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SEPARATED DESIGN OF ENCODER AND CONTROLLER FOR
NETWORKED LINEAR QUADRATIC OPTIMAL CONTROL*

MABEN RABIt, CHITHRUPA RAMESH*, AND KARL H. JOHANSSON®

Abstract. For a networked control system, we consider the problem of encoder and controller
design. We study a discrete-time linear plant with a finite horizon performance cost, comprising
a quadratic function of the states and controls, and an additive communication cost. We study
separation in design of the encoder and controller, along with related closed-loop properties such as
the dual effect and certainty equivalence. The encoder outputs are quantized samples, but our results
also apply to two other formats for encoder outputs: real-valued samples at event-triggered times,
and real-valued samples over additive noise channels. If the controller and encoder are dynamic, then
we show that the performance cost is minimized by a separated design: the controls are updated
at each time instant as per a certainty equivalence law, and the encoder is chosen to minimize an
aggregate quadratic distortion of the estimation error. This separation is shown to hold even though
a dual effect is present in the closed-loop system. We also show that this separated design need not
be optimal when the controller or encoder are to be chosen from within restricted classes.

Key words. networked control, linear quadratic optimal control, separation, dual effect, cer-
tainty equivalence, quantized control
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1. Introduction. We consider discrete-time sequential decision problems for a
control loop that has a communication bottleneck between the sensor and the con-
troller (Figure 1). The design problem is to choose in concert an encoder and a
controller. The encoder maps the sensor’s raw data into a causal sequence of chan-
nel inputs. Depending on the channel model adopted, the encoder performs either
sequential quantization, sampling, or analog companding. The controller maps chan-
nel outputs into a causal sequence of control inputs to the plant. Such two-agent
problems are generally hard because the information pattern is nonclassical, as the
controller has less information than the sensor [45]. This gives scope for the controller
to exploit any dual effect present in the loop, even when the plant is linear [14]. These
two-agent problems are at the simpler end of a range of design problems arising in
networked control systems [11, 3, 21, 1]. Naturally, one seeks formulations of these
design problems as stochastic optimization problems whose solutions are tractable in
some suitable sense.

The classical partially observed linear quadratic Gaussian (LQG) optimal control
problem is a one-agent decision problem [46]. Given a linear, Gauss—Markov plant,
one is asked for a causal controller, as a function of noisy linear measurements of the
state, to minimize a quadratic cost function of states and controls. This problem has a
simple and explicit solution, where the optimal controller “separates” into two policies;
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one to generate a minimum mean-squared error (MMSE) estimate of the state from
the noisy measurements, and the other to control the fully observed Gauss—Markov
process corresponding to the estimate. A networked version of this problem is the
following two-agent LQG optimal control problem [10]. Given a linear Gauss—Markov
plant and a channel model, one is asked for an encoder and controller to minimize
a performance cost which is a sum of a communication cost and a quadratic cost on
states and controls. The communication cost is charged on decisions at the encoder,
which are chosen to satisfy constraints imposed by the channel model. No causal
encoding or control policies are, in general, excluded from consideration.

As in the one-agent version, a certain “separated” design is optimal, as has been
suggested in various settings since the 1960s [24, 36, 16, 5, 29, 39, 27, 47, 31, 6, 30, 49].
To be precise, the following combination is optimal: certainty equivalence controls
with an MMSE estimate of the state, and an encoder that minimizes a distortion for
state estimation at the controller. The distortion is the average of a sum of squared
estimation errors with time-varying coefficients depending on the coefficients of the
performance cost. This separation is different from that obtained in the classical
LQG problem, but it is still due to a linear evolution of the state, and the statistical
independence of noises from all other current and past variables. As in the classical
one-agent version [37, 35], the random variables need not be Gaussian.

1.1. Previous works. In the long history of the two-agent networked LQG
problem, different channel models have been treated, leading to different types of
encoders. We find in these works that the encoder is either a quantizer, an analog
time-dependent compander, or an event-based sampler.

When a discrete alphabet channel is treated, the encoder is a time-dependent
quantizer. Quantized control has been explored since the sixties, and structural results
for this problem have seen spirited discussions over the years [24, 28, 16]. This problem
was revisited by Borkar and Mitter [10] in recent years, setting off a new wave of
interest. Surveys can be found in [31, 18]. For an additive noise channel, the encoder
is a time-dependent, possibly nonlinear, compander. The corresponding networked
LQG problem has been studied in [5], and more recently in [17, 19]. Analog channels
with channel use restrictions lead to an encoder being an event-triggered sampler [2].
The networked LQG problem for event-triggered sampling is studied in [30].

The above papers suggested separated designs for the two-agent LQG problem
with dynamic encoder and controller, and certainty equivalence controls. This is de-
spite other results [13, 15], confirming the dual effect in the two-agent networked
control problem. Thus, there can be an incentive to the controller to influence the
estimation error, and yet the optimal controller chooses to ignore this incentive. Fur-
thermore, for the two-agent LQG problem with event-triggered sampling, and with
zero-order hold control between samples, Rabi and Johansson [33] showed through
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numerical computations that it is suboptimal to apply controls affine in the MMSE
estimate. The optimal controls are instead nonlinear functions of the received sam-
ples. Thus, the literature does not tell us when separation holds, and when it does
not, for the general class of two-agent problems.

1.2. Our contributions. We make three main contributions. First, we show
that for the combination of a linear plant and nonlinear encoder, the dual effect
is present. This confirms the results of Curry [13] and Feng and Loparo [15], by
establishing through a counterexample that there is a dual effect in the closed-loop
system. In fact, each of the three models we allow for the channel endow the loop with
the dual effect. The dual role of the controller lies in reducing the estimation error
in the future, using the predicted statistics of the future state and knowledge of the
encoding policy. Due to this dual role, we show that, in general, separated designs need
not be optimal for linear plants with nonlinear measurements, even with independent
and identically distributed (IID) Gaussian noise and quadratic costs. Examples 5
and 6 show instances where the dual effect matters. Example 3 shows how the dual
effect in the two-agent networked LQ problem renders useless the techniques that
work for the classical, single-agent, partially observed LQ problem. These examples
illustrate the insufficiency of arguments offered in [24, 36, 16, 5, 29, 39, 27, 47, 31, 6,
30, 49] for the optimality of separation and certainty equivalent controls.

Our second contribution is a proof for separation in one specific design problem.
We prove that for the dynamic encoder-controller design problem, it is optimal to
apply separation and certainty equivalence. A key instrument in our proof is the class
of “controls-forgetting encoders” (introduced in section 4.2), which we show to be
optimal despite it being a strict subset of the general class of state-based encoders.
We also notice that the result holds under a variety of communication costs. For
example, it holds even when the encoder is an analog compander with hard amplitude
limits. Our proof does not require the dual effect to be absent. Hence, there is no
contradiction with the fact that separation and certainty equivalence are not optimal
for other design problems concerning the same plant-sensor combination. Our work
also provides a direct insight into explaining separation or the lack of it, in the form of
a property of the optimal cost-to-go function (Example 4 in section 6). Furthermore,
we show that when this property does not hold separation is no longer optimal.

Our third contribution points out some important subtleties that arise when dy-
namic policies are involved. We explicitly demonstrate that with dynamic encoders
for LQ optimal control, one cannot extend and apply a result of Bar-Shalom and
Tse [7], which mandates absence of a dual effect for certainty equivalence to be op-
timal. The classical notion of a dual effect was introduced for static measurement
policies, and the dual role of the controls has been motivated through the notion of a
probing incentive [14]. We ask if the concept of probing applies unchanged for dynamic
measurement policies and point out some subtleties in answering this question.

In recent years, there has been a resurgence of interest in problems related to
dynamic and decentralized decision making in stochastic control. Old problems and
results have been reexamined and reinterpreted to find new insights and develop
new methods, such as the common information approach [26, 32]. Others, such
as [23], have sought to reinterpret the proof techniques used in [4]. Following in
the path of [44], many new counterexamples have been identified that show opti-
mality of nonlinear strategies for control problems under nonclassical information
patterns [25, 50]. Similarly, drawing from the many works on two-agent networked
LQG problems [13, 15, 10, 31, 18], we have sought to understand why a structural sim-
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plification can be found in some dynamic decision problems, despite the nonclassical
information pattern and the consequent presence of a dual effect.

1.3. Outline. The remainder of the paper is organized as follows. In section 2,
we present a basic problem formulation, pertaining to encoder and controller design for
data-rate limited channels. In section 3, we discuss the notion of a dual effect and cer-
tainty equivalence, and present a counterexample to establish that there is a dual effect
in the considered networked control system. In section 4, we present a proof for sepa-
ration in the two-agent networked LQ problem. We also indicate extensions to other
channel models, including for event-triggered sampling and additive noise channels.
In section 6, we present a number of examples to illustrate that, in general, separation
does not hold for constrained design problems, followed by the conclusions in section 7.

2. Problem formulation. In this section, we describe a version of the two-
agent networked LQG problem, corresponding to a rate-limited channel model. We
consider an instantaneous, error-free, discrete alphabet channel and the logarithm of
the size of the alphabet is the bit rate. A control system that uses such a channel to
communicate between its sensor and controller is depicted in Figure 1, and comprises
four blocks. Each of these blocks, along with the performance cost, are described
below, followed by a description of the design problems under consideration.

2.1. Plant. The plant state process {z;} is scalar, and its evolution law is linear:
(2.1) Tir1 = ary + up + wy

for 0 <t < T. Here {u;} is the controls process, and {w;} is the plant noise process,
which is a sequence of independent random variables with constant variance o2 and
zero means. The initial state xo has a distribution with mean Ty and variance of.
At any time ¢, the noise w; is independent of all state, control, channel input, and
channel output data up to and including time ¢. We assume that the state process is
perfectly observed by the sensor.

2.2. Performance cost. The performance cost is a sum of the quadratic cost
on states and controls, and a communication cost charged on encoder decisions:

T T
(2.2) J=E |27, +prf+qZu? 4 JComm

i=1 i=0
where p > 0 and g > 0 are suitably chosen scalar weights for the squares of the states
and controls, respectively. The communication cost J°™™ is an average quantity
that depends on the encoding and control policies, and the channel model adopted.

2.3. Channel model. The channel model refers to an input-output description
of the communication link from the sensor to the controller. We denote the channel
input at time ¢ by ¢, the corresponding output by z;, and the encoding map gen-
erating ;4 by &. In Figure 1, we consider an ideal, discrete alphabet channel that
faithfully reproduces inputs, and thus, (; = z;. The encoder’s job is to pick, at every
time t, the encoding map & producing a channel output letter from the preassigned
finite alphabet z; € {1,..., N}, where the nonnegative integer N is the preassigned
size of the channel alphabet. Since the alphabet is fixed, we have a hard data-rate
constraint at every time. Hence there is no explicit cost attached to communication,
so JComm = () in this case. Our results also extend to other channel models that
permit the data rate or energy needed for each transmission to be chosen causally by
the encoder.
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2.4. Controller. The control signal wu; is real valued and is to be computed by
a causal policy based on the sequence of channel outputs. The controller has perfect
memory, and thus remembers all of its past actions, and the causal sequence of channel
outputs. Thus, in general, at every time ¢ the controller’s map takes the form

K. : {t, {zi}g,{ui}ffl} o g

2.5. Encoder. At all times, the encoder knows the entire set of control policies
employed by the controller and the statistical parameters of the plant. With this
prestored knowledge, the encoder works as a causal quantizer mapping the sequence
of plant outputs. Thus, the encoder’s map takes the form

& {t, {wd) {1k () g—l} .

Notice that we do not allow the encoder to directly view the sequence of inputs to
the plant. This subtle point plays an important role in the discussion in section 7.

2.6. Design problems. For a given information pattern, different design spaces
may arise due to engineering heuristics, hardware or software limitations, etc. Any
such design space is a subset of the set of all admissible encoder and controller pairs.
We identify three design problems, each associated with its own design space. For
these design problems, an adopted channel model can be either the one described in
section 2.3, or any of the models from section 5. First, we pose a single-agent design
problem which has a classical information pattern.

DESIGN PROBLEM 1 (controller-only design). For the linear plant (2.1), the
adopted channel model, and a given admissible set of encoding policies

(&1 (5 Lzt fuad M,

the controller-only design problem asks for a causal sequence of control policies {K;}&
to minimize the performance cost (2.2).

Next we pose a design problem where the design space is the largest possible non-
randomized set of admissible encoder-controller pairs. We consider every causally
time-dependent encoder and controller. In other words, for this type of design prob-
lem, regardless of the choices one makes for channel and communication cost, at any
time the controller may pick the control input using all channel outputs up till then.

DESIGN PROBLEM 2 (dynamic encoder-controller design). For the linear plant
(2.1) and the adopted channel model, the dynamic encoder-controller design problem
requires one to pick causal sequences of encoding and control policies {E}E, {IC;}E to
minimize the performance cost (2.2).

Next we pose a design problem where the controller and encoder must respect
a restriction on selecting the control signals or encoding maps. At every time, the
control values must be chosen from a restricted set U, such as the interval (—1,1) or
the finite set {—1,0,1}. Likewise, the encoding maps have to be chosen from within
restricted sets. For example, the encoding maps may be constrained to consist of two
quantization cells (—o0, 0), (0, 00), where the encoder threshold § must be chosen from
a restricted set O, say the interval (—5,5). Subject to these constraints, the controller
and encoder policies are still to be dynamically chosen.

DESIGN PROBLEM 3 (constrained encoder-controller design). For the linear
plant (2.1), and the adopted channel model, the constrained encoder-controller de-
sign problem requires one to pick causal sequences of encoding and control policies
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{ESE AT, subject to the constraints represented by 6 € © and uy, € U, to mini-
mize the performance cost (2.2).

For all three design problems presented above, we assume the existence of mea-
surable policies minimizing the associated costs. We avoid investigating the necessary
technical qualifications except to say that if need be, one may allow randomized po-
lices, or even reject the class of merely measurable policies in favor of the class of
universally measurable policies [9)].

3. Dual effect and certainty equivalence. We begin by presenting a defini-
tion of dual effect [14] and certainty equivalence [22]. We then present an example to
establish that there is a dual effect of the controls in the networked control system
introduced in section 2.

3.1. Dual effect. In a feedback control loop, the dual effect is an effect that the
controller may see in the rest of the loop. When it is present, the control laws affect
not just the first moment, but also second, third, and higher central moments of the
controller’s nonlinear filter for the state. Below, we state this formally for a controlled
Markov process with partial observations available to the controller:

(3.1) T = Py (xtautawt)a 2t = \Ijt(xtauta Fét),

where the sequences {z;} and {u;} are the real-valued plant state and control pro-
cesses, respectively; see Figure 2. The sequence {z;} is the observation process and
the sequences {w;} and {k;} are the plant noise and observation noise processes, re-
spectively. Assume that all the primitive random variables are defined on a suitable
probability triple [Q, F,P]. Now consider two arbitrary admissible sets of control
policies, {K(t,-)}, {K(t,)}. Once we pick one such set of control policies, this to-
gether with the measure P defines the states, observations, and controls as random
processes. The choice of policies fixes their statistics. We can advertise this rela-
tionship by (1) specifying random variables, x;, for example, in the form z;(w; k),
(2) specifying a filtration, for example, the one generated by the z-process as F*?,
or (3) specifying an expected value of a functional, E[F}], for example, in the form

Ep i | B (1 (s (@1 K0Y o {0 @036 s (iKY )|

where w stands for any element of the sample space of the primitive random variables.
To minimize the notational burden, we advertise the dependence on the set of control
policies only as needed. We now define the dual effect by defining its absence.
DEFINITION 3.1 (dual effect). The networked control system in Figure 2 is said
to have no dual effect of second order if
1. for any two sets K, K of admissible control policies, and
2. for any two time instants t, s,
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we have Fi* = FF’Z for every t, and for any given event X € F}7,
2
Ep x [(xt(w;lC) — EpJC[xt(w;lC)Hzi(w;IC)};,w € X]) ‘{zi(w;lC)}g,w € X}
~ - o 2 o
=E, % [(ﬂct(w;/C) - EP)"C[xt(W;’C)|{Zi(W;’C)}O,w € X]) ‘{zi(w;lC)}O,w € X} .

Thus, we require equality of the two sets of covariances of filtering, prediction,
and smoothing errors, corresponding to any two choices of control strategies. In the
definition above, by choosing one set of control policies, say K as resulting in u; = 0,
for all ¢, we obtain the definition of Bar-Shalom and Tse [7].

3.2. Certainty equivalence. For the controlled Markov process (3.1), consider

Jeeneral _ [L ({xi 1T_1 ) {Ui}oT)}

to be the objective function, where L is a given deterministic, nonnegative cost func-
tion. Imagine that a muse could at time ¢ supply to the controller the exact values
of all primitive random variables by informing the controller of the exact element w
of the sample space 2. With such complete and acausal information, the controller
could, in principle, solve the deterministic optimization problem

H&f Jt (u, UJ) = H&fL({Q?l (Ld)}g 5 {uz (Ld) to_l , Uy {ul (w)}tTJrl) .

Let uf(w) be an optimal control law for this deterministic optimization problem. We
now state the definition of certainty equivalence from van der Water and Willems [40].

DEFINITION 3.2. A certainty equivalence control law for the plant (2.1) with the
performance cost (2.2) has the form

E [uf (@) {2 (@)}, {us (@)}

Clearly, this law is causal. Notice also that its form is tied to the performance
cost, and to the statistics of the state and observation processes. It is possible for
certainty equivalence control laws to be nonlinear, and such laws can be optimal even
when separated designs may not be. For linear plants, they can sometimes be linear
or affine, as indicated by the following proposition from [40] adapted to our problem.

LEMMA 3.3 (affine certainty equivalence laws for linear plants). For the plant (3.1),
with ®; = axy + ug + wy, and the quadratic performance cost (2.2) with JComm — (),
the following are certainty equivalence laws:

k5o e ] o ],

where k&F = Bi1/(q+ Bit1), ai = Biv1+ i1, Bi = p+a*qBit1/(q+ Biv1), arp1 =
0, and ﬁTJrl =1.

DEFINITION 3.4 (certainty equivalence property). The certainty equivalence
property holds for a stochastic control problem if it is optimal to apply the certainty
equivalence control law.

For the stochastic control problem described in Lemma 3.3, with nonlinear mea-
surements that do not result in a dual effect of the controls, Bar-Shalom and Tse [7]
showed that the certainty equivalence property holds.
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We now consider a simple example, and show that there is a dual effect of the
control signal in the closed-loop system presented in section 2.

Ezample 1. For the plant (2.1), let a = 1, 29 = 2, and o9 = 0. Let this
information be known to the encoder and the controller, which simply means that zy =
xg. Let the variance o2 = 0.72. For the objective function, let the horizon end T' = 1,
and let p = ¢ = 0.01. Let the channel alphabet be the discrete set {1,2,3}. For the
given threshold € = 1.6, let the encoder at t = 1 be

1 ifxy € (—o0,—0),
(32) 51 ($1) =492 ifzg € (—6‘, 9),
3 ifx € (0,4+00).

The optimal control law at t = 1isu; = —a 2y /(g + 1), where Z 1)y = E [21 |z, 1o, 21].
Using the encoding policy &; and the optimal control signal uq, the performance cost
with JEo™m — () can be written as a function of the control at ¢ = 0:

N

2

2 2 qa’ 2 a
J(ug) =0y +qug+ [p+ —— E[m1|x0,uo}+q

2
E[m—ﬁ:\ ‘x,u,z},
i1 1 (z1 1\1) 0, U0, 21

where T' is the quantization distortion, which is thus proportional to the conditional
variance of the controller’s MMSE in estimating x;. Notice that I' is a function
of ug, thus resulting in a dual effect of the control signal in the plant-encoder-channel
combination. Figure 3 shows how the quantization distortion I' depends on ug. The
total cost J is also plotted. The optimal value u(; is shown to be different from the
certainty equivalent control uS®. O

4. Dynamic encoder-controller design. In this section we solve the dynamic
encoder-controller design problem (Design problem 2). We work out the details for
the discrete alphabet channel with the fixed alphabet size N. We begin by examining
a known structural property of optimal encoders. This states that it is optimal for
the encoder to apply a quantizer on the state x;, with the shape of the quantizer
depending only on past quantizer outputs. Next, we present a structural property for
encoders called controls forgetting, which leads to separation. Finally, we show that
the optimal encoder for Design problem 2 is indeed controls forgetting and it leads to
separation and certainty equivalence.
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4.1. Known structural properties of optimal encoders. Let us now for-
mulate the encoder’s Markov decision problem. Fix the control policies to be u; =
IC;r ({zi}}), where for each time ¢, ICI is a prescribed admissible law. Then the opti-
mization problem reduces to one of picking encoding policies. This is a single-agent,
sequential decision problem, and hence one with a classical information pattern. The
action space for this decision problem is the infinite dimensional function space of
discrete-valued encoders. At time ¢, the encoder takes as input the current and
previous states, all previous outputs, and all previous encoding maps. For conve-
nience, we can view this encoding map as a function of only the current state but
with the rest of the inputs considered as parameters determining the form of this
function. Thus, without loss of generality the encoder can be described as the func-
tion &(-) : R — {1,..., N} having z; as its argument with its shape determined by
o yo Mz & ()5 h). Hence the action space at times ¢ can be described as

{5 ():R—={1,...,N}, Borel measurable}.

Identifying encoders as decisions to be picked is not enough, as the signal z; need not
be Markov. We utilize the following property, proved by Striebel [38] and Varaiya
and Walrand [42]: for every design problem we set up in section 2, the signals
x, {z:}h, {& ()} form sufficient statistics for the encoding decision at time t.
Hence, at every time ¢, performance is not degraded by the encoder choosing to
quantize just z; instead of quantizing the entire waveform {xzg,...,2¢}. The shape
of the quantizer is allowed to vary with past encoder shapes, past encoder outputs,
and past control inputs. But given the sufficient statistics, the encoder can forget the
data {xg,...,2¢t—1}-

Denote by D" the data at the controller just after it has read the channel
output z; and just before it has generated the control value u;. Similarly denote by
Die® the data at the controller just after it has generated the control value us. Then

Do = {{adh A& (Ol fude ™} Dgen = g b = {{z3h 46 (O} fuakt )

and let Ty, £ Elz| D).

The problem we consider has two decision makers that jointly minimize a given
cost function. The information available to these decision makers is not the same, and
neither is the information available to each agent a subset of the information available
to the agent downstream in the feedback loop. Thus, the information pattern here
is neither classical nor nested. We apply the common information approach' to our
problem. This approach allows a designer to treat a problem with multiple decision
makers as a classical control problem with a single decision maker that has access
to partial state information. When applied to our setup, this approach leads to
the following structural result at the encoder: the encoding policy & (-) is selected
based on the information available to the controller at the previous time instant,
namely, @Effl)+. At times t~ and tt, the data fofl), and @?ffl)+, respectively,
comprise the common information in this problem. The encoding map &; (-) is applied

I This approach can be traced back to a conjecture by Witsenhausen in [45] regarding a struc-
ture for the optimal control laws in the n-step delayed sharing information pattern problem. This
conjecture was shown to be true by Varaiya and Walrand in [41] for n = 1 and false for n > 1. Our
terminology is derived from [26, 32], where this conjecture has been resolved and developed into a
sequential approach for problems with nonclassical information patterns.
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F1G. 4. The block diagram of Figure 1 with innovation encoding.

to the state x;, which is private information available to the encoder. A similar
approach has been used before for problems of quantized control [12, 43, 48].

4.2. Controls-forgetting encoders and separation. We now present a struc-
tural property of encoders which ensures separation in design. Recall the plant (2.1)
and cost (2.2), and define (; as the control free part of the state {y = xg, (i1 =

Tip1 — E;:o a’~lu; for i > 0. At the encoder, the change of variables

(4.1) (e L2360 O35 ) = (Godade ™ 015

is causal and causally invertible. Hence the statistics (¢, {2} ' {Ki(-)}{) are also
sufficient statistics at the encoder.

DEFINITION 4.1 (innovation encoder [10]). We say an admissible encoder is an
“inmovation” encoder if its inputs are ((;, {z:}o 5 {Ki()}E) and its output is 2.

The networked control system in Figure 1, redrawn with an innovation encoder, is
shown in Figure 4. Here, the control free part of the state is not affected by the control
policies, but obeys the recursion (;+1 = a(; +w;. For any sequence of causal encoders,
one can find an equivalent sequence of innovation encoders such that when these two
sets operate on the same sequence of plant outputs, they produce two sequences of
channel inputs that are equal with probability one. Hence, if for a plant and channel,
the dual effect is present in a certain class of causal encoders, then the dual effect
is also present in the equivalent class of innovation encoders [15]. This is what the
following example illustrates.

Ezample 2 (dual effect in a loop with fixed innovation encoder). Consider Ex-
ample 1, but with the encoder replaced by an innovation encoder. For the given
threshold 6 = 1.6, let the encoder at time ¢ = 1 be the following innovation encoder:

1 ifaly + Ko (20) € (—00,—0),
(4.2) () =142 ifal +Ko(z0) € (—6,6),
3 ifaly + Ky (Zo) € (9, +OO) .
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Notice from (3.2) and (4.2) that this innovation encoder ™" is equivalent to the
causal encoder & of Example 1. For the same applied control policy Ky, and for the
same realizations of primitive random variables, we get £&"*((;(w)) = & (21(w)). The
results in Figure 3 apply here also because for an event X € F(*0:21) | we have

P [331 cX }$0, 21 = é-ilnn (Cl)} = P[ZIJl cX |$0, 21 = 61 ($1)] . O

The encoder (quantizer) in the loop causes the dual effect. Furthermore, the en-
coder’s presence renders useless the techniques that worked in the case of the classical,
single-agent, partially observed LQ control problem. The next example illustrates this.

Ezxample 3. We examine a scalar system as it evolves from time step 0 to time
step 1. We have zo ~ N (110, 00),

r1 = To + up + wo,

where wqg is the process noise variable which is independent of zg,ug, and wg ~
N(0,0,). We adopt the specific quantizing strategy given below (on the left in the
form of an encoder for x¢, and on the right, in the equivalent, innovation form):

i -1 if ZTo S O, inn o -1 if CO S 07
mm%{ﬂ,ﬁm>Q 0(®_{H if ¢ >0,
-1 if x; <0, inn -1 if ¢4 < —up(20),
ACER SR ) = Th st )
+1 if x>0, +1 if G > —ug (ZQ)

Since the encoder at time 0 is binary, the general control law at time 0 has the form

(20) a if zg = —1,
Ul 2 =
0L~0 B if 29 = 41,

where «a, 3 are arbitrary real numbers. The process 7 is fully observed at the
controller. We have Zo|g = E[zo]20], and as noted in [49], one can write

(4.3) Tyj1 = To|o + uo + W,

where the noiselike random variable wy is given by @y = E[z1 |20,21] — E[21 |20] -
Then one can treat the problem as the control of the fully observed process Zy; to
minimize the given cost, which can be rewritten as the following sum of two terms:

o~ PN ~ 2 ~ 2
(4.4) J=E xil +p.x3‘0+p.(x0—x0|0) +qug}+E[(CE1—CE1|1) }

For the single-agent partially observed LQ control problem, transforming the
problem to the form in (4.4) results in two special things: (1) the random pro-
cess {w;} is statistically independent of the control process {u;} and of the “state”
process {2}, and (2) because the dual effect is absent, the second term on the right-
hand side (RHS) of (4.4) does not vary with {u;}. Therefore, by considering {Zy;} as
the process to be controlled, we get a single-agent, fully observed LQ control problem.

In the two-agent problems considered in this paper, neither of the above-mentioned
special things may happen. For this specific example, we show in Figure 5 how the
second moments of wy and x1 — Zy); vary with ug. Hence, the dual effect persists in
the two-agent networked problem with innovation encoding. a
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Fic. 5. Plots for Example 3.

Next we define a class of encoders for which at prescribed times ¢, the statistics
of Wy, 2411 — Tyy41)¢41 are independent of the control uy.

DEFINITION 4.2 (controls-forgetting encoder). Denote by p£|771(') the condi-
tional density of ¢ given the data D7™ | . An admissible encoding strategy is controls
forgetting from time 7 if it takes the form

fz (xta @a}nl) ) th S T,

CF,r con
¢ (mt’ o ) €t (Ct; Prir—1 () (=), e (')}iil) frzr+l,

(t=1)~

where (1) & (+ DCOT‘ - ) is any admissible policy for encoding at timet, (2) fort > 7+1
the policies €(+; p 7-\7- L)y {z {ez()}t;l) are adapted to the data

DT = (b O 2T G ) € D fort =

and (3) for fized values of the data CD((’;FI;+, the map €.(-) produces the same output

regardless of both the controls {u;}! and the control policies {lCl()}Z;_l
Clearly such controls-forgetting encoders exist. For example, consider a set of

encoders that quantize in sequence (41, ..., (r to minimize the estimation distortion
~ 2 CF, . .
21 1 E[(G — Gije) ], where Cm = E[Q|D (i 1;+] Let the nonnegative function ()

represent some notion of cost. For example, 1 (z) := 2.

LEMMA 4.3 (distortions incurred by controls-forgetting encoders also forget con-
trols). Fiz the time t = 7 and the distortion measure v. If the encoder is controls
forgetting from time 7, then for times i > 7 4 1, the distortions E[t)(x; — 7;;)| D"
are statistically independent of the partial set of controls {ui}f:T

Proof. The unconditional statistics of {¢;} are independent of the entire control
waveform, no matter what the encoder is. For times ¢ > 7+ 1 and for sets X € F7,

P[¢; € X|D¢o"] is independent of {uz} because the encoding maps &; are controls

forgetting from time 7. Since (; — Ct‘t = Ty — Ty, for all £, the lemma follows. O
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DEFINITION 4.4 (controls affine from time 7). A controller affine from time T
takes the following form:

(4.5) iC;“u‘“(@gsn) - {“T if i<,

i
:ﬂ‘ _ ~ . .
uft = kT +d; if 0>,

where the controls uI are generated by an admissible strategy {ICI (YL, the con-
trols w2 are generated by an affine strategy {IC?H() L, with the gains {k;}I and
offsets {d;}§ computed offtine, and Ty, = Elz:i|{y; }i—o]-

4.3. Preliminary lemmas. The main result ahead is Theorem 4.9 that states
that the solution to Design problem 2 is to apply a separated design and certainty
equivalence controls. Now we do some groundwork towards proving that result.

Given an admissible encoder, the partial control waveform {u; };‘.F:Z. affects only

the cost-to-go from time j: E[z7., ] + Z;‘-F:iIE[pxi + qui]. In the classical single
agent LQ problem, the “prescribed encoder” is simply the linear observation process
with prescribed signal-to-noise ratios (SNRs). There, this cost-to-go can be expressed
as a quadratic function of {Uj}f:i, {a:j}f:i, and {@-U}f:i.
LQ problem, because of the dual effect, the cost-to-go may have a nonquadratic
dependence on the controls {u; };‘.F:Z.. However we show that by restricting to controls-
forgetting encoders and affine controls, the cost-to-go does get a quadratic dependence
on controls. We use this reasoning and backward dynamic programming to show that
for time t = 7, the following conclusions fall out:

e it is optimal at time ¢ = i to apply as control a linear function of Z;;, and

e it is optimal at time ¢ = 7 to apply an encoding map that is controls forgetting

from time ¢ — 1.
LEMMA 4.5 (optimal control at time ¢t = T'). It is optimal to apply the linear

low vy = —aZyy /(¢ +1). And V(D) = ming, K23, | + qui| D2, the optimum
cost-to-go, can be written as the expected value of a quadratic form in xr and Zpp.

Proof. One is given D", and is asked to pick ur to minimize the cost-to-go

But in our two agent

Vr (up; DF) = E [25 4 + qui | DS ]

= oy, + E[d® 2% + 2axrur + (14 q) uf |DF2]

2
2 a 2 =~ 2 con
= + —0F [ + — ‘ D _}
Ow 1+¢ qTp (CCT leT) T

~ 2
axr
+(1+q) (UT— TlT) .

1+¢

This proves the lemma. O

LEMMA 4.6 (optimal &; for separated, quadratic cost-to-go). Fix the timet = i.
Consider the dynamic encoder-controller design problem (Design problem 2) for the
linear plant (2.1), and the performance cost (2.2). Suppose that we apply an ad-

missible controller I along with an encoder ftc B4 that is controls forgetting from
time i. Furthermore, suppose that the partial sets of policies { gf;l(), e gFZ()},

{Ki(-),Kiz1(:), ...,Kp(-)} are chosen such that the following properties hold:
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1. The cost-to-go at time i takes the separated form

T T
E| 2%y +pY 0 +0) ud| D | = E[J5 (us, )| DR
Jj=t Jj=1t
+E[Dipa| D),

where, JE (u;, 1) = @+ oo’ + Ba; —1—5953 +U Ty + V) + 17512‘1., and the
term ;11 is a weighted sum of future distortions that depends only on the
random sequence {x; — Z;);}1_; ;-

2. The coefficients of the quadratic JZ°* may depend on the partial set of control

policies {I@()}f:l but not on the partial set of encoding maps {{}CFl() i
3. The term T';11 depends on the encoding maps {§JCF1() };Hl but not on the

partial set of control policies {IEJ() ;‘-F:i,

Then, it is optimal to apply an encoding map at time t = 1 that does not depend on
~ T
the data: (u;—1, {le(-)}j:i ). It also follows that the shapes of the encoding maps

{ffF’i(-) ?:Hl and their performance do not depend on the control u;_;.

Proof. The proof exploits three facts: first, the special form of Jf°"(u;, ;) makes
the encoder’s performance cost at time 7 a sum of a quadratic distortion between x;
and 7;|;, and a term gathering distortions at later times. Second, the minimum of the
sum distortion depends only on the intrinsic shape of the conditional density p;j;—1(-)
and not on its mean. Third, these facts and the controls-forgetting nature of later
encoding maps allows the encoder to “ignore” the control u;—;. We now start by
writing the cost-to-go as

E[J7" 4+ Tipa| DY :E[a+aafy+ﬁxi+3$?

con
it

+E (D8 + P2 B + 52| D] + B [T | DY)

:@-l-aai-l-E[(B-l-ﬁ)xi-i-(ﬁ-i—ﬁ—i—g)x? gin}

— (7 + ) E [a? = 3%,| D] + E [Ty D)

:§—|—0¢012U—|—E[(B+U)xi+(D—Fﬁ—l—g)a:? fﬁ“}
(4.6) — 7+ D)E[ (2 — 74:)"| D2*| + E[Tiya] D).

Given D¢ |, the part of the RHS that depends on the encoding map &;(-) is

(i—1)
— (P +P)E [ (25 — F40) | DF"] +E[Lipa| D).

Notice that the first term is the scaled quantization error variance of the quan-
tizer & (). This reduction of the encoder’s performance cost to a sum of current
and future quantization distortions is possible because the term Jf™(u;, x;) has
been assumed to be quadratic in z; and ;;. The reduced performance cost of
the encoder is a function only of the quantizer &;(-) and the conditional density

pi|i,1(m|®?ﬁfl),). Indeed, given the data D?;’i’l), and probabilities 7;;_1 (7, A) =
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Pla; € A|D§§’fl), ,u;—1], this cost is the following average:

I (fi (-): ??fly) = Z Tiji—1 (7, A) - E |:F»L'+1 (Dsom)
cells A
+ Z ﬂ—i‘i_l(ﬁi’A) A-E |:($7’ - /x\l‘z)2 ‘Dfioill)‘*'axi S A:| )
cells A

Dty @i € A

where A\ = —(U + 7). The cost I'; does depend on both &(-) and u;, but for given
data @Efi‘l)_ and control u;_1, the minimum of I'; over all admissible quantizers &;(+)
may possibly depend on CD?ffl), but not on the control u;_1. To see this consider
two arbitrary possible values wu, u for u;_1. Suppose that one is given the quantizer

1 ifze(—o0,d),

)7 e,

N ifx e (0n_1,+00),

! WE 6=
Consider the quantizer £ constructed by taking each cell A = (4, 0) in &, and generating
anew cell A = (§ —u+1u, 6 —u+u), and stipulating that the new quantizer ¢ assigns

meant for quantizing a random variable with the density p;);—1(z|D Uim1 = w).

to the cell A the same channel input that the quantizer £ assigns to A.
Because of the linear evolution, x; = ax; 1 +u;_1+w;_1, and because the random
variable w;_1 is independent of the data Df?fl)w we have the convolution relations

-

p(x) = pijiz1 <T> ® pu ()

and

x

p(x) = piji—1 <_Tﬁ> ® puw (+) o

leading to the following symmetry w.r.t. translations:
(47) pi|i71 (ZII —Uu ‘.D((:?El)*aui—l = u) = Pi|i71 (ZE —u ‘D??Sl),,ui_l = 17) .
Then we get the following equalities for each pair of cells A, Z, with 7;; = x; — 7y,
Plos € DI uiy =u] =Plo; e A|DE, iy =),
Lot (D) - tic = i € A) = i (D", iy = i € &), and

.Dcon

(i-1)=" Dii

~2
£ [m (-1

Uj—1 = U, T; € A} =E {gi\z

Ui—1 :17,331' S E:| .

Then the performance of any quantizer ¢ designed for u;—; = u can be matched by fN
for u;_1 = u, and vice versa. Hence, we can conclude that for any wu, ,

inf I (5 () D iy = u) = inf I, (5 () D iy = a,).

Notice that this optimal encoder is controls forgetting from time 7 — 1. a
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As the optimal control u7. is a linear function on Ty, the encoder &7 begets a
performance cost that is quadratic in 27, Z77. Then the above lemma renders the
optimal encoding map &7 to be controls forgetting from time 7" — 1. This reduction
also holds at earlier times.

LEMMA 4.7 (encoder separation for affine controls). If the two conditions hold,
(A) for any admissible control strategy, an admissible encoder strategy minimizing the
performance cost (2.2) exists, and (B) the control strategy is affine from time 7, then
the following two conclusions hold: (a) an encoder that is controls forgetting from
time T minimizes the partial LQ cost

xT+1+p Z T; —|—qZu

1=7+1

COn

and (b) the shapes of the minimizing encoding maps from time T and their perfor-
mance are independent of the data, {ul_,, {k;}T__, {d:;}L_,

Proof. We prove this by mathematical induction. For a given control strategy,

define
Wr =E [ﬁﬂl + paZ + qu| @E;{N} , Wi = inf Wy
it

W E |:p$ + qu2| .Dcfnl)+:| +E |: 7,+1 ( COH)

Den & ()|, W= inf W
Sy &)

K2

Induction hypothesis for time i: for some time t = i such that 7 < ¢ < T, we
have the following three assumptions: (1) for every j > i + 1, the optimal value

function W;(CDE;’L)_) takes the form

_ 5 -~ > Y ~ 2 T con con
ajoy, +@; + B; T +E [51'%'2 + X (2 = Z53)" + T (93<j+1) ) ‘Dr } )

where the ozj,aj,gj,ﬁ X are known nonnegative real numbers for j > i+ 1, (2) for
each such j, the nonnegative function 1"] +1(D§‘1“) is assumed to be independent of
the partial waveform {u;,uji1,...,ur}, and (3) the optimal partial set of encoding
maps {fj()}ZTJr | is a set that is controls forgetting from time ¢. We will now show
if this hypothesis holds for time ¢, then it holds for time ¢ — 1. Assuming that the

partial set of optimal encoding maps {fj*()};‘ll is employed, we get

Wi =E [pa? +qu?| D", | + B (W, (D)

B [ia? [ D0 - |+ B [z [DEE - | + B [Trp (D2, ) [ D527

D & ()]

Df‘»m )+} +Oéi+10 + iyl

:D?onl)+:| + qE |:U2

We can rewrite the above expression as
W; = a;o? + @ + BiE [27 | D] + B,E [z; | D]

+E [ Ti (D2)- )| D52] + N [ (@ - 740)* D52
where the coefficients @; = @41 + Birl, @ = @is1 + fin1d? + qd + ﬁz—i—ldla B; =

(q kid; + aﬁﬂrld + ﬁerlk d; ) Bz pit+a Berl + k ﬁerl + 2akzﬁz+1 +q k ﬁerla and
N = q k? + k2Bis + 2ak; By
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We have thus W; = E[A quadratic in x;, Z;;] + E[ future distortions |. This and
the fact that the encoder is controls forgetting from time ¢ = ¢ meet the requirements
of Lemma 4.6. Then we get the optimal encoding map £ to be controls forgetting
from time t =i — 1, and

con con 3 =~ 2 con
T, —mlnE{l"Hl (Dgemyy- )| D] + N [ (i = 7ap)* D520

is independent of the partial set of controls {uj} From this it follows that the
induction hypothesis is also true for time i — 1.
LEMMA 4.8 (certainty equivalence controls for controls-forgetting encoders). If

the encoder is controls forgetting from time 7, then the partial LQ cost

Jj=i1—1"

DCOH

atp Y o8 +qzu

1=7+1

is minimized by the control law for i > 7, ui = ki T;);, where ki = afiy1/(q+ Bit1),

Bi =p+a*qfiy1/(q + Bit1), and, fri1 = 1.
Proof. Define the cost-to-go at time t =T — 1 as Vp_1 = E[Wrp(ep(-); D™ L))

(r-1)*
Because of Lemma 4.5,

CL2 ~
VT_lzafqu<p+q+q1>E[x2T}®§;n yovur—1 ] +E [ (er - #rr)?| D52

Because the encoder is controls forgetting from time 7, the last term, which is the dis-
tortion due to the encoder &, is independent of the partial set of controls {u;},__ 41
Hence the only part of Vp_; that depends on the control up_; is the quadratic

2 CL2(] E peon
R [ [P o
CL2
o (oo ) o o o

=~ 2 2
+2a%p_qpr_1 ur—1+up_q+ ow}.

2 ~ 2 . .
Hence uy_y = —a(p+ 55)%r—17—1/(q + p+ 757 ), and the resulting value function

2 a’q
i a? aq(PJF?)
I (R i ey

a?q
QTP q+1
o),

g+p+ 22
2 con
+E[($T_xT‘T) ‘@T_:|.

~ 2 con
+ [(Z‘T—l—@’Tfl\Tfl) ‘ (T—2)+]

Repeating this procedure backwards in time, we get for times ¢ > 7, the optimal
control laws as uj = —kj Z;);. 0
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4.4. Main theorem. Lemma 4.7 implies that for a preassigned controller affine
from time zero, there exist optimal encoding maps that are controls forgetting from
time zero. Lemma 4.8 is complementary and implies that for a preassigned encoder
that is controls forgetting from time zero, the optimal control laws have linear forms.
For Design problem 2, an optimal pair of strategies has a similar simplified structure.
This pair consists of a controls-forgetting encoder and control laws linear in &;;. In
general, this controls-forgetting encoder does not minimize the aggregate squared
estimation error. The goal it accomplishes is slightly different. It minimizes a sum of
state estimation errors with the time-varying weights \;. Details follow.

THEOREM 4.9 (optimality of separation and certainty equivalence). For Design
problem 2, with the discrete alphabet channel of constant alphabet size, the quadratic
performance cost (2.2) is minimized by applying the linear control laws

in combination with the following encoder which is controls forgetting from time 0:

49 (Gia a0 ) = arg nf Pie()s = e N5,

where kI = aBiv1/(q+ Bit1), Bi = p+ a*qBit1/(q+ Biv1), Br+1 = 1, and,
N2
Ly=XM-E |:(<t - Ct\t)

P =B (6= Crrr) Jer (). 708, ()7 s 01
If = inf T (),

6 (D30 | B [T (Toud. . (e (30)]

where \; = a2ﬁi2+1 (¢ + Bit1). Also, this control law is a certainty equivalence law.

Proof. We start with Lemma 4.5, and then repeatedly apply, in sequence, Lem-
mas 4.7 and 4.8. This proves optimality. Lemma 3.3 implies that the control laws of
(4.8) are indeed certainty equivalence control laws as per [40]. 0

The optimal controller splits into a least squares estimator computing Zy; and a
time-dependent gain. Computing Z;; is intrinsically hard because quantization is a
nonlinear operation. If one ignores this computational burden, then, at least formally,
the optimal controller resembles that for the classical LQG problem.

Note that in general the sequence of weights {\;}2" depends on the parameters of
the performance cost, including the control penalty coefficient q. In the two special
cases, (1) the coefficients ¢ = 0, p = 1, or (2) the quantity p + a?¢ — ¢ > 0 and
p+a’q—q++/(p+a*q— q)% + 4pq = 2, it turns out that the weights 8; = 1Vi, and
hence the weights \; = a?/(q + 1) Vi. Thus in these two cases, optimal encoders ignore
the parameters of the performance cost and simply minimize the usual aggregate
squared error in state estimation.

4.5. Extension to the multivariable case. Theorem 4.9 can be extended to
situations where the state, control, and noise signals are vectors, as well as where the
objective function (2.2) includes cross terms involving the state and control. We can
also extend to the case where the sensor has access only to partial and noisy observa-
tions of the state. To carry out these extensions, we need no more than the standard
arguments of LQG control. Below, we mention only the key steps corresponding to
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the lemmas of section 4.3. Consider a partially observed, linear multivariable plant,
(410) Ti41 = Aﬂjt + But + Ewt, Yt = Cﬂ?t + DUt,

where the state x; € R", the control u; € R™, the output y; € RP, the pro-
cess noise wy € ]Rll, and the measurement noise v; € R'2. Let the two noise se-
quences {w;}, {v:} be TID sequences that are mutually independent of each other.

For any matrix M, let M’ denote its transpose. For all times, let E[w;w)] = X,
and E[v,v;] = ¥,. Let the performance objective be defined as

T
P R f
(411) chnoral =E [m’lf—i-l PT+1 $T+1} + ZE |:(x; U;) |:R Q:| (iz>:| ’

=0

where P and {g 12,2’ } are symmetric and positive semidefinite, and @ is symmetric
and positive definite. It is easy to see that an extension of Lemma 4.5 holds for
the multivariable case. Precisely, the optimal control law at the terminal decision
time T is wj. = —Kr Zp)p, where Kp = —(B'Pry1B + Q)il(R + B'Pry1A) and the
optimal cost-to-go V7 (D5") = trace(EX, E')+E[(vr — Zpr) My (27 —Zp7)| DS +
E[z% (P + A'Pry1 A — Mrp)xp| DM, where the matrix My = K7.(B'Pri1B 4+ Q)Kr.
Next, the following generalization of Lemma 4.6 can be proved.

LEMMA 4.10 (multivariable version of Lemma 4.6). Assume the hypothesis of
Lemma 4.6 but for the multivariable, partially observed plant (4.10), the objective
function (4.11), and the following new definition of J°":

Ty
Ty )

Then, it is optimal to apply an encoding map at time t = ¢ that does not depend
~ T
on the data: (ui—1, {K;(:)}, ). It also follows that the shapes of the encoding maps

{ffF’i(-) ZTH and their performance do not depend on the control w;_1.
Proof Sketch: We can rewrite the part of the cost-to-go that depends on the
control u;—1. As in (4.6), it is possible to rewrite this in such a way that the only

dependence on 7;); is through a quadratic form of the estimation error z; — 2 ;);:

con
it

+E |:($z - fﬂi)/ (E + El + @) (xz — 33\1-‘1-) + Fi_,_l‘ Dfﬁn} .

P R

Ji =t /ffi‘f'Alfz‘i"‘(x/i fféi) 55
p By DAV

E[J" +Tipq| D™ = a + E [(ﬁ+3)/xi+x; (13+F2+1§’+52) i

The part of the RHS that depends on &; is

E[Cip| D)+ E [ (2 — 20) (R+ R + Q) (i — &)

con
I

The minimum of this quantity over different & will be independent of u;_; if the
density p;;—1 is symmetric w.r.t. translations in the control. If the matrix A is
invertible, then P Az =it () = pi—1}i—1 (A=1z). Let u, u be two possible values for u; .
Then

pili-1 (2) = P ag i (= Bu) @ ppy ()] and

Pili1 (8) = poag, s (= B @ pru ()] -
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If the following three conditions hold, (1) the matrix A is invertible, (2) the conditional
density p;_1;-1 is a “well-behaved” function, for example, a function of bounded
variation, and (3) the noise random variables w;, v; have well-behaved densities, then
it is straightforward to deduce the following symmetry w.r.t. translations:

Pili—1 (95 —u }ﬂfffl)—aui—l = U) = Pili—1 (SU - 'ﬁ}foi‘l)-,uifl = ﬂ) .

If the matrix A is not invertible, or if any of the relevant densities have Dirac delta
functions, then too, this symmetry property holds. Proving that needs some slightly
more delicate arguments. The rest is similar to the proof of Lemma 4.6. |

The remaining lemmas of section 4.3 are straightforward to generalize to the mul-
tivariable case. Moreover, our results clearly extend also to the case of deterministic,
time-varying coefficients of the plant dynamics and of the objective function.

5. Dynamic designs for other models of channels. The results of section 4.4
for Design problem 2 apply to the case where the quantizer word lengths at different
times are deterministic but time varying. In this case, the communication cost .J€o™m
in (2.2) may take a positive functional form depending on the channel model. Our
results also extend to other channel models, all coming from within three broad classes
of messaging a sequence of real numbers: (1) quantized messaging, (2) unquantized
but irregular, event-triggered sampling, and (3) unquantized messaging corrupted by
additive channel noise. For each of these channel models, we find that the dynamic LQ
design problem gets a separated optimal solution despite the existence of a dual effect
in the corresponding networked control system. To obtain this design simplification,
we assume that at all times, the channel output is perfectly visible to the encoder.
Thus in each one of our channel models, there is an ideal, delay-free feedback channel
copying the actual channel outputs back to the encoder.

To show these extensions, we need to find the appropriate versions of Lemma 4.6.
Once this is done, all the steps in the proofs for Lemmas 4.7-4.8 and Theorem 4.9
can be repeated. We derived these versions of Lemma 4.6 in [34] for three different
channel models. We show that for each of the channel models in [34], an encoder
that is controls forgetting from time zero will be optimal in combination with the
certainty equivalence control laws of (4.8). Below we outline such developments when
the channel is real valued with added noise, for the scalar, fully observed plant (2.1)
and the objective function (2.2). For discussions on the other channel models, see [34].

5.1. Messaging over a noisy linear channel. The considered channel model
(see Figure 6) is a generalization of the classical additive white Gaussian noise channel,
where we let the channel noise be colored and non-Gaussian. This channel accepts
real valued inputs ¢; and delivers outputs z; with noise added. For 0 < t < T, the
channel output z; = t; + x¢, where the channel noise process {y;} is IID with mean
zero and variance ai < 0o. At time ¢, the noise x; is independent of the state, control,

Plant Encoder

ke Tii1 = ATy + Up + W, T & (xh; 2671
+1 U t & (xhs 25 )

Zt
Controller /kt
[ 201

Ut |_le (=0) #t \—_U te

F1G. 6. Block diagram for additive white noise channel.
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and process noise up to and including time ¢. For this style of messaging, we describe
a model that allows the encoder to choose the SNR for each message. The model will
also specify costs incurred for choosing message SNRs.

Let the even function ¢(-) increase with increasing magnitude of argument, and
let ¢(0) = 0. An example is ¢(:) = (2. Let 7 denote an upper limit on inputs to the
channel. Then the communication cost incurred at a time ¢ can be described as

b {gz)(m if Ju| <7,

+oo if u] > 7.

Let P < ¢(7) denote an upper limit on the average power of channel inputs over the
entire horizon. We define the communication cost from time ¢ to the end as

b1 oo B[S )] Soe() SR+,
' S it ST () > P (T+1),

where m is a fixed nonnegative scalar. Then the cost J“om™ = J[%O;]lm.

It is straightforward to see that {a, {t;}57 5 {15 {216 "} are sufficient
statistics at the encoder. As with quantized and event-triggered messaging, there is
scope for the dual effect since the encoding map may be nonlinear. Clearly there is
no dual effect introduced in the case where (1) the upper limit on inputs is removed,
and (2) the encoder implements an affine encoder. But in general, there is scope
for introducing the dual effect. If the encoder implements the quadratic encoder
gauadratic: _ 02 then there is a second-order dual effect. Another example of an
admissible encoder that introduces a dual effect is the piecewise-constant encoder:

-1 ifz € (—00,—0),
& =140 ifx, e (—6,+40),
T ifax e (46,—0),

where the threshold 6 is fixed. In fact, this encoder has nearly the same input-output
behavior as the encoders considered in Examples 1 and 2. Hence, it is easy to setup
an example with an additive noise channel such that the dual effect is present. When
there is a finite, hard limit 7 on amplitudes of channel inputs, then the dual effect is
present for any encoder other than the trivial one, £ = constant. As with other types
of messaging, we can show that even though the dual effect is present, the dynamic
encoder-controller problem has a separated solution and certainty equivalence controls
are optimal.

LEMMA 5.1 (controls-forgetting compander optimal for affine controls). Fiz
time t =i and apply control laws affine from time i. Suppose that for all times j > i
the optimal encoding policies 8]*() and their performances are independent of the par-
tial control waveform {u;,...,ur}. Then, for all times j > i—1 the optimal encoding
policies SJ*() and their performances are independent of the slightly longer waveform
{ui,l, Uiy o - - ,UT}.

Proof. We carry out two steps. First we show that because the cost-to-go is
quadratic, the quantizer’s objective at time ¢ is to minimize a sum I['; of current
and future estimation distortions. Second we show that the minimum of this sum
distortion is independent of the control w;_;. Thus the optimal encoder becomes
controls forgetting from time ¢ — 1. O
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The main result for communication over a noisy linear channel is then as follows.
THEOREM 5.2 (optimality of separation and certainty equivalence for additive
noise channel). For Design problem 2, with the additive noise channel, the per-
formance cost (2.2) with communication cost (5.1) is minimized by applying u; =
—k{ Ty in combination with the compander, which is controls forgetting from time

zero, (G {zito "t {edo !) = arginf, Ti(e; {z:}5 ', {ei}g 1), where fryr =1, B =
p+a*qBiv1/(q+ Biv1), Ni = a®B 1 /(q+ Biv1), kf = aBit1/(q+ Biv1), and
FT_{m o if Siew () > P(T+1),
E [(CT —Crir) +me ()
Ni=XxE {(Ct - Zt\t)g +mp (1)
I} = inf Ty (o).

T—1 .
er, {zi, €} ] otherwise,

e D" |+ E [T (e 10)]

Moreover, this control law is a certainty equivalence law.

Proof. Starting with the result of Lemma 4.5 and repeatedly applying Lemmas 5.1
and 4.8 proves optimality. Lemma 3.3 implies that the control laws of (4.8) are indeed
certainty equivalence control laws as per [40]. O

6. Constrained encoder-controller design. We now use our understanding
of the dynamic encoder-controller design problem (Design problem 2) to examine the
constrained encoder-controller design problem (Design problem 3). In this section, we
show that, in general, separation in design of encoder and controller is not optimal
for these design problems. Some of these counterexamples illustrate that the distor-
tion term in the cost-to-go lacks symmetry w.r.t. translations (4.7). Recall that this
property was instrumental in ensuring separation in the dynamic encoder-controller
design problem (see proof of Lemma 4.6).

6.1. Symmetry w.r.t. translations leads to separation. We present a sim-
ple example of a dynamic encoder-controller design problem: the encoder is specified
in a parametric form, but the choice of the parameters can be dynamic, with no re-
strictions on the set of parameters. We show that the optimal controller uses the
certainty equivalence law.

Ezample 4. For the scalar linear plant (2.1), with initial state zy given by a zero
mean Gaussian with variance o2, and process noise wy, given by a zero mean Gaussian
with finite variance o2, let the horizon length T' = 2. Let the cost coefficients p and ¢
remain unspecified. Let the channel alphabet be the discrete set {1, 2}. The controller
receives a quantized version of the state

1 ifx, <6,
2k = .
2 otherwise .

The quantizer thresholds §y and §; are to be chosen along with the control signals ug
and uq, to jointly minimize the two-step horizon control cost.

We use dynamic programming to find the optimal values for uq, §; and ug, o,
in the specified order. From Lemma 4.5, we know that u} is given by the certainty
equivalence law uj = —ad1);/(q+ 1), where the MMSE estimate of z; is given by
By = E[z1]{2:}}]. Then, let us consider the cost-to-go at the previous time step,

a?

(6.1) Vo =E|a*(p+a*)xg + (g +p + a®)u + 2a(p + a*)zouo — q_}_—lell

Z0:| + K,
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where £ = (1 + p + a?)o?. The above cost-to-go is to be minimized by selecting
suitable ug and §; simultaneously. To do this, we first need to find an expression
for E[£f|l|z0]. The encoder outputs at times k£ = 0,1 tell us the quantization cells in
which zg, 71 lie. We use this information to find an expression for the estimate 21,
as shown in the appendix of [34], and write the optimal cost-to-go as

(6.2)

function of ug

20

Vi =min { E |a®(p + a?)z? + <q+p+a2qil>ug+2a (p+a2qil)xouo

0,01

N 2 6j,17u0 5j7u0
a2 Zj:l v ( o2 ’ o2
+(

— L+p+a®)o? 3,
qg+1 Plzg € (6;-1,0;)] P )

éFlz function of ug and &;

where 03 = 02 + a’02, and where 2y = [ implies x¢ lies in the Ith cell (6;_1,6;), and

z1 = j implies 27 lies in the jth cell (6;_1,0;), for 1 < j < N. The term ¥(r, 7) in the
above equation is given by
(6.3)

9(r,7) = {— 4o d (ﬁ—l) ) (TZ—2 - elo_i) — oo d(r)® (g_ll _ Tﬂ;%)

K
+ aoy (ell) P (r2 — 91li> + o2¢(r)® <9l—1 - ra%) ] ,
O Ow Ow 01 Ow r=r
where 07 = 0202 /03 and ®(-) is the cumulative distribution function of the standard
normal distribution.

The quantization distortion term I'; in (6.2) possesses symmetry w.r.t. transla-
tions, as defined in (4.7). Thus, for any value of the control signal ug, the minimum
value is given by I'f(€1), a term that depends only on the encoder. Then, the cost-
to-go w.r.t. the control signal ug comprises only the terms in the first row in (6.2).
Hence, we obtain separation. Furthermore, the optimal control is given by the cer-
tainty equivalence law u§* = —a(p + a? #ﬂ)/(p +q+ azq%)fcom. Thus, the certainty
equivalence property holds for this setup.

We illustrate symmetry w.r.t. translations in Figure 7. For the choice of parame-
tersa =1, p =1, and ¢ = 1, we evaluate the quantization distortion term I'; and show
that the minimum that this function attains over the range of the quantizer thresh-
old 47 is invariant over ug. To evaluate the cost-to-go, we make an arbitrary choice,
09 = 0, for the quantizer threshold at time k = 0, and we compute the estimates and
probabilities using this choice. O

6.2. Optimal constrained encoder. We now impose a restriction on the choice
of encoder parameters. The one-bit quantizer that we considered in the previous ex-
ample selects two semi-infinite intervals as the quantizer cells: Ay = (—o0, ;] and
Ay = (0, 00). We restrict the choice of the quantizer threshold to a constraint set,
such that d; € ©. In the following example, we see that separation is not optimal.

Ezxample 5. Consider the same setup as in Example 4, with the restriction that
the quantizer threshold be chosen from the interval © = (—1,1). The quantizer
thresholds g € © and §; € © are to be chosen along with the control signals ug and
u1, to jointly minimize the two-step horizon control cost.
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-0.3 T T— T T T - I - I
[
5-04r T
=
S sl ---ug = —1, 2y € (—00,0) ||
A ‘\‘ —up =0, Zg € (—00,0)
é 06l RO W A, G R A ug =1, 79 € (—00,0) |
3 ---ug = —1, zp € (0,00)
«E -0.7 ' : —up =0, g € (0,00) H
& Equal Minima - - - Jw2’- AN N ug =1, 29 € (0,00)
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Encoder Threshold 0

Fic. 7. Illustration of symmetry w.r.t. translations of the quantization distortion term I'1 in
(6.2). Different values of ug result in the same minimum value for 't thus resulting in separation
and certainty equivalence in Example 4.

---ug = —1, 2y € (—00,0)
—ug =0, g € (—00,0)
..... up =1, 9 € (—00,0)
...... uy =1, zo € (0,00)
—up =0, 0 € (0,00)

---up = —1, zg € (0,00)

Quantization Distortion I'y

1 1
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Encoder Threshold §;

Fia. 8. This plot illustrates the lack of symmetry w.r.t. translations of I'1, when the quantizer
thresholds are restricted to be chosen from an interval, such as in Example 5. Different values of
ug do not result in the same minimum value for I'y over the range of 61, thus resulting in a lack of
separation and certainty equivalence.

We follow the same procedure as before. The optimal control signal u; is given
by the certainty equivalence law as u} = u$®. This gives us the same cost-to-go
Vo from (6.1). For the parameters a = 1, p = 1, and ¢ = 1, we plot I'; over a
range of quantizer thresholds §; € O, for three arbitrary choices of ug, in Figure 8.
By restricting the range of quantizer thresholds to ©, the curves do not reach their
minima at the same d; as in Figure 7. In particular, the minima for vy = —1,
when z¢ € (—00,0), and up = 1, when zy € (0,00) are higher than before. Thus, the
minimum value of I'; obtained over the range of §; now varies depending on the choice
of ug. Consequently, there is no longer a symmetry w.r.t. translations, and separation
is not achieved. Furthermore, the optimal control signal u must be chosen along with
0] to optimize the entire cost-to-go including the term I';. Thus, u§ must minimize a
nonquadratic expression in this problem, and cannot be chosen independently of the
encoding policy. Hence, separation of the controller and encoder is no longer opti-
mal. O

6.3. Optimal constrained controller. We now remove the restriction on the
encoder parameters, and instead impose a restriction on controls. Specifically, all
control values must come from a specified discrete set U.
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Ezample 6. Consider the same setup as in Example 4, with the restriction that the
control signal be chosen from a discrete set Y = {—1,0,1}. The quantizer thresholds
do and &7 are to be chosen along with the control signals ug € U and uy € U, to jointly
minimize the two-step horizon control cost.

The unconstrained minimizer for the cost-to-go at the terminal time is given by
the certainty equivalent control u$®. The best we can do, given the constraint set
U, is to choose the control value from the discrete set U that results in the lowest
cost-to-go. Using this principle, we find the optimal control signal u} to be

uj =49 0 if (¢+1)/2a> &1 >—(¢+1)/2a,

The optimality regions are identified by comparing min,, ¢y V1 (uq1) evaluated at each
permissible value of u1, and determining the switching points. The cost-to-go Vp,
obtained by averaging over the three different cost-to-go functions obtained at time
k =1, is given by

Vo= +p+a®)os, +E|a®(p + a®)xg + (g + p+ a®)ug + 2a(p + a®)zoug

We denote the terms in the above cost-to-go that directly depend on the choice of the
encoder threshold 6; as I''°. Using the expression for #;); and the posterior density
for 1 (derived in the appendix of [34]), we compute I'}¢ as
Z0:|
N
_ Z P[x() S (91_1,91) ,T1 € (5j_1,5

i)l A
]P[:EO S (el,l,ﬁl)] <(_2a$11 +Q+1)1{21\12%}

+(2adp + g+ Dl ey

+ (208 +g+ Dl o ooy

e = E{(—Qaiul +q+ 1)]1{@12('2—11} + (Qadin +g+ 1)]1{f1\1§_q2_+111}

7j=1
+ (20,!%1\1 +q+ 1)]1{£11<qz+a1}> '

Evaluating the above expression for parameters a = 1, p = 1, ¢ = 1, and some
arbitrary choice of quantizer threshold dy = 0, we plot '’ over a range of quantizer
thresholds ¢;, for different choices of uy from the discrete set U, in Figure 9. Notice
that the minimum values of T'R€ obtained over the range of §; vary depending on the
choice of ug. In other in words, there is no symmetry w.r.t. translations. Consequently,
a separation in design of the controller and encoder is no longer optimal. d

7. Conclusions. We examined some two-agent networked control problems and
found that the dual effect is present, in general. This makes these two-agent decision
problems hard, and we do not get the simplifications that are obtainable for the classi-
cal single-agent LQ problem. Thus it is not surprising that neither controls-forgetting
encoders nor certainty equivalence controls are optimal for two-agent decision prob-
lems that have constraints on encoders or controls. However, it is surprising that
for the dynamic encoder-controller design problem, it is optimal to apply a controls-
forgetting encoder in combination with certainty equivalence controls.
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Fic. 9. This plot illustrates the lack of symmetry w.r.t. translations for Ffﬁc, when the controls

are restricted to be chosen from a discrete set U in Example 6. Different values of ug do not result
in the same minimum value for F{%C over the range of 81, thus resulting in the lack of separation
and certainty equivalence.

Our results also have consequences for some one-agent decision problems. For the
networked control loop in Figure 1, consider the one-agent decision problem obtained
by fixing the encoder and asking for the design of the controller alone. A theorem of
Bar-Shalom and Tse [7] applies to the special case where the prescribed encoder is
restricted to be memoryless. This is precisely the case where the encoding maps may
depend on time, but not on inputs or outputs of the encoder. For such encoders the
theorem in [7] says that certainty equivalence controls are optimal if and only if there
is no dual effect in the loop. Such a neat dichotomy need not hold in cases where
the prescribed encoder is dynamic. To see this, consider a two-agent dynamic design
problem where it is optimal to apply the pair (£¢F* K¢F) of controls-forgetting
encoder and certainty equivalence controls. Since the encoding strategy £°F'* is
controls forgetting, its individual encoding polices take the form

0 (s oy ) =i (@ 7).

Consider the new encoding strategy £ whose individual encoding maps take the form

Et(xt,DC‘“” )—€t<§}+2atlz ZtlzCE (= }t 1)
= (xt _ Z_:at—l—iuicE; {Zi}tT—1> ,
i=0

where u; are the controls generated by the actual controller, and u$F are the cer-
tainty equivalence controls as per the law (4.8). Since in general u; # u{'®, this
encoder is not controls forgetting, which means that the loop gets a second-order dual
effect. But notice that the pair (£F,KF) incurs exactly the same performance as
the pair (£¢F>* K¢F). Hence for the one-agent decision problem obtained by fixing
the encoder to be £T, it is optimal to apply certainty equivalence controls. This is an
example of a one-agent decision problem for a linear plant and quadratic performance
costs where certainty equivalence controls are optimal, even though there is a dual
effect in the loop. Thus we can conclude that the theorem of Bar-Shalom and Tse
cannot generalize to the case of dynamic encoders.
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