the radio implementation. It
is further assumed that ¢/ is compact and contains zero. Under
Assumption 1-3), the successful packet reception is statistically
determined by the signal-to-noise ratio (SNR) Ay uy /Ny at the
receiver, where Vy is the power spectral density of v;. The
different modulation models may be characterized by the con-
ditional packet reception probability

q(ug, b)) 2P (v = ug, hie) - 3)

Assumption 2: The function ¢(u,h):U xh — [0,1] is
nondecreasing in both w and h.

This assumption is consistent with the intuition that more
transmission power or a better channel state will lead to a
higher packet arrival rate, which is common for a fading channel
model [25], [27].

Assumption 3: The function g(u, h) : U x h — [0, 1] is con-
tinuous almost everywhere with respect to u for any fixed h.
Moreover, ¢(0,h) = 0 and g(@, h) > 0 for all h € h, where @
is the highest available power level: % £ max{u : u € U}.

Remark 1: Notice that since U/ is compact, @ always exist.
LetU = {0,1} with

1,ifuy, = 1

) =
alun, hi) {Qﬁwza

Then the “ON-OFF” controlled communication problem con-
sidered in [12-20] and [31]-[33] becomes a special case of the
transmission power control problem considered here.

We assume that packet reception probabilities are condition-
ally independent for given channel gains and transmission power
levels, which is stated in the following assumption.

Assumption 4: The following equality holds for any k£ € N:

k
P (v =rks-osm =r1une, i) = HP(W’J‘ =rjluy, hy).
j=1

Remark 2: Assumption 2 is standard for digital communi-
cation over fading channels. Assumption 3 is in accordance
with the common sense that the symbol error rate statistically
depends on the instantaneous SNR at the receiver. Many digi-
tal communication modulation methods are embraced by these
assumptions [25].

Assumption 5: The following relation holds:

1
S @

inE la(@. h h. = h l——5
%lelﬂI]]l [Q(Ua k'JFl)‘ k ]> |)“maX(A)|

where A is the system matrix in (1).

Remark 3: Assumption 5 provides a sufficient condition un-
der which the expected estimation error covariance is bounded
when the maximum power level is consistently used. Notice that
when the channel gain {h;} is i.i.d., Assumption 5 coincides
with [27, Assumption 1]. Notice also that when the system is
stable, i.e., |Amax(A4)| < 1, for any communication model (4)
trivially holds.

D. Remote Estimator

At the base station side, each time a remote estimator gener-
ates an estimate based on what it has received from the sensor.
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In many applications, the remote estimator is powered by an
external source or is connected with an energy-abundant con-
troller/actuator, thus having sufficient communication energy in
contrast to the energy-constrained sensor. This energy asymme-
try allows us to assume that the estimator can send messages
back to the sensor. The content of feedback messages are sep-
aratively defined under different system implementations, the
details of which will be discussed later in Section VI. Denote
by O, the observation obtained by the remote estimator up to
before the communication at time k&, i.e.

Vo1t ULh, o ek

Similarly, denote by OZ the observation obtained by the remote
estimator up to after the communication at time k, where

OF £ O, U {ve,wexr}-

O; & {ma1, s Veo1Tp-1 F U {71, - ..

[ll. PROBLEM DEFINITION

We take into account both the estimation quality at the remote
estimator and the transmission energy consumed by the sensor.
To this purpose, joint design of the transmission power controller
and the remote estimator is desired. Measurement realizations,
communication indicators, and channel gains are adopted to
manage the usage of transmission power

ur = fio (T1iks hisks Y1ik—1)- %)

Given the transmission power controller, the remote estimator
generates an estimate as a function of what it has received from
the sensor, i.e.

&, 2 gu(O))- (6)

We emphasize that since the transmission power controller
f1.r affects the arrival of the data, the optimal estimate . should
also depend on f;.;. The average remote estimation quality over
an infinite time horizon is quantified by

T
. 1 "
I(f,g) £ Er g lhmsup 7 2 Ml — & |21 (7)
T —o0 =1
correspondingly, the average transmission power cost, denoted
as W(f), is given by

T
W(F) £ B¢ llimsup L Z uk‘| 8)
T T (=
where f= {fi,...,fr,...} and g = {g1,...,9;,...}. It is
clear from the common arguments in Z(-,-) and W/(+) that the
transmission power controller and the remote estimator must
be designed jointly. Note that in (7) and (8), the expectations
are taken with respect to the randomness of the system and the
transmission outcomes for given f and g. For the remote state
estimation system, we naturally wonder how to find a jointly
optimal transmission power controller f; and remote state esti-
mator g, satisfying

minimizes g [E(f, g) + o W(f)] )

where the constant o can be interpreted as a Lagrange multi-
plier. We should remark that (9) is difficult to solve due to the
nonclassical information structure [21]. What is more, (9) has an
average cost criterion that depends only on the limiting behavior
of f and g, adding additional analysis difficulty.

A. Belief-State Markov Decision Process

Before proceeding, we first give in the following lemma that
the variables of the transmission power controller f; defined
in (5) can be changed without any loss of performance. The
proof is similar to that of [16, Lemma 1].

Lemma 1: Without any loss of performance, the transmis-
sion power controller f; defined in (5) can be restricted to the
following form:

u, = fi(z1,0;).

To find a solution to the optimization problem (9), we first
observe from (8) that W(f) does not depend on g, thus leading
to an insight into the structure of g;—Lemma 2, the proof of
which follows from optimal filtering theory: the conditional
mean is the minimum-variance estimate. Similar results can be
seen in [14], [16], and [18].

Lemma 2: For any given transmission power controller fj,
the optimal remote estimator g;; is the MMSE estimator

& = gp(0y) =Ky, [2]O;]-

(10)

(1)

Problem (9) still remains hard since g;. depends on the choice
of fi.x. To address this issue, by adopting the common in-
formation approach [34], we formulate (9) as a POMDP at a
fictional coordinator. The fictional coordinator, with the com-
mon information of the sensor and the estimator, will generate
prescriptions that map from each side’s private information to
the optimal action. Notice that due to the feedback structure,
there is no private information for the remote estimator. Also,
the optimal action for the remote estimator (i.e., the optimal
estimator) has been provided in Lemma 2. Thus, the goal of the
POMDRP is to find the optimal prescription for the sensor based
on the common information. From (10), the private informa-
tion at time k for the sensor is xj. Hence, one may define the
prescription [, : R" — U as

lk() = fk(ok_v )

Following the conventional treatment of the POMDP, we are
allowed to equivalently study its belief-state MDP. For tech-
nical reasons, we pose two moderate constraints on the action
space. We will present the formal belief-state MDP model and
remark that the resulting gap between the formulated belief-
state MDP and (9) is negligible (see Remark 6). Before doing
so, a few definitions and notations are needed. Define innovation
€l as

er 2y — ATy (12)

with e, taking values in R™ and 7, being the most recent time
the remote estimator received data before time £ as

(k) £ max l{t cy =1} (13)

1<t<hk—
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Leté, £ Ky, [ex|O)f]. Since 7(k), 2, () € Of_, the equality

e — €p = T, — Iy, (14)

holds for all £ € N. In other words, e;. can be treated as x;, offset
by a variable that is measurable to (9];1. We define the belief
state on ej. From (14), the belief state on z; can be equally
defined. Here, we use e;, instead of zj, for ease of presentation.
Definition 1: Before the transmission at time k, the belief
state 0 (-) : R" — R, is defined as 0 (e) = p(ex;e|fie_1,
O,).
To define the action space accurately, we also need some
definitions related to a partition of a set.
Definition 2: A collection A of sets is a partition of a set X
if the following conditions are satisfied:
D 0EA;
2) UpeaB = X
3) if81782 € A and Bl 7& Bg, then Bl N BQ = 0.
An element of A is also called a cell of A. If X C R", we
define the size of A as

|A| £ sup{|lz —y| : z,y € B,B € A}.

Definition 3: For two partitions, denoted as A; and A,, of a
set X', A is called a refinement of A, if every cell of A; is a
subset of some cell of As. Formally it is written as Ay < As.

One can verify that the relation < is a partial order, and the
set of partitions together with this relation form a lattice. We
denote the meet [35, Definition 1.3]% of partitions A; and A,
as Al A Ag.

Now, we are able to mathematically describe the belief-state
MDP by a quintuplet (N, S, A, P, C). Each item in the tuple is
elaborated as follows.

1) The set of decision epochs is N.

2) State space S = © x h: O is the set of beliefs over R”,
i.e., the space of probability measures on R". The set
© is further constrained as follows. Let i be a generic
element of ©. Then, p is absolutely continuous with re-
spect to the Lebesgue measure,® and ;. has the finite sec-

ondmoment, i.e., [, [le]?du(e) < co.Letf(e) = SQEZ))
be the Radon-Nikodym derivative. Note that 0(e) is
uniquely defined up to a £-null set (i.e., a set having
Lebesgue measure zero). We thus use p and 6(e) inter-
changeably to represent a probability measure on R”, and
we do not distinguish between any two functions 6(e)
and 0'(e) with £({e: 0(e) — 0(e) #0}) =0 by con-
vention. We assume that © is endowed with the topol-
ogy of weak convergence [36]. Denote by s = (u, h)

For z,x,y € A with A being a partially ordered set, z is the meet of 2 and
vy, if the following two conditions are satisfied:

1) z<zand z X y;
2) for any w € A such that w < = and w =< y, there holds
w = Z.

3Let 1 and p1o be measures on the same measurable space. Then, 1 is
said to be absolutely continuous with respect to o if for any Borel subset B,
p2(B) =0= u(B)=0.

a generic element of S. Let dp(-,-) denote the Pro-
horov metric [36] on ©. We define the metric on S as
qﬂs((ulvhl)v (#27 hQ)) = maX{dp(ﬂl,Mg), |h1 - h2|}

3) Action space A is the set of all functions that have the
following structure:

a, if |le]| > L s
ale) = a'(e), otherwise (1)
where @' € A': € — U with £ 2 {e € R" : |le|]| < L}.
The space A’ is further defined as follows. Let a’ € A’
be a generic element, then there exists a finite partition
A, of £ such that each cell of A, is a £-continuity
set* and on each cell a/(e) is Lipschitz continuous with
Lipschitz constant uniformly bounded by M. It is further
assumed that A = A, 4 A, is a finite partition of £. We
adopt the Skorohod distance defined in Appendix A, for
which X = £. By convention, we do not distinguish two
functions in A that have zero distance and we consider
the space of the resulting equivalence classes. Note that
the argument of the function a(-) is the innovation ey
defined in (12), and by the definition of ej, one obtains
that ay, (e) =l (6 + Ak_T(k)LL‘T(k)).
4) The function P(0', /|0, h,a):S x A x S defines the
conditional state transition probability. To be precise

P(0', 1|0, h, a)

POks1, hi1;0 0|0 =0, by, = h,a; = a)

E(W|h) (1 — (0, h,a)),if 0" = ¢(0,h,a,0)
= E(h/|h’)(p(97 h? a)? ifg/ = d)(g? h’7 a) 1)

0, otherwise

where (0, h,a) = [¢. q(a(e), h)0(e)de, and

¢(0, h,a,7)
o [ manfona(A71e) #fue), if v =0 (16)
Fu (€), iy =1

where Qefhﬂ (e) & % is interpreted as the

posttransmission belief when the transmission fails, and
fu (), recall, is the pdf of the system noises in (1). One
obtains (16) by noticing that e, 1 = Aej, + wy if y, =0
and e 1 = wy otherwise.
5) The function C(0, h,a) : S x A — R is the cost func-
tion when performing @ € Aforf € © and h € h at time
k, which is given by
C(0,h,a) =

O(e)c(e, h,a)de. 17)

Rn
In the aforementioned equation, the function c(-,-,-) :
R™ xh x A — R, is defined as c(e, h,a) = aale) +
(1 - qla(e).h)lle —é4|> with &, =E,. [ £E

4 A Borel subset B is said to be a p-continuity set if 1(9B) = 0, where DB is
the boundary set of .
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lele ~ 6,", ], where the communication cost is counted

by the first term and the distortion ||e —é,||*> with
probability 1 — g(a(e),h) is counted by the second
term.

Remark 4: The initial belief 6, (¢) = 1/det(A)f,, (A e) *
fu () is absolutely continuous with respect to the Lebesgue mea-
sure. The belief evolution in (16) gives that, whatever policy is
used, 0}, is absolutely continuous with respect to the Lebesgue
measure for £ > 2. Also, notice that if there exists a channel gain
h € hsuchthat (@, h) < 1andif 6 has infinite second moment,
then C(0, h, a) = oo for any action a. Thus, to solve (9), with-
out any performance loss, we can restrict beliefs into the state
space ©.

Remark 5: The action a(e) € A is allowed to have a £-null
set of discontinuity points. The assumption that on each cell of a
partition, a(e) is a Lipschitz function is a technical requirement
for Theorem 1. The intuition is that given 6}, except for £-null
set of points, the difference between the power used for e; and
e}, is at most proportional to the distance between e, and ej..
The saturation structure in (15), i.e., a(e) = @wif ||e]| > Lisalso
a technical requirement for Theorem 1. Intuitively, this ensures
that, when the transmission fails, the second moment of the
post-transmission belief 6", hoa (e) is bounded by a function of
the second moment of (e). The saturation assumption can also
be found in [27].

An admissible k-history for this MDP is defined as h; =
{01, h1,a1,...,0k_1,h;_1,a5_1,0k, hi. }. Let Hj, denote the
class of all the admissible k-history hy. A generic policy d for
(N, S, A, P, C) is a sequence of decision rules {dy, }rcn, with
eachdy, : Hr — A.In general, dj, may be a stochastic mapping.
Let D denote the whole class of d. In some cases, we may write
d as d(dy,) to explicitly point out the decision rules used at each
stage. We focus on the following problem. For any initial state
(0, 1)

min  7(d, 0, h) £ limsup —

T —o00

T
Z okahkaak‘)]

P (18)
st. deD.

Remark 6: The gap between (9) and (18) arises from the
structure assumptions for the action space. These structure con-
straints, however, are moderate, since the saturation level L and
the uniform Lipschitz constant M can be arbitrarily large and
the size of |A| can be arbitrarily small.

IV. OPTIMAL DETERMINISTIC STATIONARY
PoLicy: EXISTENCE

The definition of the policy d in the aforementioned sec-
tion allows the dependence of d; on the full k-history, hg.
Fortunately, with the aid of the results of average cost MDPs
[37]1-[39], we prove that there exists a deterministic stationary
policy that is optimal to (18). Before showing the main theorem,
we introduce some notations.

We define the class of deterministic and stationary policies
Dy as follows: d(dy) € Dy if and only if there exists a Borel

measurable function d : S — A such that Vi
di(Hr—-1,ar-1,0r = 0,hy = h) =d(0,h).

Since the decision rules dj’s are identical (equal d) along the
time horizon for a stationary policy d({dk}ren) € Das, We
write it as d(d) for the ease of notation.

Theorem 1: There exists a deterministic and stationary pol-
icy d*(d) € Dys such that for any (0, h) € S, there holds

J(d*(d),0,h) <3(d,6,h) VdeD
Moreover, the optimal policy is given by

d*(d) = argmin{Cq (0, h) + Ea[Q"(¢',1)|0, h]}
deDy,

19)

and the optimal cost is

9(d*(d),0,h) = p* V(0,h) €S

where the functions Q" : S — R and p* € R satisfy
Q'(0:h) = min {Ca(6,h) — p* + Ea[Q (0, 1)10, h]}

ds
with C4(0,h) 2 C(0,h,d(0,h)) and Eq[Q*(¢',h")|0,h] =
fs Q (0", )P0, 1|0, h,d(0,h))d(8, h).

The proof is given in Appendix B. The aforementioned theo-
rem says that the optimal power transmission policy exists and
is deterministic and stationary, i.e., the power used at the sen-
sor node wuy only depends on (6, hy) and e;. Since the belief
state 0, can be updated recursively as in (16), this property
facilitates the related performance analysis. The optimal deter-
ministic and stationary policy to an average cost MDP with finite
state and action spaces can be obtained by the well-established
algorithms, such as value iteration, policy iteration, and lin-
ear programming approach; see, e.g.,[40, ch. 4] and [41, ch.
6]. However, it is not computationally tractable to solve (19),
since neither the state space nor the action space is finite. One
might apply the algorithm proposed in [42], which involves dis-
cretization of the state and action spaces. While the algorithm
involving discretization may not work well when the dimen-
sion of the system (1) is large, developing efficient numerical
algorithms is out of the scope of this paper and we refer the
readers to [43] for numerical algorithms for POMDPs with av-
erage cost criteria. Nevertheless, Theorem 1 provides a quali-
tative characteristic of the optimal transmission power control
rule.

V. STRUCTURAL DESCRIPTION: MAJORIZATION
INTERPRETATION

In this section, based on the results obtained in Section IV,
we borrow the technical reasoning from [14], [16], and [29], to
show that the optimal transmission power allocation strategy has
a symmetric and monotonic structure and the optimal estimator
has a simple form for cases where the system is scalar or the
system matrix is orthogonal.

Before presenting the main theorem, we introduce a nota-
tion as follows. For a policy d(d) € Dqs with d(6,h) = a(e),
with a little abuse of notations, we write a(e) as ag 1, (e) to em-
phasize its dependence on the state (6, h). We also use ag ), (€)
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to represent the deterministic and stationary policy d(d) with
d(0,h) = a(e).

We further introduce Assumption 6, to present that, we need
the following definitions.

Definition 4 (Symmetry). A function f : R" — R is said to
be symmetric (point symmetric) about a point o € R", if, for any
two points z,y € R", |ly—o|| =[x —o|| (y —0o=—x+0)
implies f(x) = f(y).

Definition 5 (Unimodality). A function f : R"” — R is said
to be unimodal about o € R" if f(0) > f(o+ ayv) > flo+
ayv) holds for any v € R™ and any oy > o > 0.

For the symmetry and unimodality defined previously, if the
point o is not specified, it is assumed to be the origin 0 by
default.

Assumption 6: The pdf of the system noises f,, is symmetric
and unimodal.

According to Theorem 1, to solve (18), we can restrict the
optimal policy to be deterministic and stationary without any
performance loss. The following theorem suggests that the op-
timal policy can be further restricted to be a specific class of
functions.

Theorem 2: Suppose Assumption 6 holds. Let A in (1) be
either a scalar or an orthogonal matrix. Then, there exists an
optimal deterministic and stationary policy aj , (e) such that
ap p (e) is symmetric and monotonically increasing with respect
to |le||, i.e., for any given (0, h) € S, there holds

1) aj ,(e) = a;;, (—e) foralle € R";

2) ay ;,(e1) > aj p, (e2) when [[e; || > ||ez || with equality for

lexll = flezI

The proof is given in Appendix C. Note that Theorem 2 does
not require a symmetric initial distribution f,,, . Intuitively, this
is because 1) whatever the initial distribution is, the belief state
will reach the very special state f,, sooner or later; and 2) we
focus on the long-term average cost and the cost incurred by
finite transient states can be omitted.

Remark 7: When there exists only a finite number of power
levels, only the norms of the thresholds used to switch the
power levels are to be determined for computation of the op-
timal transmission power control strategy. This significantly
simplifies both the offline computational complexity and the
online implementation. While the online implementation sim-
plification is straightforward, we shall discuss more about the
offline computational complexity reduction. In general, struc-
ture of feasible policies will make the search space much
smaller and some specialized algorithms utilizing the struc-
ture may be developed. When it comes to our case, to apply
the algorithm in [42], the discretization of the action space
is not necessary. Instead, gradient-based optimization algo-
rithms, such as simultaneous perturbation stochastic approxi-
mation algorithm [44, ch. 7], can be used to find the optimal
policy.

In the following theorem, we give the optimal estimator (11)
when the transmission power controller has certain symmet-
ric structure, which includes the structure results stated in
Theorem 2 as special cases. Recall that 7(k) is defined in (13)
and f,, is the pdf of the initial state x.

Theorem 3: Assume both f,, and f, are point symmetric.
Consider the transmission power controller f,g as

up = fi(ze, Op) 2d) , (er)

where aé’ , (€) is point symmetric. Then, the optimal remote

state estimator gj, is given by
ify, =1 (20a)

(20b)

4= ot (O i ) . Ty
' I F Ak_T(k)aA?T(k), if Ve = 0.
Notice that we do not impose any constraint on the system ma-
trix in the aforementioned theorem. Here, for the sake of space,
we only present the main idea of the proof. Equation (20a) holds
trivially. Moreover, if 6 is point symmetric and a point symmetric
power action a(e) is used, given 7, = 0, both the posttransmis-
sionbelief 6,7,  (e) and the next time belief ¢(6, h, a, 0) defined
in (16) are point symmetric as well. By mathematical induction,
the point symmetric structure remains if consecutive packet
dropouts occur. Then by (12), the posttransmission belief of
is point symmetric about A*~7(* )iT( k)» which yields (20b).
Remark 8: Let us consider related structural problems when
our problem is formulated over a finite-time horizon. Using the
techniques in the proof of Theorem 1, one easily verifies that an
optimal deterministic policy exists (see, e.g., [39, ch. 3.3]). Then,
the same structural results of the action policy as in Theorem 2
(except that the action is time dependent) can be concluded
by the same arguments as in the proof of Theorem 2. Since
Lemma 5 is correct regardless of the time horizon, structural
results of the optimal remote estimator in Theorem 3 continue
to hold.

VI. PRACTICAL IMPLEMENTATION

Here, we discuss about the implementation of the system,
which is illustrated in Fig. 3. The optimal policy of the MDP is
computed offline, and the state and its optimal action are stored
as a lookup table in advance of online implementation. Depend-
ing on the storage capacity of the senor node, the system we
study can work either as in (a) or in (b). The main difference
between the systems in (a) and (b) is where the MDP algorithm
is implemented. The content of feedback messages are corre-
spondingly different. In (a), the MDP algorithm is implemented
at the remote estimator and the action ;. is fed back to the sen-
sor. In practice, for a generic [;, only an approximate version
(e.g., lookup tables) can be transmitted due to bandwidth limi-
tation. An accurate feedback of /;; is possible if [;; has a special
structure. For example, if U/ is a finite set, by Theorem 2, ay (e)
(recall that that ay, (e) = Iy (e + A* "Mz ;) is a monotonic
step function. Then, only those points, where a; jumps, are
needed to represent [j, (note that A*~"(¥)z_ ) is available at
the sensor node). Since the function [ is directly fed back to
the sensor, the only task carried out by the sensor is computing
I () ). When the sensor node is capable of storing the MDP al-
gorithm locally, the system can be implemented as illustrated in
(b). In this case, only v (abinary variable) is fed back. Note that
when ~;, is fed back, the sensor knows exactly the information



REN et al.: INfiNITE HORIZON OPTIMAL TRANSMISSION POWER CONTROL FOR REMOTE STATE ESTIMATION OVER FADING CHANNELS 93

A

Tk
VETh ) O
> Estimator | alévégg]m
Observation .
acqui. & trans. Remote Estimator
action [
(@)
Process
Tp
Y Sensor .
u xT P xT
Tx Power k k_| Transmission k
Controller Tx "1 & Estimation
A
Ik
MDP | Ok [ Virtwal L Tk
algorithm [~ estimation |
[}
|
(b)

Fig. 3. Implementation of the system. The block “Observation acqui. &
trans.” in (a) corresponds to the blue-dashed rectangle in Fig. 1 and the
block “Transmission & estimation” the red-dashed rectangle. In (a), the
MDP algorithm is implemented at the remote estimator and the action /;,
is fed back to the sensor. While in (b), the MDP algorithm is implemented
at the sensor node and ~;. is fed back by the remote estimator.

available at the remote estimator. It can run a virtual estimator
locally that has the same behavior as the remote estimator.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied the remote estimation problem where
the sensor communicates with the remote estimator over a fad-
ing channel. The transmission power control strategy, which
affects the behavior of communications, as well as the remote
estimator were optimally co-designed to minimize an infinite
horizon cost consisting of power consumption and estimation
error. We showed that when determining the optimal transmis-
sion power, the full information history available at the sensor
is equivalent to its belief state. Since no constraints on the in-
formation structure are imposed and the belief state is updated
recursively, the results we obtained provide some insights into
the qualitative characterization of the optimal power allocation
strategy and facilitate the related performance analyses. In par-
ticular, we provided some structural results on the optimal power
allocation strategy and the optimal estimator, which simplifies
the practical implementation of the algorithm significantly. One
direction of future work is to explore the structural description
of the optimal remote estimator and the optimal transmission
power control rule when the system matrix is a general one. We
also note that developing an efficient numerical algorithms for
POMDPs with average cost is still in an early stage.

APPENDIX A
GENERALIZED SKOROHOD SPACE [45]

Let (X,dy(-,-)) be a compact metric space and A be a set of
homeomorphisms from X" onto itself. Let 7 be a generic element

of A, then on A, define the following three norms:

I7|ls = supdy (7w, z)

reX
d
|7l = sup logM
T, yeX:x#y dl;((a:,y)
7l = llwlls + [lelfe-

Note that ||7||; = |7 !||;. Let Ay C A be the group of homeo-
morphisms with finite || - [|;, i.e.

A ={meA:|n|, < o}

Note that since X is compact, each element in A; also has finite
I [|m- Let B-(X) be the set of bounded real-valued functions
defined on X, then the Skorohod distance d(-,-) for f,g €
B, (X) is defined by

d(f,g) = inf{e > 0: 37 € A; such that

[|7||m < €and sug |f(z) — g(mz)| < €} 21
xe

Let VW be the set of all finite partitions of X that are invariant un-

der A. Let Ix be the collection of functions that are constant on

each cell of a partition A € W. Then, the generalized Skorohod

space on X are defined by

2(X)={fe€B.(X): IA €W, g € I such that
d(f,9) = 0}.

By convention, two functions f and g with d(a, b) = 0 are not
distinguished. Then, by [45, Lemma 3.4, Ths. 3.7 and 3.8],
the space Z(X) of the resulting equivalence classes with metric
d(-,-) defined in (21) is a complete metric space. For f € B, (X)
and A = {§;} € W, define

w(f,A) = Igaxsug{\f(w) —fW)l:x,y €}

J Z,1

(22)

(23)

For f € B,.(X), f € 2(X) if and only if lima w(f,A) — 0,
with the limits taken along the direction of refinements.

APPENDIX B
PROOF OF THEOREM 1

Before proceeding, we give two supporting lemmas. In
Lemma 3, a condition on the probability measures is provided,
under which the weak convergence implies set-wise conver-
gence. Lemma 4 shows that the packet arrival rate at each time
can be uniformly lower bounded.

Lemma 3: Let p and {yu; ;en} be probability measures
defined on (R",Z(R")), where #(R"™) denotes the Borel
o— algebra of R”. Suppose they are absolutely continuous with
respect to the Lebesgue measure. Then, the following holds:

i = S = g (24)

where j1; — ju stands for weak convergence [36], j1; — ji repre-
sents set-wise convergence, i.e., forany A € B(R"), u; (A) —
1(A).

Proof: Notice that j; =5 1 = 1; — 1 holds trivially [39,
Appendix E] and in the following, we focus on the proof of 1; —
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1= pt; -5 . The Borel o— algebra 2(R") can be generated
by n-dimensional rectangles, i.e.

‘@(Rn) = J({(xlayl} X X (xnayn] Xy, Y € R}) (25)

Since p is absolutely continuous with respect to Lebesgue mea-
sure, all the rectangles are pu-continuity sets. By the Portmanteau
Theorem [36], for any z;,y; € R

,Ufi((xlayl] X X (xn,aynD - N((xhyl] X X (xnayn])~

Then, statement (24) follows from (25), which completes the
proof.

Lemma 4: For any initial state (61, h;) € S and any policy
d € D, there exists a uniform lower bound € > 0 such that

Py =1) > ¢

holds for every k£ > 1.
Proof: By the saturation structure assumed for the actions
space in (15), one concludes that for any k£ > 1

PW:U@M@/

llel=L

0. (e)de.

Since ¢(@,h) >0 by Assumption 3, we then focus on
Jic|>1 O (€)de. By the evolution of {0} showed in (16), we
prove fHEHZL 01 (e)de > 0 by cases.
Ify,_; = 1,onehasd, = f, and fHEHZL fw (e)de > 0 follows
from the assumption that the support of f,, is unbounded.
When ~;_1 =0, we prove that for any belief 6,
Jiej=r 0 (e)de > 0 with ¢’ £ 0 f,,. This is done as follows:

forany L' > 0

/ o' (e)de
fell>L
Z/ Q(e)de/ fu(e)de
llel=L+L’ flell<L’
+/ 9(e)de/ fu(e)de
lell<L+L’ lel>2L+L’

> mi w(e)de, w(e)deps. (26
Hun{~/e<L’f (e) ¢ /|e>2L+L’]( (e) e} ( )

Notice that (26) holds for any L’ > 0, and thus, one can al-
ways find a L' > 0 such that fHeH<L’ fw (€)de > 0. Furthermore,
since [, sor 10 fu (e)de > 0 holds for any L' > 0 by the as-
sumption that the support of f,, is unbounded, one concludes
that fHeH -1, Ok (e)de > 0if 7,1 = 0. Notice that the aforemen-
tioned arguments do not rely on any specific policy or initial
state, the uniform lower bound in Lemma 4, thus, is obtained.
The proof thus is complete.
We now turn to the main body of this proof. Define

o0

J5(d,0,h) = Ef ), [Z BE1e (B, by, ak)‘| 27

k=1

as the expected total discounted cost with the discount fac-
tor 0 < 3 < 1. Let v3(0, h) £ infqep 95(d, 0, h) be the least

cost associated with the initial state (6,h), and let mg =
inf(g.nyes vs (0, h).
By [37, Th. 3.8], in order to prove Theorem 1, it is sufficient
to verify the following conditions.
C1 (State Space): The state space S is locally compact with
countable base.
C2 (Regularity): Let M be a mapping assigning to each
s € S the nonempty available action space A(s). Then,
for each s € S, A(s) is compact, and M is upper semi-
continuous.
C3 (Transition Kernel): The state transition kernel P(-|s, a)
is weakly continuous.’
C4 (Cost Function): The one stage cost function C(s, a) is
lower semicontinuous.
C5 (Relative Discounted Value Function): There holds

sup [vg(0,h) —mg] < oo V(0,h) €S.

0<p<1

(28)

We now verify each of the aforementioned conditions for
the considered problem, by which we establish the proof of
Theorem 1.

A. State-Space Condition C1

We prove that both S and A are Borel subsets of Polish
spaces (i.e., separable completely metrizable topological spaces)
instead. Then, as pointed out in [38], by the Arsenin—Kunugui
Thoerem, the condition C1 holds.

To show that S is a Borel subset of a Polish space, by the
well-known results about the product topology [46], it suffices
to prove that © and h are Borel subsets of Polish spaces. Since
h is a compact subset of R, we only need to prove O is a
Borel subset of a Polish space. Let M(R") be the space of
probability measures on R" endowed with the topology of weak
convergence. Itis well known that M (R™) is a Polish space [36].
Let My (R™) € M(R") be the set of probability measures with
finite second moment, and M, (R") C M(R") be the set of
probability measures absolutely continuous with respect to £.
By [47, Th. 3.5], M, (R") is a Borel set. We then show that
M (R™) is closed. Suppose {u; ien} € Ma(R™) and p1; — pu.
Since M(R™) is complete, i € M(R™), and using the fact that
norms are continuous, by [48, Th. 1.1]

[ Vel utde) < timint [ el de) < o
R” 1—00 R»

Then, p € M3 (R™), implying that M5 (R"™) is closed. Since
© = My(R™) N M, (R"), O is a Borel subset of M(R"). The
state space S thus is a Borel subset of a Polish space.

Now we shall show that A is a Borel subset of a Polish space.
Considering the structure relation between A and A’ in (15),
we do this by proving A’ is a Polish space. First, as Step 1, we

SWe say P(-|s, a) is weakly continuous if as s; — s and a; — a

/b(s')’l’(ds’\si,ai) ﬁ/b(s’)?(ds’\s,a)
S S

for any sequence {(s;,a;),i > 1} converging to (s,a) with s;,s € S and
a;,a € A, and for any bounded and continuous function b : S — R.



REN et al.: INfiNITE HORIZON OPTIMAL TRANSMISSION POWER CONTROL FOR REMOTE STATE ESTIMATION OVER FADING CHANNELS 95

show that the closure of A’, denoted as cl(.A’), is a Polish space.
Then, as Step 2, we prove that A’ is closed, i.e., cl(A") = A'.

Step 1: Since a bounded function can be approximated by
simple functions uniformly, the space A’ is a subset of the
general Skorohod space defined on £ (see Appendix A), i.e.,
A" C 2(€). Then by [45, Th. 3.11], if (3.37) and (3.38) thereof
hold, cl(A") is compact. Since a generic a € A" maps from & to
[0, @], (3.37) thereof obviously holds. Notice that (3.38) thereof
is equivalent to

lim sup w(a, A) — 0 (29)

A gen
By the definition of A, all the functions in A’ are Lipschitz
continuous with Lipschitz constant uniformly bounded by M
on each cell of A. Thus, for A < A

sup w(a, A) < M|A|

acA
which yields (29). Using the fact that every compact metric
space is complete and separable, one obtains that cl(A’) is a
Polish space.

Step 2: Suppose that a; € A’ converges to a limit a in the
Skorohod topology (we write as a; — a), we then show that
a € A'.By the definition of the Skorohod distance d (-, -) in (21),
a; = a if and only if, there exist mappings m; € A; such that

lim a; (m;x) = a(x) uniformly in £

and limm2 = 2 uniformly in £. (30)
Since lim; ;2 = z uniformly in &, for any € > 0, there exists
ip such that ||7;||; < e with ¢ > ij. Note that if ||7;||; <€, m
is a bi-Lipschitz homeomorphism. By the definition of A’, any
a; € A" has £-null set of discontinuity points. Since measure-
null sets are preserved by a Lipschitz homeomorphism, by (30),

one obtains that

£(the set of discontinuity points of a) = 0. 31

Following the same reasoning for one dimensional Skorohod
space 2[0,1] (see, e.g., [36, P124]), one obtains that a; = a
implies that a; (z) — a(z) uniformly for all continuity points z
of a. Since on each cell of A = {4}, all the functions in A’ are
Lipschitz continuous, the interior points of §; (write the setas 47)
must be continuity points of a. By the fact that if a sequence of
Lipschitz functions with Lipschitz constant uniformly bounded
by M converge to a limit function, then this limit function is
also a Lipschitz function with Lipschitz constant bounded by
the same M, a is Lipschitz continuous with Lipschitz constant
uniformly bounded by M on the interior set of each cell of A.
For a boundary point x of the cells of A, denote the collection of
cells whose boundary contains = as d, = {J; : « € 34, }. Then,
one obtains that a(x) must be a limit of a from one cell in ¢, i.e.,
thereexists §; € d, suchthatlim, ., ye50 a(y) = a(z). Now we

define a function a* such that for each §; € A, a*(z) = a(z) if
x € 67 and a”(z) are continuous on ;. Then, one obtains that
d(a,a*) = 0, which implies that a = a* since Z(&) is a metric
space. Combining (31), one obtains that a € A’. Thus, A’ is
closed.

B. Regularity Condition C2

Since A is compact and \A(s)
readily verified.

= A for every s € S, C2 is

C. Transition Kernel Condition C3

Since S is separable and given (0, hy,a), hy1 and 04
are independent, then by [36, Th. 2.8], it suffices to prove that
forany h € h, as 6; = 6 (u; — p) and a; ~> a, the followings
hold:

@(eiahvai) - 90(07}17(1) (32)

and qs(eia h7 Aj, 0) & d)(ea h7 a, 0) (33)

Notice that since the set of discontinuity points of a has
Lebesgue measure zero, a; — a implies a; — a £— a.e. Fur-
thermore, the fact that  is absolutely continuous with respect to
Lyields a; — a pu— a.e. Then, it follows that ¢(a;, k) — ¢(a, h)
1— a.e., since ¢ is continuous £— a.e. by Assumption 3. Also,
by Lemma 3, z; = 1. Then by [49, Th. 2.2], one obtains that
alas(e). Wpu(de) > [ gla(e), u(de)

lim inf
1—00 R”

and liminf/ —q(a;(e), h)p;(de) >

1—00

- [ atate). mutae)

Combing the aforementioned two equations one obtains that
lim oo Jga q(ai(e), h)pi(de) = [r. al yu(de), e,
@(eivhaai) - 90(9 h a’)

We now prove that (33) holds. Noting that 6; ™o implies
that 0; (e)—0(e) £— a.e., it thus follows that

eet,h,a,' (e) - 99 h a,( )

£— ae. Note that 6," , () and 6, () can be viewed as
probability density functions of e, and for simplicity, we write
the corresponding probability measures as y; and u*, respec-
tively. Then, it follows from (34) that

(34)

+ SW

p =t (35)

Let b(e) be any bounded and continuous function defined on
R™, then

b(e)p(, h,a,0)(e)de

R n

= / b(e) 0,h, ., (€)fw(e — Ae')de' de
n R~ ’

= / 99+h a (el) / b(e)fw (6 - Ae/)dede’
R» 7, n

/ Bt (@)

where b(e') £ [g. b(e)f, (e — Ae’)de. Noting that b(e') is a
bounded functlon then by [39, Appendix E] and (35),

bt e = [ b @e).

Equation (33) thus follows by the Portmanteau Theorem [36].

(>
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D. Cost Function Condition C4

Lete!, = E09+ ’

ivhag

[e], we first prove as 6; — 0 (i.e., t1; — 1)
and a; > a
5i

e% — €4.

By (34) and [36, Th. 3.5], it remains to prove e ~ 9(;: ha; is
uniformly integrable. We do this by showing that u?’ (0;; )
also has finite second moment given that z (6;) has finite second

moment.
[ etz
Rn
- / lelPdut (e) + / lell2dui (e)
& R7\E

< 2 _|_/ lle||*du (e), for any h, a;
R~ \5

< 0

where the first inequality follows from the structure of a;(e)
in (15). Since GJ h.a, has finite second moment, e ~ 9& hoa, 18
uniformly integrable.

Note that

Cc(0,h,a) = O(e)c(e, h,a)de.

]Rn
= [ aa(e) + (1~ glate), h)fe — é- [P du(e),

Since a;(e) + (1 — q(ai(e), hi))|le; — €. [|* >0, then by
[49, Th. 2.2], one obtains that

[ aae)+ (1 = ala(e) 1) e ~ é- [Pdue)

<liminf [ aa;(e) + (1 - glai(e). 1) le — &, [Pdpi(e)

1—00 R

which means that C(0, h, a) is lower semicontinuous.

E. Relative Discounted Value Function Condition C5
Note that by [38, Lemma 5], if

dlgﬁlj(d, 0,h) < oo (36)

then (28) can be equivalently written as

limsup[vg (0, h) — mg] < coV(0,h) € S. 37)
ﬂTl
Step 1: Verification of (36). Consider a suboptimal policy,
denoted by d°, where at each time instant the maximal trans-
mission power % is used. Given a belief 6, denote by Var(6) the
second central moment, i.e.

Var(0) = O(e)(e —é)(e —é)"de

R~

(38)

where é = E[e|e ~ 6] is the mean. Then, for any initial state
(0, h) € S, if the policy d° is used, one can rewrite (17) as

C(9k7 hk,ak) = au + (1 — q(ﬂ, hk))Tr(Var(Gk))

and forany k > 1

AVar(0;)AT + W, ify, =0
w, otherwise

Var(0y41) = {

with P(v; = 0) = 1 — q(4, hy ) and Var(0;) = AS AT + W.
Then, for any initial state (0, h) € S, with Assumption 5, there
exists a finite upper bound x(6), which depends on the initial

state 6, such that for any £ > 1
Eg; [Tr(Var (6;))] < #(6). (39)

This relation can be shown by describing the evolution of
Var(6;)) using a Markov jump linear system and Assumption 5
implies the system’s stability.

Then, one obtains that

di}r@af}}](d,&h) < ie?’f](dO,H,h)
< ir(}f k() + au
< 0.
Step 2: Verification of (37). Define the stopping time
Tg £ inf{k > 1: 0500, hr) <vs(fuw)}

where v (f,, ) = ming,cp Vs (fu, k). Then, by [37, Lemma 4.1],
one has forany 5 < 1 and (0,h) € S,

vg(0,h) —mg < Vg (fuw) —mg
Ty -1
+ él’ég ]Eg,h ]; C(eka hk ’ a’k) (40)

Then, by proving the finiteness of the right-hand side of (40)

as ( approaches 1, we show (37) holds. First, we focus on the
T‘gf —1

term infaep BY ;, |32.07 C(Qk,hk,ak)}. We now prove the

uniform finiteness (with respect to [3) of ]ngh [T 3] for any initial
state (6, h). To this end, let h* = arg miny, cp vg(fu, k) and

5 & inf{k > 11 (0, i) = (fu, )}

Note that the dependence of T on 3 is due to h*. Then, one
can see that for any realization of {6} } and {h; }

T; > Ty

always holds. Note that {h;} evolves independently. Though
{0;} depends on the realization of {hj, }, under the policy d°,
P (). = fu) > q(u,h) with h = min{h : h € h} forall k > 1
with any initial state 6. Based on the aforementioned two ob-
servations, we construct a uniform (for any 0 < 8 < 1) upper
bound of ngh [T] as follows. Define

K(h,h') =min{k > 1: h =h',hy = h}

as the first time hj, reaches h’ when starting at h. Then, given
the initial state h, let {T}};>; be a sequence of independent
random variables such that E[T1] = E[X(h, h*)] and E[T;}] =
E[K(h*, h*)],7 > 1.Let x be a geometrically distributed random
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variable with success probability ¢(@, ). Then, one obtains that

E§ 4 [T3)
<E zX:Ti
1 * * *
< o max(EIKO ) B 1)
]. / ! !
< o e (ma(EI( KOLEIRG IO (4
< 00 (42)

where the second inequality follows from the Wald’s identity and
Assumption 3 that ¢(@, h) > 0, and the last inequality follows
from the assumption that h is a finite set and Assumption 1-5).
Note that since (41) is independent of 3, Egl, [T ;] is uniformly
bounded. One thus obtains that for any (6,h) € S

Ts-1
lim sup inf EJ C(Ok, hi., ay,
s dep kz::l (e )
[T, -1 T
< limsupE§ , Z C(Ok, hy, ax)
A1l k=1
[T;-1 1
< limsup]ngh Z C(Ok, by, ar)
A1 k=1

< limsupE§, [T; —1](x(0) + au)
811 '

< 00 (43)

where the last second inequality follows from the Wald’s identity
and the last inequality follows from (42).

We now turn to the term wvy(f,) —mp and we shall
show that limsupg, (vs(fu) —ms) < co. Notice that if
argming j)es V5 (0, h) = (fu, h) for some h € h, then by the
definition of vg(f,, ), there holds vy (f,) — mg = 0. In the fol-
lowing, we then focus on the cases when it is possible that
argmingg pyes vs (0, h) # (fw, h) forany h € h.

To proceed, with a little abuse of notation, define

K(0,0) =min{k > 0: 0,1 = 0,0, =0}.  (44)

By Lemma 4, one sees that for any & > 1, P(X(0,f,) > k) <
(1 — &)*, which means that >;° | P(X(6, f,,) = k) = 1 holds,
for any initial state (6, h) with 6 # f,, and policy. Then, together
with the definition of v (f,, ), nonnegativity of the cost at each
stage and the principle of optimality for dynamic programming,
it yields that for any initial state (6,h) andany 0 < 5 < 1

(0, h) > vy(fu) Y P(K(O, f) = k)B*
k=1

)
>U[j fu Zg A 1ﬁk
k=1

where the second inequahty follows from Lemma 4: for
any ko > 1, there holds P(x(0,f,) = k) > Zk 1e(1—

€)*~1. Furthermore, the arguments in Step I [specifically, (39)]
give that v () < 1/(1 — ) (k(fw) + a@). Then, one obtains
that

lim sup(vg (fu) — ms)
B11
< limsup vy (fu) (1 =) e(1- E)k_15k>
s k=1
N _ \k—-1pk
< limsup DS ) (K(fw) + o)
611 1- ﬁ
. e k-1 k-1
= 51_)1(f€(fu,) + aii) ; ke(l—e)" ' p (45)
< o0 (46)

where the equality applies the L’Hospital’s Rule and holds
because the power series is differentiable (and continuous of
course, which implies that lim sups;; Y77, e(1 —¢)F 1 g% =
S, e(l —e)f 7L =1) at the interior points of the conver-
gence domain (—1/(1 —¢),1/(1 — €)); the last inequality fol-
lows from that the convergence domain for the power series
in(45)isalso (—1/(1 —¢),1/(1 —¢)).
Therefore, one obtains that for any (6,h) € S

lim sup[vg (0, h) — mg] < oo
B11
by 43) and (46), and the relation that
lim Supgi1 [v(0,h) —mg] < lim Supgi1 (Q@ (fuw) —mp) +

T, -1
wlq C(Ok, by, ar)

(relative discounted value function) thus is verified.
The proof of Theorem 1 now is complete.

lim supgy; infaep ]Eg,h [ } The condition

APPENDIX C
PROOF OF THEOREM 2

We first give some supporting definitions and lemmas as fol-
lows.

Definition 6: For any given Borel measurable set B C R",
where £(B) < oo, we denote the symmetric rearrangement of 3
by B?,i.e., B? is a ball centered at 0 with the Lebesgue measure
£(B). For a given integrable, nonnegative function f : R* — R,
we denote the symmetric nonincreasing rearrangement of f by
f7, where f is defined as

o]
fg(l') £ / H{OGR“':f(o)>t}” (x)dt
0
Definition 7: For any given two integrable, nonnegative

functions f,g: R" — R, we say that f majorizes g, which is
denoted as g < f, if the following conditions hold:

/ f"(:c)dscz/ ¢ (x)dz VE>0  (47)
[ [|<¢ |z <t
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and

(x)dx = /" g(z)dz.

Equivalently, (47) can be altered by the following condition: for
any Borel set B C R", there always exists another Borel set B/
with £(B") = £(B) such that [ g(x)dz < [, f(x)dz.

Recall that L, which is introduced in (15), is the saturation
threshold for actions. As in [16], we define a binary relation on
the belief state space as follows.

Definition 8 (Binary Relation R on Belief States). For any
two belief states 6,0, € O, we say that AR, if the following
conditions hold:

1) there holds 6 < 6.,;

2) 6, is symmetric and unimodal about the origin point 0;

3) O(e) = O.(e) for any e € R"\&, where £ £ {e € R" :
|le]l < L} is defined later (15).

In the following, we define a symmetric increasing rearrange-
ment of an action a € A, which preserves the average power
consumption and successful transmission probability.

Definition 9: For any given Borel measurable B C R",
where £(B) < oo, we define

g A no.
By s ={e€R": |lef| = r}

Rn

where 0,0 € ©, and r is determined such that Jz0(e)de =
I 6(e)de. Given an action a € A, define
0,0

a;,é(e)é/o Lpern :a(0)>1)e . (€)dE. (48)

0.0
It can be verified that if [p, e f(e)de = [g. e 0(e)de,
ag ;(e) € A. One also obtains that

/ a(e)f(e)de = / a;é(e)é(e)de (49)

and for any h

[ atate)mpiere = [ a(ag40).8) iepae

Then, the following lemma follows straightforwardly.

Lemma 5: If A is a scalar or orthogonal, then §R6, implies
¢(0, h,a,0)Ré(0s, h,af 4 ,0), where ¢(-, -, -, -) is the belief up-
date equation defined in (16).

Note that if 0R0, then g(a(e), h)0(e)Rq (a,gAé(e), h) 0(e).
Then, based on (49), following the same reasoﬁing as in [16,
Lemma 15], one obtains the following lemma.

Lemma 6: 1f R, then the following inequality about the
one stage cost holds: C(#, h,a) > (0, h, ag ;)

We then proceed to prove Theorem 2 in a constructive way.
To be specific, we show that for any initial state (0, h), and
any deterministic and stationary policy d(d) € Dy, there ex-

ists another policy d(d) € Dys with a symmetric and mono-
tonic structure defined in Theorem 2 such that 7(d(d), 0, h) <

By Theorem 1, without any performance loss, we just focus on the class of
deterministic and stationary policies Dqs.

A

Fig. 4. Evolution of belief states under the policy d(d) with d(8,h) =
ag .y, (e). The special state 00 = fu,pi = g&(@l,h,a(g,’h)Vi > 0 is the suc-

cessful transmission probability defined just above (16), and it =
(0", h,agi 4,,0)¥i >0, where ¢ is the belief state update rule defined

in (16). When the belief state is ¢', it incurs cost (67, b, agi ).

J(d(d), 0, h). Notice that by Lemma 4, for any initial state (6, h)
and policy, there holds P (X(0, f,,) < co) = 1, where K-, -) is
defined in (44). Hence, without loss of generality, we assume
that the initial state 0 = f,,. Let d(0, h) = ag 5 (e), then under
the policy d(d), the evolution of belief states is illustrated in
Fig. 4. Notice that the evolution of channel gains is independent
of action a, we thus assume the channel gain to be a constant
h in Fig. 4 for simplicity of presentation. Notice also that the
notation @' is different from 6;: #° denotes an element in O,
while 6, is the belief state of the MDP at time instant k. Let
d(6,h) £ ag.1,(e), and p; and 6 be the counterparts of p; and 6
in Fig. 4, respectively. To facilitate presentation, let a’ = ay: h
and &' £ a, .- Then, {a'};cn are constructed as in (48) as

~1

a = (az)ez,éi :
Then, by Lemmas 5 and 6, one obtains that
pi =piVi >0

0" =6 =4,, OROVI>1

c(0, h,a') > (@, h,a)Vi>0,heh.

It then follows that 7(d(d), 8, h) < 7(d(d), 0, h). Since {a* };cn
is symmetric and increasing, and 6’ is symmetric, one concludes
the results of the theorem.

REFERENCES

[17 W. S. Wong and R. W. Brockett, “Systems with finite communication

bandwidth-Part II: Stabilization with limited information feedback,” IEEE

Trans. Autom. Control, vol. 44, no. 5, pp. 1049-1053, May 1999.

H. Ishii and B. A. Francis, “Quadratic stabilization of sampled-data sys-

tems with quantization,” Automatica, vol. 39, pp. 1793-1800, 2003.

[3] M. Fu and L. Xie, “The sector bound approach to quantized feedback

control,” IEEE Trans. Autom. Control, vol. 50, no. 11, pp. 1698-1711,

Nov. 2005.

J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results

in networked control systems,” Proc. IEEE, vol. 95, no. 1, pp. 138-162,

Jan. 2007.

K. You, M. Fu, and L. Xie, “Mean square stability for Kalman filtering with

Markovian packet losses,” Automatica, vol. 47, no. 12, pp. 2647-2657,

2011.

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S.

S. Sastry, “Kalman filtering with intermittent observations,” /EEE Trans.

Autom. Control, vol. 49, no. 9, pp. 1453-1464, Sep. 2004.

[71 M. Huang and S. Dey, “Stability of Kalman filtering with Markovian
packet losses,” Automatica, vol. 43, pp. 598-607, 2007.

[8] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proc. Int. Workshop
Wireless Sensor Netw. Appl., 2002, pp. 88-97.

[2

—

[4

=

[5

—

[6

=



REN et al.: INfiNITE HORIZON OPTIMAL TRANSMISSION POWER CONTROL FOR REMOTE STATE ESTIMATION OVER FADING CHANNELS 99

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

C. Yang and L. Shi, “Deterministic sensor data scheduling under limited
communication resource,” IEEE Trans. Signal Process., vol. 59, no. 10,
pp. 5050-5056, Oct. 2011.

L. Zhao, W. Zhang, J. Hu, A. Abate, and C. J. Tomlin, “On the optimal
solutions of the infinite-horizon linear sensor scheduling problem,” /IEEE
Trans. Autom. Control, vol. 59, no. 10, pp. 2825-2830, Oct. 2014.

K. J. Astrém and B. Bernhardsson, “Comparison of Riemann and
Lebesque sampling for first order stochastic systems,” in Proc. 41st IEEE
Conf. Decision Control, 2002, vol. 2, pp. 2011-2016.

Y. Xu and J. Hespanha, “Estimation under uncontrolled and controlled
communications in networked control systems,” in Proc. IEEE Conf. De-
cision Control Eur. Control Conf., Dec. 2005, pp. 842-847.

J. Sijs and M. Lazar, “On event based state estimation,” in Hybrid Sys-
tems: Computation and Control. New York, NY, USA: Springer, 2009,
pp. 336-350.

G. Lipsa and N. Martins, “Remote state estimation with communication
costs for first-order LTI systems,” IEEE Trans. Autom. Control, vol. 56,
no. 9, pp. 2013-2025, Sep. 2011.

J. Wu, Q.-S. Jia, K. H. Johansson, and L. Shi, “Event-based sensor
data scheduling: Trade-off between communication rate and estimation
quality,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 1041-1046,
Apr. 2013.

A. Nayyar, T. Basar, D. Teneketzis, and V. V. Veeravalli, “Optimal strate-
gies for communication and remote estimation with an energy harvesting
sensor,” IEEE Trans. Autom. Control, vol. 58, no. 9, pp. 2246-2260,
Sep. 2013.

C. Ramesh, H. Sandberg, and K. H. Johansson, “Design of state-based
schedulers for a network of control loops,” IEEE Trans. Autom. Control,
vol. 58, no. 8, pp. 1962-1975, Aug. 2013.

A. Molin, “Optimal event-triggered control with communication con-
straints,” Ph.D. dissertation, Technische Universitat Minchen, , Miinchen,
Germany, 2014.

V. Gupta, T. Chung, B. Hassibi, and R. M. Murray, “On a stochastic sensor
selection algorithm with applications in sensor scheduling and dynamic
sensor coverage,” Automatica, vol. 42, no. 2, pp. 251-260, 2006.

D. Han, Y. Mo, J. Wu, S. Weerakkody, B. Sinopoli, and L. Shi, “Stochastic
event-triggered sensor schedule for remote state estimation,” IEEE Trans.
Autom. Control, vol. 60, no. 10, pp. 2661-2675, Oct. 2015.

S. Yiiksel and T. Basar, Stochastic Networked Control Systems: Stabiliza-
tion and Optimization Under Information Constraints. New York, NY,
USA: Springer, 2013.

A. Gupta, S. Yuksel, T. Basar, and C. Langbort, “On the existence of
optimal policies for a class of static and sequential dynamic teams,” SIAM
J. Control Optimization, vol. 53, no. 3, pp. 1681-1712, 2015.

A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

N. Elia, “Remote stabilization over fading channels,” Syst. Control Lett.,
vol. 54, no. 3, pp. 237-249, 2005.

D. E. Quevedo, A. Ahlén, and K. H. Johansson, “State estimation over
sensor networks with correlated wireless fading channels,” IEEE Trans.
Autom. Control, vol. 58, no. 3, pp. 581-593, Mar. 2013.

A.S.Leong, S. Dey, G. N. Nair, and P. Sharma, “Power allocation for out-
age minimization in state estimation over fading channels,” IEEE Trans.
Signal Process., vol. 59, no. 7, pp. 3382-3397, Jul. 2011.

K. Gatsis, A. Ribeiro, and G. J. Pappas, “Optimal power management in
wireless control systems,” IEEE Trans. Autom. Control, vol. 59, no. 6,
pp. 1495-1510, Jun. 2014.

M. Nourian, A. S. Leong, and S. Dey, “Optimal energy allocation for
Kalman filtering over packet dropping links with imperfect acknowledg-
ments and energy harvesting constraints,” IEEE Trans. Autom. Control,
vol. 59, no. 8, pp. 2128-2143, Aug. 2014.

B. Hajek, K. Mitzel, and S. Yang, “Paging and registration in cellular
networks: Jointly optimal policies and an iterative algorithm,” /IEEE Trans.
Inf. Theory, vol. 54, no. 2, pp. 608-622, Feb. 2008.

J. Chakravorty and A. Mahajan, “Distortion-transmission trade-off in real-
time transmission of Markov sources,” CoRR, vol. abs/1412.3199, 2014.
[Online]. Available: http://arxiv.org/abs/1412.3199

M. FE. Huber, “Optimal pruning for multi-step sensor scheduling,” IEEE
Trans. Autom. Control, vol. 57, no. 5, pp. 1338-1343, May 2012.

D. Shi and T. Chen, “Optimal periodic scheduling of sensor networks:
A branch and bound approach,” Syst. Control Lett., vol. 62, no. 9,
pp. 732-738, 2013.

S. Liu, M. Fardad, P. K. Varshney, and E. Masazade, “Optimal periodic
sensor scheduling in networks of dynamical systems,” IEEE Trans. Signal
Process., vol. 62, no. 12, pp. 3055-3068, Jun. 2014.

[34] A. Nayyar, “Sequential decision making in decentralized systems,” Ph.D.
dissertation, University of California, Berkeley, CA, USA, 2011.

[35] M. Darnel, Theory of Lattice-Ordered Groups. New York, NY, USA:
Marcel Dekker, 1995, vol. 187.

[36] P.Billingsley, Convergence of Probability Measures. New York, NY, USA:
Wiley, 1999.

[37] M. Schal, “Average optimality in dynamic programming with general state
space,” Math. Oper. Res., vol. 18, no. 1, pp. 163172, 1993.

[38] E. A. Feinberg, P. O. Kasyanov, and N. V. Zadoianchuk, “Average cost
Markov decision processes with weakly continuous transition probabili-
ties,” Math. Oper. Res., vol. 37, no. 4, pp. 591-607, 2012.

[39] O. Hernandez-Lerma and J. B. Lasserre, Discrete-time Markov Control
Processes: Basic Optimality Criteria, vol. 30. New York, NY, USA:
Springer, 1996.

[40] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol II.
Belmont, MA, USA: Athena Scientific, 2007.

[41] L.I. Sennott, Stochastic Dynamic Programming and the Control of Queue-
ing Systems. New York, NY, USA: Wiley, 1999, vol. 504.

[42] H. Yu and D. P. Bertsekas, “Discretized approximations for POMDP
with average cost,” in Proc. 20th Conf. Uncertainty Artif. Intell., 2004,
pp. 619-627.

[43] H. Yu, “Approximate solution methods for partially observable Markov
and semi-Markov decision processes,” Ph.D. dissertation, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2006.

[44] 1. C. Spall, Introduction to Stochastic Search and Optimization: Estima-
tion, Simulation, and Control. New York, NY, USA: Wiley, 2003, vol. 65.

[45] M. L. Straf, “Weak convergence of stochastic processes with several pa-
rameters,” in Proceedings of the Sixth Berkeley Symposium on Mathemat-
ical Statistics and Probability, Volume 2: Probability Theory. Berkeley,
CA, USA: Univ. California Press, 1972, pp. 187-221.

[46] M. Yan, Introduction to Topology: Theory and Applications. Beijing,
China: Higher Education Press, 2010.

[47] K. Lange, “Borel sets of probability measures,” Pacific J. Math., vol. 48,
pp. 141-161, 1973.

[48] E. A. Feinberg, P. O. Kasyanov, and N. V. Zadoianchuk, “Fatou’s lemma
for weakly converging probabilities,” Theory Probability Appl., vol. 58,
no. 4, pp. 683-689, 2014.

[49] O. Hernandez-Lerma and J. B. Lasserre, “Fatou’s lemma and Lebesgue’s
convergence theorem for measures,” Int. J. Stochastic Anal., vol. 13,no. 2,
pp. 137-146, 2000.

Xiaoqgiang Ren received the B.E. degree from
the Department of Control Science and Engi-
neering, Zhejiang University, Hangzhou, China,
in 2012, and the Ph.D. degree from the Depart-
ment of Electronic and Computer Engineering,
Hong Kong University of Science and Technol-
ogy, Kowloon, Hong Kong, in 2016.

From September to November 2016, he was
a Research Associate with the Department of
Electronic and Computer Engineering, Hong
Kong University of Science and Technology. He
is currently a Research Fellow with the School of Electrical and Elec-
tronic Engineering, Nanyang Technological University, Singapore. His re-
search interests include sequential detection, security of cyber-physical
systems, and networked control and estimation.

Junfeng Wu received the B.Eng. degree from
the Department of Automatic Control, Zhejiang
University, Hangzhou, China, in 2009 and the
Ph.D. degree in electrical and computer engi-
neering from the Hong Kong University of Sci-
ence and Technology, Kowloon, Hong Kong, in
2013.

From September to December 2013, he
was a Research Associate with the Department
of Electronic and Computer Engineering, Hong
Kong University of Science and Technology. He
is currently a Postdoctoral Researcher with Autonomic Complex Com-
munication Networks, Signals and Systems Linnaeus Center, School
of Electrical Engineering, KTH Royal Institute of Technology, Stockholm,
Sweden. His research interests include networked control systems, state
estimation, and wireless sensor networks, multiagent systems.

Dr. Wu received the Guan Zhao-Zhi Best Paper Award at the 34th
Chinese Control Conference in 2015. He was selected to the national
“1000-Youth Talent Program” of China in 2016.



100 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 1, JANUARY 2018

Karl Henrik Johansson (F'xx) received the
M.Sc. and Ph.D. degrees in electrical engineer-
ing from Lund University, Lund, Sweden.

He is the Director of the Stockholm Strategic
Research Area ICT The Next Generation and a
Professor with the School of Electrical Engineer-

b ing, KTH Royal Institute of Technology, Stock-

s holm, Sweden. He has held visiting positions

at University of California, Berkeley, California

‘ I'A Institute of Technology, Nanyang Technological

University, Hong Kong University of Science and

Technology Institute of Advanced Studies, and Norwegian University of

Science and Technology. His research interests include networked con-

trol systems, cyber-physical systems, and applications in transportation,
energy, and automation.

Dr. Johansson is a member of the IEEE Control Systems Society
Board of Governors and the European Control Association Council. He
has received several best paper awards and other distinctions, including
a ten-year Wallenberg Scholar Grant, a Senior Researcher Position with
the Swedish Research Council, the Future Research Leader Award from
the Swedish Foundation for Strategic Research, and the triennial Young
Author Prize from the International Federation of Automatic Control. He
is the IEEE Distinguished Lecturer.

Guodong Shi (M'15) received the Ph.D. degree
in systems theory from the Academy of Mathe-
matics and Systems Science, Chinese Academy
of Sciences, Beijing, China, in July 2010.

From August 2010 to April 2014, he was
a Postdoctoral Researcher with the Autonomic
Complex Communication Networks, Signals and
Systems Linnaeus Centre, KTH Royal Institute
of Technology, Stockholm, Sweden. Since May
2014, he has been with the Research School of
Engineering, The Australian National University,
Canberra, Australia, where he is currently a Senior Lecturer and Future
Engineering Research Leadership Fellow. His current research interests
include distributed control systems, quantum networking and decisions,
and social opinion dynamics.

Ling Shi received the B.S. degree in electri-
cal and electronic engineering from Hong Kong
University of Science and Technology, Kowloon,
Hong Kong, in 2002, and the Ph.D. degree in
control and dynamical systems from the Califor-
nia Institute of Technology, Pasadena, CA, USA,
in 2008.

He is currently an Associate Professor with
the Department of Electronic and Computer
Engineering, Hong Kong University of Science
and Technology. His research interests include
cyber-physical systems security, networked control systems, sensor
scheduling, and event-based state estimation.

Dr. Shi has been serving as a Subject Editor for the International
Journal of Robust and Nonlinear Control from March 2015, an Associate
Editor for the IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS
from July 2016, and an Associate Editor for the IEEE CONTROL SYSTEMS
LETTERS from February 2017. He also served as an Associate Editor
for a special issue on Secure Control of Cyber Physical Systems in the
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS in 2015-2017.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


