
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014 1147
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Abstract—Optimal sensor scheduling with applications to net-
worked estimation and control systems is considered. We model
sensor measurement and transmission instances using jumps be-
tween states of a continuous-time Markov chain. We introduce a
cost function for this Markov chain as the summation of terms
depending on the average sampling frequencies of the subsystems
and the effort needed for changing the parameters of the under-
lying Markov chain. By minimizing this cost function through ex-
tending Brockett’s recent approach to optimal control of Markov
chains, we extract an optimal scheduling policy to fairly allocate
the network resources among the control loops.We study the statis-
tical properties of this scheduling policy in order to compute upper
bounds for the closed-loop performance of the networked system,
where several decoupled scalar subsystems are connected to their
corresponding estimator or controller through a shared communi-
cation medium. We generalize the estimation results to observable
subsystems of arbitrary order. Finally, we illustrate the developed
results numerically on a networked system composed of several de-
coupled water tanks.

Index Terms—Markov processes, networked control and esti-
mation, sensor networks, sensor scheduling, stochastic optimal
control.

I. INTRODUCTION

A. Motivation

E MERGING large-scale control applications in smart
infrastructures [2], intelligent transportation systems

[3], aerospace systems [4], and power grids [5], are typically
implemented over a shared communication medium. Fig. 1
illustrates an example of such a networked system, where
decoupled subsystems are connected to their subcontrollers
over a wireless communication network. A set of sensors in
each subsystem sample its state and transmit the measurements
over the wireless network to the corresponding subcontroller.
Then, the subcontroller calculates an actuation signal (based on
the transmitted observation history) and directly applies it to
the subsystem. Unfortunately, traditional digital control theory
mostly results in conservative networked controllers because
the available methods often assume that the sampling is done
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periodically with a fixed rate [6], [7]. When utilizing these
periodic sampling methods, the network manager should allo-
cate communication instances (according to the fixed sampling
rates) to each control loop considering the worst-case possible
scenario, that is, the maximum number of active control loops.
In a large control system with thousands of control loops,
fixed scheduling of communication instances imposes major
constraints because network resources are allocated even if
a particular control loop is not active at the moment. This
restriction is more evident in ad-hoc networked control systems
where many control loops may join or leave the network or
switch between active and inactive states. Therefore, we need
a scheduling method to set the sampling rates of the individual
control loops adaptively according to their requirements and
the overall network resources. We address this problem in this
paper by introducing an optimal stochastic sensor scheduling
scheme.

B. Related Studies

In networked control systems, communication resources
need to be efficiently shared between multiple control loops in
order to guarantee a good closed-loop performance. Despite
that communication resources in large networks almost always
are varying over time due to the need from the individual users
and physical communication constraints, the early networked
control system literature focused on situations with fixed
communication constraints; e.g., bit-rate constraints [8]–[11]
and packet loss [12]–[15]. Only recently, some studies have
targeted the problem of integrated resource allocation and
feedback control; e.g., [16]–[21].
The problem of sharing a common communication medium

or processing unit between several users is a well-known
problem in computer science, wireless communication, and
networked control [22]–[25]. For instance, the authors in [26]
proposed a scheduler to allocate time slots between several
users over a long horizon. In that scheduler, the designer must
first manually assign shares (of a communication medium or
processing unit) that an individual user should receive. Then,
each user achieves its pre-assigned share by means of proba-
bilistic or deterministic algorithms [26], [27]. The authors in
[28], [29] proved that implementing the task with the earliest
deadline achieves the optimum latency in case of both syn-
chronous and asynchronous job arrivals. In [30], a scheduling
policy based on static priority assignment to the tasks was
introduced. Many studies in communication literature have
also considered the problem of developing protocols in order
to avoid the interference between several information sources
when using a common communication medium. Examples of
such protocols are both time-division and frequency-division
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multiple access [31], [32]. Contrary to all these studies, in
this paper, we automatically determine the communication
instances (and, equivalently, the sampling rates) of the sub-
systems in a networked system based on the number of active
control loops at any given moment. We use a continuous-time
Markov chain to model the optimal scheduling policy.
Markov chains are very convenient tools in control and com-

munication [33], [34]. Markov jump linear systems with under-
lying parameters switching according to a given Markov chain
has been studied in the control literature [35]–[38]. The problem
of controlled Markov chains has always been actively pursued
[39]–[42]. In a recent study by Brockett [43], an explicit solution
to the problem of optimal control of observable continuous-time
Markov chains for a class of quadratic cost functions was pre-
sented. In that paper, the underlying continuous-time Markov
chain was described using the so-called unit vector representa-
tion [43], [44]. Then, the finite horizon problem and its gener-
alization to infinite horizon cost functions were considered. We
extend that result to derive the optimal scheduling policy in this
paper.
In the study [45], the authors developed a stochastic sensor

scheduling policy using Markov chains. Contrary to this paper,
they considered a discrete-time Markov chain to get a numeri-
cally tractable algorithm for optimal sensor scheduling. The al-
gorithm in [45] uses one of the sensors at each time step while
here, the continuous-time Markov chain can rest in one of its
states to avoid sampling any of the sensors. Furthermore, the
cost function in [45] was not written explicitly in terms of the
Markov chain parameters, but instead it was based on the net-
worked system performance when using a Markov chain for
sampling the sensors. However, our proposed scheduling policy
results in a separation between designing the Markov chain pa-
rameters and networked system, which enables us to describe
the cost function needed for deriving our optimal sensor sched-
uling policy only in terms of the Markov chain parameters.

C. Main Contributions

The objective of the paper is to find a dynamic scheduling
policy to fairly allocate the network resources between the sub-
systems in a networked system such as the one in Fig. 1. Specif-
ically, we employ a continuous-time Markov chain for sched-
uling the sensor measurement and transmission instances. We
use time instances of the jumps between states of this contin-
uous-time Markov chain to model the sampling instances; i.e.,
whenever there is a jump from an idle state in the Markov chain
to a state that represent a subsystem in the networked system,
we sample that particular subsystem and transmit its state mea-
surement across the shared communication network to the cor-
responding subcontroller. Fig. 2 illustrates the flow diagram of
the proposed Markov chain. Every time that a jump from the
idle node to node , , occurs in this contin-
uous-time Markov chain, we sample subsystem and send its
state measurement to subcontroller . The idle state helps to
tune the sampling rates of the subsystems independently. As an
approximation of the wireless communication network, we as-
sume that the sampling and communication are instantaneous;
i.e., the sampling and transmission delays are negligible in com-
parison to the subsystems response time. We still want to limit

Fig. 1. Example of a networked control system.

Fig. 2. Flow diagram of the continuous-time Markov chain used for modeling
the proposed stochastic scheduling policy.

the amount of communication per time unit to reduce the energy
consumption and network resources.
We mathematically model the described continuous-time

Markov chain using unit vector representation [43], [44]. We
introduce a cost function that is a combination of the average
sampling frequencies of the subsystems (i.e., the average
frequency of the jumps between the idle state and the rest
of the states in the Markov chain) and the effort needed for
changing the scheduling policy (i.e., changing the underlying
Markov chain parameters). We expand the results presented
in [43] to minimize the cost function over both finite and
infinite horizons. Doing so, we find an explicit minimizer of
the cost function and develop the optimal scheduling policy
accordingly. This policy fairly allocates sampling instances
among the sensors in the networked system. The proposed
optimal scheduling policy works particularly well for ad-hoc
sensor networks since we can easily accommodate for the
changes in the network configuration by adding an extra state
to the Markov chain (and, in turn, by adding an extra term
to the cost function) whenever a new sensor becomes active
and by removing a state from the Markov chain (and, in turn,
by removing the corresponding term from the cost function)
whenever a sensor becomes inactive. The idea of dynamic peer
participation (or churn) in peer-to-peer networks have been
extensively studied in the communication literature [46], [47].
However, not much attention has been paid to this problem for
networked control and estimation.
Later, we focus on networked estimation as an application of

the proposed stochastic sensor scheduling policy. We start by
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studying a networked system composed of several scalar sub-
systems and calculate an explicit upper bound for the estimation
error variance as a function of the statistics of the measurement
noise and the scheduling policy. The statistics of the scheduling
policy are implicitly dependent on the cost function. Hence, we
can achieve the required level of performance by finely tuning
the cost function design parameters.We generalize these estima-
tion results to higher-order subsystems when noisy state mea-
surements of the subsystems are available. In the case where
noisy output measurements of the subsystems are available, we
derive an estimator based on the discrete-time Kalman filter and
calculate an upper bound for the variance of its error given a spe-
cific sequence of sampling instances. Lastly, we consider net-
worked control as an application of the proposed sensor sched-
uling policy. We assume that the networked control system is
composed of scalar subsystems that are in feedback intercon-
nection with impulsive controllers (i.e., controllers that ideally
reset the state of the system whenever a new measurement ar-
rives). We find an upper bound for the closed-loop performance
of the subsystems as a function of the statistics of the measure-
ment noise and the scheduling policy. We generalize this result
to pulse and exponential controllers.

D. Paper Outline

The rest of the paper is organized as follows. In Section II, we
introduce the optimal stochastic scheduling policy and calculate
its statistics.We apply the proposed stochastic scheduling policy
to networked estimation and control systems in Sections III and
IV, respectively. In Section V, we illustrate the developed re-
sults numerically on a networked system composed of several
decoupled water tanks. Finally, we present the conclusions and
directions for future research in Section VI.

E. Notation

The sets of integer and real numbers are denoted by and
, respectively. We use and to denote the sets of odd and
even numbers. For any and , we define

and ,
respectively. We use calligraphic letters, such as and , to
denote any other set.
We use capital roman letters, such as and , to denote

matrices. For any matrix , denotes its entry in the -th row
and the -th column.
Vector denotes a column vector (where its size will be de-

fined in the text) with all entries equal zero except its -th entry
which is equal to one. For any vector , we define the
entry-wise operator .

II. STOCHASTIC SENSOR SCHEDULING

In this section, we develop an optimal stochastic scheduling
policy for networked systems, where several sensors are con-
nected to the corresponding controllers or estimators over a
shared communication medium. Let us start by modeling the
stochastic scheduling policy using continuous-time Markov
chains.

A. Sensor Scheduling Using Continuous-Time Markov Chains

We employ continuous-time Markov chains to model the
sampling instances of the subsystems. To be specific, every
time that a jump from the idle node to node , ,
occurs in the continuous-time Markov chain described by the
schematic flow diagram in Fig. 2, we sample subsystem . We
use unit vector representation to mathematically model this
continuous-time Markov chain [43], [44].
We define the set where
. TheMarkov chain state takes value from , which
is the reason behind naming this representation as the unit vector
representation. We associate nodes , and in the
Markov chain flow diagram with unit vectors ,
and , respectively. Following the same approach as in [44],
we can model the Markov chain in Fig. 2 by the Itô differential
equation

(1)

where and , , are
Poisson counter processes1 with rates and , respec-
tively. These Poisson counters determine the rates of jump from
to , and vice versa. In addition, we have

and , . Let us define .
Now, we can rearrange the Itô differential equation in (1) as

(2)

where , , is a Poisson counter process
with rate denoted as

,
(3)

and

,

. (4)

The Poisson counters , , determine
the rates of jump between the states of the Markov chain in
(2). Now, noting that this Markov chain models the sampling
instances , , using the jumps that occur in its
state , we can control the average sampling frequencies of
the sensors through the rates , . Similar to [43],
we assume that we can control the rates as

(5)

1Recall that a Poisson counter is a stochastic process with indepen-
dent and stationary increments that starts from zero . Additionally,

for
any and . In the limit, when replacing with
and with , we get

, , and for .
For a detailed discussion on Poisson counters, see [44], [48].
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and thereby control the average sampling frequencies.2 In (5),
, , , are constant parameters that determine

the sensitivity of Poisson counters’ jump rates with respect to
control inputs for . Control signals ,

, are chosen in order to minimize the cost function

(6)
where , , are design parameters. Note
that the cost function (6) consists of two types of terms:

denotes the average frequency of
the jumps from to in the Markov chain (i.e., the average
sampling frequency of sensor ) and
penalizes the control effort in regulating this frequency. If the
latter term is removed, the problem would become ill-posed
as the optimal rates then is zero and .
Consequently, the average sampling frequencies of the sensors
vanish.
Considering the identity

, we can rewrite the cost function in
(6) as

(7)
where and is a matrix whose
entries are defined as if and
otherwise. In the rest of this paper, we use the notation ,

, to denote -th row ofmatrix . In the next subsection, we
find a policy that minimizes (7) with respect to the rate control
law (5) and subject to the Markov chain dynamics (2). Doing so,
we develop an optimal scheduling policy which fairly allocates
the network resources (i.e., the sampling instances) between the
devices in a sensor network.

B. Optimal Sensor Scheduling

We start by minimizing the finite horizon version of the cost
function in (6). The proof of the following theorem is a slight
generalization of Brockett’s result in [43] but follows the same
line of reasoning.3

Theorem 2.1: Consider a continuous-time Markov chain
evolving on , generated by (2). Let
us define matrices and ,
where for all , , and are introduced in (4)
and (5), respectively. Assume that, for given and

, the differential equation

(8)

2Notice that the number of control inputs in (5) does not have to be the same
as the number of Poisson counters for the proofs in Section II-B to hold. How-
ever, we decided to follow the convention of [43] because we use these results
in Sections III and IV to optimally schedule sensors in a networked system in
which we can control all the rates directly.
3The statement makes use of the concept of infinitesimal generators. See [49,

pp. 124] for definition and discussion.

has a solution on such that, for each ,
the operator is an infinites-
imal generator. Then, the control law

(9)

minimizes

Furthermore, .
Proof: See Appendix A.

Notice that for some parameter settings of the cost function,
the operator may not be an
infinitesimal generator. A future avenue of research could be to
characterize these cases and to present conditions for avoiding
them.
Based on Theorem 2.1, we are able to solve the following

infinite-horizon version of the optimal scheduling policy. In the
infinite-horizon case, we need to assume that the parameters of
the Markov chain and the cost function are time invariant.
Corollary 2.2: Consider a continuous-time Markov chain

evolving on , generated by (2). Let
us define matrices and ,
where for all , , and are introduced in (4)
and (5), respectively. Assume that, for a given , the
nonlinear equation

(10)
has a solution such that, for all , the
operator is an infinitesimal
generator. Then, the control law

(11)

minimizes

Furthermore, we have .
Proof: See Appendix B.

Corollary 2.2 introduces an optimal scheduling policy to
fairly allocate measurement transmissions among sensors
according to the cost function in (6). By changing the design
parameters , , we can tune the average sampling
frequencies of the subsystems according to their performance
requirements. In addition, by adding an extra term to the cost
function whenever a new subsystem is introduced or by re-
moving a term whenever a subsystem is detached, we can easily
accommodate for dynamic changes in an ad-hoc network. In the
remainder of this section, we analyze the asymptotic properties
of the optimal scheduling policy in Corollary 2.2.
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C. Average Sampling Frequencies

In this subsection, we study the relationship between the
Markov chain parameters and the effective sampling frequen-
cies of the subsystems. Recalling from the problem formulation,

denotes the sequence of time instances that the state
of the Markov chain in (1) jumps from the idle node to
and hence, subsystem is sampled. Mathematically, we define
these time instances as

and

for all . Furthermore, we define the sequence of random
variables such that for all .
These random variables denote the time interval between any
two successive sampling instances of sensor . We make the as-
sumption that the first and second samples happen within finite
time almost surely:
Assumption 2.3: and .
This assumption is not restrictive. Note that it is trivially sat-

isfied if the number of subsystems is finite, the Markov chain is
irreducible, and the rates of Poisson processes are finite and uni-
formly bounded away from zero. Let us present the following
simple lemma.
Lemma 2.4: are identically and independently dis-

tributed random variables.
Proof: See [1] or [50].

Lemma 2.4 implies that is not a function of (and,
therefore, it ensures several of the expressions, that are pre-
sented later, are indeed well-defined). Now, we are ready to state
our main result concerning the average sampling frequency of
the sensors denoted by

Theorem 2.5: Let the sequence of sampling instances
satisfy Assumption 2.3. Define using

(12)
where

If exists, the average sampling frequency of sensor
is equal to

Proof: See Appendix C.

Theorem 2.5 allows us to calculate the average sampling fre-
quencies of the subsystems. We use these average sampling
frequencies to bound the closed-loop performance of the net-
worked system when the proposed optimal scheduling policy is
implemented.

III. APPLICATIONS TO NETWORKED ESTIMATION

In this section, we study networked estimation based on the
proposed stochastic scheduling policy. Let us start by presenting
the system model and the estimator. As a starting point, we
introduce a networked system that is composed of scalar de-
coupled subsystems. In Sections III-C and III-D, we generalize
some of the results to decoupled higher-order subsystems.

A. System Model and Estimator

Consider the networked system illustrated in Fig. 1, where
subsystem , , is a scalar stochastic system described
by

(13)

with given model parameters , . Note that all sub-
systems are stable. The stochastic processes ,

, are statistically independent Wiener processes with zero
mean. Estimator receives state measurements at time
instances , such that

(14)

where denotes measurement noise sequence, which is
composed of independently and identically distributed Gaussian
random variables with zero mean and specified standard devia-
tion . Let each subsystem adopt a simple estimator of the form

(15)

for . We define the estimation error
. Estimator only has access to the state measure-

ments of subsystem at specific time instances but is
supposed to reconstruct the signal at any time . Notice
that this estimator is not optimal. In Section III-D, we will con-
sider estimators based on Kalman filtering instead.

B. Performance Analysis: Scalar Subsystems

In this subsection, we present an upper bound for the per-
formance of the introduced networked estimator. The following
theorem presents upper bounds for the estimation error variance
for the cases where the measurement noise is small or large,
respectively.
Theorem 3.1: Assume that subsystem , , is

described by (13) and let the sequence of sampling instances
satisfy Assumption 2.3. Then, if ,

the estimation error variance is bounded by

(16)

otherwise, if

(17)
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Proof: See Appendix D.
Note that the upper bound (16) is tighter than (17) when the

equality holds. In the next two subsections,
we generalize these results to higher-order subsystems.

C. Performance Analysis: Higher-Order Subsystems With
Noisy State Measurement

Let us assume that subsystem , , is described by

(18)

where is its state with and is its
model matrix satisfying where denotes the
largest eigenvalue of a matrix. In addition, ,

, is a tuple of statistically independent Wiener processes
with zero mean. Estimator receives noisy state-measurements

at time instances , such that

(19)

where denotes the measurement noise and is composed
of independently and identically distributed Gaussian random
variables with and . We define
the estimation error as , where for all

, the state estimate is derived by

The next theorem presents an upper bound for the variance
of this estimation error. For scalar subsystems, the introduced
upper bound in (20) is equivalent to the upper bound in (17).
Theorem 3.2: Assume that subsystem , , is

described by (18) and let the sequence of sampling instances
satisfy Assumption 2.3. Then, the estimation error

variance is bounded by

(20)
Proof: See Appendix E.

It is possible to refine the upper bound (20) for the case where
, following a sim-

ilar argument as in the proof of Theorem 3.1.

D. Performance Analysis: Higher-Order Subsystems With
Noisy Output Measurement

In this subsection, we assume that estimator , ,
receives noisy output measurements at time instances

, such that

(21)

where (for a given output vector dimension
such that ) and the measurement noise is a

sequence of independently and identically distributed Gaussian
random variables with and . For
any sequence of sampling instances , we can discretize
the stochastic continuous-time system in (18) as

where , , and the sequence
is chosen such that

In addition, is a sequence of independently and iden-
tically distributed Gaussian random variables with zero mean
and unity variance. It is evident that . We
run a discrete-time Kalman filter over these output measure-
ments to calculate the state estimates with error co-
variance matrix . For
inter-sample times , we use a simple prediction
filter

(22)

Let us define the estimation error as . The
next theorem present an upper bound for the estimation error
variance.
Theorem 3.3: Assume that subsystem , , is de-

scribed by (18). Then, the estimator given by (22) is an optimal
mean square error estimator and for any fixed sequence of sam-
pling instances , the estimation error is upper-bounded
by

(23)

Proof: See Appendix F.
Note that the upper bound (23) is conditioned on the

sampling intervals. Unfortunately, it is difficult to calculate
as a function of average sampling frequencies,

which makes it hard to eliminate the conditional expectation.
However, for the case where , the upper bound (20)
would also hold for the estimator in (22). This is indeed true
because (22) is an optimal mean square error estimator.

IV. APPLICATIONS TO NETWORKED CONTROL

In this section, we study networked control as an application
of the proposed stochastic scheduling policy. Let us start by pre-
senting the system model and the control law. We first present
the results for impulsive controllers in Section IV-B. However,
in Sections IV-C and IV-D, we generalize these results to pulse
and exponential controllers.

A. System Model and Controller

Consider the stochastic control system

(24)
where and , , are the state and
control input of subsystem . We assume that each subsystem
is in feedback interconnection with a subcontroller governed by
the control law

(25)
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where for all and
is chosen appropriately to yield a causal controller (i.e.,
for all ). For instance, using , where is

the impulse function (see [51, p. 1]), results in an impulsive con-
troller, which simply resets the state of its corresponding sub-
system to a neighborhood of the origin characterized by the am-
plitude of the measurement noise whenever a new measurement
is received. Without loss of generality, we assume that
because the influence of the initial condition is only visible until
the first sampling instance , which is guaranteed to happen in
a finite time thanks to Assumption 2.3.

B. Performance Analysis: Impulsive Controllers

In this subsection, we present an upper bound for the
closed-loop performance of subsystems described in (24) and
controlled by an impulsive controller. In this case, for all

, the closed-loop subsystem is governed by

The next theorem presents an upper bound for the performance
of this closed-loop system which corresponds to the estimation
error upper bound presented in Theorem 3.1.
Theorem 4.1: Assume that subsystem , , is

described by (24) and let the sequence of sampling instances
satisfy Assumption 2.3. Then, if ,

the closed-loop performance of subsystem is bounded by

(26)

otherwise

(27)

Proof: Similar to the proof of Theorem 3.1. See [50] for
details.
Note that the closed-loop performance, measured as the vari-

ance of the plant state, is upper bounded by the plant and mea-
surement noise variance. In the next two subsections, we gener-
alize this result to pulse and exponential controllers.

C. Performance Analysis: Pulse Controllers

In this subsection, we use a narrow pulse function to approxi-
mate the behavior of the impulse function. Let us pick a constant

. For , we use the control law

,

(28)
whenever , and

otherwise. This controller converges to the impulsive controller
as tends to zero.
Theorem 4.2: Assume that subsystem , , is

described by (24) and let the sequence of sampling instances

satisfy Assumption 2.3. Then, the closed-loop perfor-
mance of subsystem is bounded by

(29)
Proof: See Appendix G.

Note that if tends to zero in (45), we would recover the
same upper bound as in the case of the impulsive controller
(27). This is true since assuming that
the probability distribution of hitting-times of the underlying
Markov chain is atom-less at the origin, which is a reasonable
assumption when the Poisson jump rates are finite.

D. Performance Analysis: Exponential Controllers

In this subsection, we use an exponential function to approx-
imate the impulse function. Let us pick a constant

. For all , we use the control law

(30)

This controller converges to the impulsive controller as goes
to infinity.
Theorem 4.3: Assume that subsystem , , is

described by (24) and let the sequence of sampling instances
satisfy Assumption 2.3. Then, the closed-loop perfor-

mance of subsystem is bounded by

(31)
Proof: See Appendix H.

Note that if goes to infinity, we would recover the same
upper bound as in the case of the impulsive controller since

assuming that the probability distri-
bution of hitting-times of the Markov chain is atom-less at the
origin. Exponential shape of the control signal is common in bi-
ological systems such as in neurological control system [52].

V. NUMERICAL EXAMPLE

In this section, we demonstrate the developed results on a net-
worked system composed of decoupled water tanks illustrated
in Fig. 3 (left), where each tank is linearized about its stationary
water level as

In this model, is the cross-section of water tank , is
the cross-section of its outlet hole, and is the acceleration of
gravity. Furthermore, and denote the deviation of the
tank’s water level from its stationary point and the control input,
respectively. Let the initial condition as we assume that
the tank’s water level start at its stationary level. However, due
to factors such as input flow fluctuations, the water level drifts
away from zero. In the next subsection, we start by numerically
demonstrating the estimation results for water tanks.
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Fig. 3. Example of a networked system composed of decoupled scalar subsystems (left) and multivariable subsystems (right).

A. Estimation: Scalar Subsystem

Let us fix the parameters , ,
, , , and .

For these physical parameters, the water tanks can be described
by (13) with , , and . We
sample these subsystems using the Markov chain in (2) with

. We assume that for all
, where and for , 2. We

are interested in finding , , in order to minimize
the cost function

Using Corollary 2.2, we get

Fig. 4 (upper-left) illustrates an example of the contin-
uous-time Markov chain state and the sampling instances

of subsystems , 2. Using (42), we get the
average sampling frequencies and .
Fig. 4 (upper-right) shows the sampling instances when using a
periodic scheduling policy with the same sampling frequencies
as the average sampling frequencies of the optimal scheduling
policy. Note that the optimal scheduling policy allocates the
sampling instances according to the jumps between the states
of the Markov chain.
We can tune the average sampling frequencies of the sub-

systems by changing the design parameters , .
Table I illustrates the average sampling frequencies of the sub-
systems versus different choices of the design parameters ,

. It is evident that when increasing (decreasing)
for a given , the average sampling frequency of subsystem
decreases (increases).
Let us assume that estimator has access to state measure-

ments of subsystem according to (14) with measurement noise
variance for , 2. Fig. 4 (lower-left) illustrates
the estimation error variance for 1000 Monte Carlo
simulations when using the optimal scheduling policy. The hor-
izontal lines represent the theoretical upper bounds derived in
Theorem 3.1; i.e., and .
Note that the approximations of the estimation error variances
would eventually converge to the exact expectation value as the

number of simulations goes to infinity, and that the theoretical
bounds are relatively close. Fig. 4 (lower-right) illustrates the
estimation error variance for 1000 Monte Carlo sim-
ulations when using the periodic scheduling policy that is por-
trayed in Fig. 4 (upper-right). Note that the saw-tooth behavior
is due to the fact that the sampling instances are fixed in advance
and they are identical for each Monte Carlo simulation.

B. Estimation: Higher-Order Subsystems With Noisy State
Measurement

Let us focus on a networked system composed of only two
subsystems where each subsystem is a serial interconnection
of two water tanks. Fig. 3 (right) illustrates such a networked
system. In this case, subsystem can be described by (18) with

where the parameters marked with T and B belong to the top
and the bottom tanks, respectively. Let us fix parameters

, ,
, , and

.
Let us assume that estimator has access to the noisy

state measurements of subsystem (with noise variance
) at sampling instances

enforced by the optimal scheduling policy described in
Section V-A. Fig. 5 shows the estimation error variance

. The horizontal lines in this figure show
the theoretical bounds calculated in Theorem 3.2; i.e.,

and . In com-
parison with the scalar case in Fig. 4 (lower-left), note that the
bounds in Fig. 5 are less tight. The reason for this is that the
dimension of the subsystems are now twice the previous case.

C. Estimation: Higher-Order Subsystems With Noisy Output
Measurement

In this subsection, we use output measurements
for all , where for

, 2. We use the Kalman filter based scheme introduced
in Section III-D for estimating the state of each subsystem.
Fig. 6 illustrates the estimation error variance . As
mentioned earlier, it is difficult to calculate as
a function of the average sampling frequencies and hence, we
do not have any theoretical results for comparison. Note that
the upper bound presented in Theorem 3.3 is only valid for a
fixed sequence of sampling instances. This problem can be an
interesting direction for future research.
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Fig. 4. Example of the state of the continuous-time Markov chain used in the optimal scheduling policy and its corresponding sampling instances for both sub-
systems (upper-left). Sampling instances for both subsystems when using a periodic scheduling policy (upper-right). Estimation error for 1000 Monte
Carlo simulations when using the optimal sampling policy (lower-left) and the periodic sampling policy (lower-right).

TABLE I
EXAMPLE OF AVERAGE SAMPLING FREQUENCIES

Fig. 5. Estimation error for 1000 Monte Carlo simulations and
its comparison to the theoretical results when for , 2.

Fig. 6. Estimation error for 1000 Monte Carlo simulations when
using Kalman-filter based estimator.

D. Estimation: Ad-hoc Sensor Network

As discussed earlier, an advantage of using the introduced op-
timal scheduling policy is that we can accommodate for changes
in ad-hoc networked systems. To portray this property, let us
consider a networked system that can admit up to iden-
tical subsystems described by (13) with and
for . When all the subsystems are active, we sample
them using the Markov chain in (2) with . We
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Fig. 7. Estimation error for 1000 Monte Carlo simulations over an ad-hoc networked system with the optimal sampling policy (left) and the periodic
sampling policy (right).

assume that for , where
and for . In this case, we

are also interested in calculating an optimal scheduling policy
that minimizes

(32)
However, when some of the subsystems are inactive, we simply
remove their corresponding nodes from the Markov chain flow
diagram in Fig. 2 and set their corresponding terms in (32) equal
to zero. Let us assume that for , only 30 subsystems
are active, for , all 70 subsystems are active, and fi-
nally, for , only 10 subsystems are active. Fig. 7 (left)
and (right) illustrate the estimation error variance for
1000 Monte Carlo simulations when using the optimal sched-
uling policy and the periodic scheduling policy, respectively.
Since in the periodic scheduling policy, we have to fix the sam-
pling instances in advance, we must determine the sampling pe-
riods according to the worst-case scenario (i.e., when the net-
worked system is composed of 70 subsystems). Therefore, when
using the periodic sampling, the networked system is not using
its true potential for and , but the estima-
tion error is fluctuating substantially over the whole time range.
The proposed optimal scheduling policy adapts to the demand
of the system. For instance, as shown in Fig. 7 (left), when sub-
systems 31 and 32 become active for , the overall
sampling frequencies of the subsystems decreases (and, in turn,
the estimation error variance increases), but when they become
inactive again for , the average sampling frequencies
increase (and, in turn, the estimation error variance decreases).
Hence, this example illustrates the dynamic benefits of our pro-
posed stochastic scheduling approach.

E. Controller: Decoupled Scalar Subsystems

In this subsection, we briefly illustrate the networked control
results for subsystems. Let the subsystems be described
by (24) with , , and . Let
us assume that controller has access to state measurements
of subsystem according to (14) with measurement noise vari-
ance for , 2. We use the optimal scheduling
policy derived in Section V-A for assigning sampling instances.

Fig. 8 (left) and (right) illustrate an example of the state and
the control signal for both subsystems when using the impul-
sive and exponential controllers (with ), respectively.
Note that in Fig. 8 (left), the control signal of the impulsive
controller only portrays the energy that is injected to the sub-
system (i.e., the integral of the impulse function) and not its
exact value. Fig. 9 (left) and (right) show the closed-loop per-
formance when using the impulsive and exponential
controllers, respectively. The horizontal lines illustrate the the-
oretical upper bounds derived in Theorem 4.1. Note that the ex-
ponential controller gives a worse performance than the impulse
controller. This is normal as we design the exponentials only as
an approximation of the impulse train.

F. Controller: Coupled Scalar Subsystems

Consider a networked system composed of intercon-
nected subsystems, where subsystem , , can be
described by

with notation for any and
. In this model, , , and respectively

denote the state, the control input, and the exogenous input.
Each subsystem transmits its state measurement over the wire-
less network at instances to its subcontroller. Hence, at
any time , subcontroller has access to the state mea-
surements where recalling from the earlier definitions

. Each subcontroller simply imple-
ment the following decentralized proportional-integral control
law

We sample the subsystems using the Markov chain in (2) with
. We assume that for

, where and for
. Let us consider the following disturbance rejection scenario.

We assume that for , 26, ,
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Fig. 8. Example of state and control of the closed-loop subsystems when using the impulsive controller (left) and the exponential controller with (right).

Fig. 9. Closed-loop performance measure for 1000 Monte Carlo simulations when using the impulsive controller (left) and the exponential controller
(right).

and , where
is the heaviside step function (i.e., for
and , otherwise). Let us denote and

as the first phase and the second phase, respec-
tively. During each phase, we find the infinite horizon optimal
scheduling policy which minimizes

We fix for over the first phase and for
over the second phase. In addition, we fix for , 5
over the first phase and for , 27 over the second phase.
Finally, we set for the rest of the subsystems. This way,
we can ensure that we more frequently sample the subsystems
that are most recently disturbed by a nonzero exogenous input
signal (and the ones that are directly interacting with them).
Fig. 10 (left) and (right) illustrate an example of the system state
and control input when using the described optimal scheduling
policy and the periodic scheduling policy, respectively. For the
periodic scheduling policy, we have fixed the sampling frequen-
cies according to the worst-case scenario (i.e., the average fre-
quencies of the optimal scheduling policy when for all

corresponding to the case where all the subsys-
tems are disturbed). As we expect, for this particular example,
the closed-loop performance is better with the optimal sched-
uling policy than with the periodic scheduling policy. This is

indeed the case because the optimal scheduling policy adapts
the sampling rates of the subsystems according to their perfor-
mance requirements.

VI. CONCLUSION

In this paper, we used a continuous-time Markov chain to
optimally schedule the measurement and transmission time in-
stances in a sensor network. As applications of this optimal
scheduling policy, we studied networked estimation and control
of large-scale system that are composed of several decoupled
scalar stochastic subsystems. We studied the statistical proper-
ties of this scheduling policy to compute bounds on the closed-
loop performance of the networked system. Extensions of the
estimation results to observable subsystems of arbitrary dimen-
sion were also presented. As a future work, we could focus on
obtaining better performance bounds for estimation and control
in networked system as well as combining the estimation and
control results for achieving a reasonable closed-loop perfor-
mance when dealing with observable and controllable subsys-
tems of arbitrary dimension. An interesting extension is also to
consider zero-order hold and other control function for higher-
order subsystems.

APPENDIX A
PROOF OF THEOREM 4.2

We follow a similar reasoning as in [43] to calculate the
optimal Poisson rates. By adding and subtracting the term
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Fig. 10. Example of state and control signal using the optimal sampling policy (left) and the periodic sampling policy (right).

from the right hand-side of the scaled cost
function , we get

(33)
Using the identity

inside (33), we get

(34)
Using Itô’s Lemma [49, p. 49], we know that

which transforms (34) into

Taking expectation over and the Poisson processes
, , we get

(35)

where, for , is -th row of matrix and
. We can rewrite (35) as

(36)

using completion of squares. As there exists a well-defined so-
lution to the differential (8), the first integral in (36) vanishes.
Hence, the optimal control law is given by (9) since this control
law minimizes the last term of (36). Consequently, (36) gives

This completes the proof.
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APPENDIX B
PROOF OF COROLLARY 2.2

Since is bounded (because for
), we get the identity in

(37)

According to Theorem 2.1, in order to minimize (37) for any
fixed , we have

(38)

with the final condition . Defining
, we get

Note that and , , as and are
infinitesimal generators. Hence

(39)

Notice that is an equilibrium of (39), so for
all since . Therefore, we get

, which results in
, since , . As a result,

when goes to infinity, the controller which minimizes (37) is
given by (11). Furthermore, we have

Finally, notice that the condition in the second row
of (10) reduces the number of solutions that satisfy the non-
linear equation in the first row of (10). Removing this condi-
tion, for any is a solution. Notice that all
these parallel solutions result in the same control law because

following the fact that
for all .

APPENDIX C
PROOF OF THEOREM 2.5

Before stating the proof of Theorem 2.5, we need to state the
following useful lemma.
Lemma C.1: Let the sequence of sampling instances

satisfy Assumption 2.3. Then

(40)

where counts the number of
jumps prior to any given time and means that

.
Proof: See [50].

Now, we are ready state the proof of Theorem 2.5. The proof
of equality directly follows from applying
Lemma C.1 in conjunction with that .
Now, we can compute using

(41)
Substituting (11) inside (41), we get

...
...

...

Note that
for , since is a unit vector in

. Therefore, we get (12). Now, noticing that converges
exponentially to a nonzero steady-state value as time goes to
infinity (because otherwise does not exist), we can
expand the expression for the average sampling frequencies of
the sensors as (42), shown at the bottom of the next page, where
the third equality follows again from the fact that is
a unit vector.

APPENDIX D
PROOF OF THEOREM 3.1

Prior to proving this theorem, we should state the following
simple lemma.
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Lemma D.1: Let the function be defined as
with given scalars

and such that . Then,
(a) is a non-decreasing function on its domain;
(b) is a concave function on its domain.
Proof: See [50].

Now, we can prove Theorem 3.1. Using Itô’s Lemma [49, p.
49], for all , we get

with the initial condition . First, let us consider
the case where . Again, using Itô’s Lemma,
we get

and as a result

where . Hence, for all , we
have

Now, using Lemma D.1 (a), it is easy to see that

Note that

(43)

By using Lemma D.1 (b) along with Jensen’s Inequality [49,
p. 320], we can transform (43) into (16). For the case where

, we can similarly derive the upper bound

which results in (17), again using Jensen’s Inequality.

APPENDIX E
PROOF OF THEOREM 3.2

Using Itô’s Lemma, for all , we get

and as a result

with the initial condition . Now,
using the Comparison Lemma [53, p.102], we get

for . Using Lemma D.1 (presented in Appendix
D) and Jensen’s Inequality, we get (20).

APPENDIX F
PROOF OF THEOREM 3.3

First, note that for , the estimator

is an optimal mean square error estimator. This is in fact true
since the estimator has not received any new information over

(42)
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and it should simply predict the state using the best avail-
able estimation . Now, recalling from [54],
we know that

. This completes the first part of the proof. For the rest, note
that following a similar reasoning as in the proof of Theorem
3.2, for all , we get

with the initial condition
, which results in (23)

again using the Comparison Lemma.
APPENDIX G

PROOF OF THEOREM 4.2

To simplify the calculations, we introduce the change of vari-
able for all , where

,

Now, using Itô’s Lemma [49, p. 49], we get

Hence, for all , we get

where the first equality is due to the fact that
because the random process is independent

of and . As a result

(44)

Using Lemma D.1 (b), presented in Appendix D, and Jensen’s
Inequality, we can simplify (44) as

(45)

Note that by evaluating (45) as goes to , we can extract
a difference equations for the closed-loop performance (i.e., an
algebraic equation that relates to for
all ). By solving this difference equation and substituting the
solution into (45), we get

for all , and as a result

This concludes the proof.

APPENDIX H
PROOF OF THEOREM 4.3

Using the same argument as in the proof of Theorem 4.2, we
obtain

for all , and as a result

Similar to the proof of Theorem 4.2, we can simplify this expres-
sion into (31) using Lemma D.1 (b), presented in Appendix D,
and Jensen’s Inequality.
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