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Abstract: We consider a discrete-time networked LQG control problem in which state information must
be transmitted to the controller over a noiseless binary channel using prefix-free codewords. Quantizer,
encoder and controller are jointly designed to minimize average data-rate while satisfying required LQG
control performance. We study the effects of selecting large block-lengths (data transmission intervals)
from the perspectives of information-theoretic advantage due to coding efficiency and control-theoretic
disadvantage due to delay. In particular, we demonstrate that the performance of networked control
scheme by Tanaka et al. (2016) can be improved by adjusting the block-length optimally. As a by-
product of this study, we also show that the data-rate theorem for mean-square stability similar to Nair
and Evans (2004) can be recovered by considering sufficiently large block-lengths.
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1. INTRODUCTION

In this paper, we consider a discrete-time state-feedback control
system in which state information must be transmitted to the
controller through a noiseless binary channel at every time
step. As depicted in Figure 1, we assume that the plant to be
controlled has a linear time-invariant state space model 1

xt+1 = Axt +But + Fwt (1)
where xt is the Rn-valued state process, ut is the Rm-valued
control input, and wt is the Rp-valued white Gaussian noise
with unit covariance Ip. Assume that det(A) �= 0 and (A,B) is
a stabilizable pair. For every non-negative integer t, let

At ⊂ {0, 1}� � {0, 1, 00, 01, 10, 11, 000, · · · }
be a set of prefix-free variable-length binary codewords (Cover
and Thomas, 1991, Ch.5). There are multiple ways to choose
a codebook At, and we allow the choice to be time-varying.
Designing appropriate codebooks A∞

0 = (A0,A1, · · · ) is part
of our design problem. We also design an encoder policy

E∞
0 � {et(at|xt

0, a
t−1
0 )}t=0,1,... (2)

which is a sequence of Borel measurable stochastic kernels 2

on At given X t
0 ×At−1

0 , and a controller policy

D∞
0 � {dt(ut|at0, ut−1

0 )}t=0,1,... (3)
which is a sequence of Borel measurable stochastic kernels on
Ut given At

0 ×U t−1
0 . Notice that E∞

0 and D∞
0 are general (pos-

sibly non-deterministic) causal decision policies. The length
of a codeword at ∈ At transmitted from the encoder to the
controller at time step t will be denoted by a random variable
�t. A triplet (A∞

0 , E∞
0 ,D∞

0 ) will be called a design, and the
space of such designs is denoted by Γ.

1 In this paper, random variables are denoted by lower case bold symbols such
as x. Calligraphic symbols such as X are used to denote sets, and x ∈ X is
an element. We denote by xt

0 a sequence x0, x1, ..., xt, and xt
0 and X t

0 are
understood similarly.
2 Foundational discussions on stochastic kernels can be found in Bertsekas and
Shreve (1978).
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Fig. 1. LQG control over noiseless binary channel.

In this paper, we are interested in a design (A∞
0 , E∞

0 ,D∞
0 ) that

minimizes data rate (i.e., average expected codeword length per
time step) while satisfying a required level of LQG control per-
formance γ. Formally, we consider an optimization problem:

R(γ) � min
Γ

lim sup
T→+∞

1

T

T−1∑
t=0

E(�t) (4a)

s.t. lim sup
T→+∞

1

T

T−1∑
t=0

Ec(xt,ut) ≤ γ. (4b)

The cost function c(xt,ut) is given by a positive definite
quadratic form

c(xt,ut) =

[
xt

ut

]� [
Q S
S�R

] [
xt

ut

]
.

In the optimization problem (4), we require the average data
rate to be minimized. However, the number of bits �t to be
transmitted in a particular time step t can be arbitrary large.
Problem (4) is motivated by a common engineering situation
in which a digital communication channel must be shared by
multiple control systems. For instance, many real-time appli-
cations share a common communication bus in an automobile
system (e.g., Johansson et al. (2005)). Even though the com-
munication requirements by individual applications might be
small, they could collectively cause a serious packet congestion
in the shared bus. It is therefore important for individual control
applications to minimize their channel use in order to utilize a
shared communication resource efficiently.
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In the optimization problem (4), we require the average data
rate to be minimized. However, the number of bits �t to be
transmitted in a particular time step t can be arbitrary large.
Problem (4) is motivated by a common engineering situation
in which a digital communication channel must be shared by
multiple control systems. For instance, many real-time appli-
cations share a common communication bus in an automobile
system (e.g., Johansson et al. (2005)). Even though the com-
munication requirements by individual applications might be
small, they could collectively cause a serious packet congestion
in the shared bus. It is therefore important for individual control
applications to minimize their channel use in order to utilize a
shared communication resource efficiently.
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Fig. 2. Standard design (left) and design with block-length two
(right).

Obtaining the exact solution to (4) is computationally chal-
lenging. However, it is shown by Silva et al. (2011) that a
lower bound DI(γ) ≤ R(γ) is obtained by solving a convex
optimization problem

DI(γ) � min
Γ̃

lim sup
T→+∞

1

T
I(xT−1

0 → uT−1
0 ) (5a)

s.t. lim sup
T→+∞

1

T

T−1∑
t=0

Ec(xt,ut) ≤ γ (5b)

where I(xT−1
0 → uT−1

0 ) �
∑T−1

t=0 I(xt
0;ut|ut−1

0 ) is called
directed information. Here, we employ a definition of directed
information by Massey (1990), while several generalized def-
initions are proposed in the literature. Minimization in (5a)
is over the space Γ̃ of the sequences of stochastic kernels
{pt(ut|xt

0, u
t−1
0 )}t=0,1,....

Silva et al. (2011) also show that R(γ) is upper bounded by
DI(γ)+c, where the c is a scalar constant. Their proof is based
on the construction of an entropy-coded dithered quantizer
(ECDQ) whose rate loss due to the space-filling loss of the
lattice quantizers and the loss of entropy coders is bounded
by c. This result, although restricted to SISO control systems
in the original paper, is recently extended to MIMO control
systems by Tanaka et al. (2016). For completeness, we present
the synthesis procedure proposed there in Section 3.

Although the quantizer/controller design methods proposed in
Silva et al. (2011) and Tanaka et al. (2016) are suboptimal
(with bounded performance loss), they are relatively simple
to implement, since they are built on uniform quantizers. The
optimal quantizer/controller design is much more involved;
iterative design algorithms and structural results are studied by
Bao et al. (2011) and Yüksel (2014).

The purpose of this paper is to demonstrate that the perfor-
mance of the design in Silva et al. (2011) and Tanaka et al.
(2016) can be further improved by choosing the block-length 3

optimally. If the block-length is k, the state information is
quantized, encoded, and transmitted to the controller only once
in every k time steps. In other time steps, no information is
transmitted from the encoder to the controller, i.e., �t = 0 for t
such that t mod k �= 0. This is visualized in Figure 2.

3 In this paper block-length is used as a synonym for data transmission
intervals or sampling intervals.

There are pros and cons of selecting block-lengths larger than
one. They can be intuitively seen in the following trade-off:

(A) From a control-theoretic viewpoint, selecting large block-
lengths is a disadvantage. Notice that control input ut can
depend on the state sequence only up to xt′ , where t′ is
the largest integer such that t′ ≤ t and t′ mod k = 0. In
particular, large block-length implies large delay.

(B) From an information-theoretic viewpoint, transmitting high-
resolution data once in a while rather than transmitting low-
resolution data at every time step is beneficial, since the
former allows more efficient data compression. Namely, the
effect of space-filling loss due to quantization and the entropy
coding loss per time step can be made smaller.

In this paper, we perform a quantitative study on this trade-off
using theoretical lower and upper bounds of the best achievable
rates. Since the best achievable rates are still difficult to evaluate
exactly, it remains difficult to determine the optimal block-
length analytically. Hence, we also perform a numerical study
to see how the performance of Tanaka et al. (2016) varies with
different block-lengths.

2. RELATED WORK

LQG control problems with data-rate constraints have been
tackled by many papers from various angles. Joint controller
and quantizer design was considered by Bao et al. (2011) and
Yüksel (2014). Extensions of the classical separation principle
are discussed in Matveev and Savkin (2004), Fu (2009) and
You and Xie (2011). Rate-performance trade-off studies can be
found in Tatikonda et al. (2004), Huang et al. (2005), Lemmon
and Sun (2006) and Freudenberg et al. (2011). In particular,
Silva et al. (2011) establishes a connection between (4) and (5).
Many important results that cannot be mentioned here can be
found in Yüksel and Başar (2013).

Optimal block-length for data-rate minimization in LQG con-
trol is considered in Borkar and Mitter (1997). A similar prob-
lem for controlled hidden Markov chain is considered in Tan
et al. (2004). Although these papers are closest in spirit to this
paper, these analyses involve computationally intractable steps
(e.g., dynamic programming) for the block-length optimization,
which restrict venues for quantitative studies. In this paper, we
apply newly obtained theoretical upper and lower bounds (Silva
et al. (2011)) and synthesis (Tanaka et al. (2016)) to make the
study more quantitative and computationally accessible.

In this paper, we assume time-triggered communications be-
tween encoder and controller. However, average data-rate min-
imization may also be attained by event-triggered communica-
tions. Åström and Bernhardsson (2002) compared conventional
periodic (Riemann) sampling and event-based (Lebesgue) sam-
pling strategies, and showed that the latter achieves a bet-
ter performance in a certain context. This observation is ex-
tended by Cervin and Henningsson (2008) to the situations in
which multiple control loops share a communication medium.
Information-theoretic framework for event-triggered control is
recently considered by Tallapragada and Cortés (2014).

3. NETWORKED CONTROLLER DESIGN

In this section, we summarize the result obtained by Tanaka
et al. (2016). A control architecture proposed there for problem
(4) (Figure 1) is shown in Figure 3. Components in Figure 3 can
be constructed by the following procedure.
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(1) Determine a controller gain by
K � −(B�XB +R)−1(B�XA+ S�)

where X is the unique positive definite solution to the
algebraic Riccati equation
A�XA−X +Q

− (A�XB + S)(B�XB +R)−1(B�XA+ S�) = 0.

(2) Solve a semidefinite programming problem 4

DI(γ) = min
P,Π�0

1

2
log detΠ−1 + log | detA| (6)

s.t. Tr(ΘP ) + Tr(F�XF ) ≤ γ

P � APA� + FF�
[
I −Π F�

F APA� + FF�

]
� 0

where Θ � K�(B�XB +R)K.
(3) Let r ≥ 0 be the rank of a positive semidefinite matrix

SNR(γ) � P (γ)−1 − (AP (γ)A� + FF�)−1

where P (γ) is the optimal solution to (6) obtained in step
(2). Choose a matrix C ∈ Rr×n with orthonormal rows and
a positive definite diagonal matrix V by the singular value
decomposition C�V −1C = SNR(γ).

(4) Construct a control architecture shown in Figure 3, where
(a) Q∆ = (Q∆1

, ..., Q∆r
) denotes uniform quantizers such

that for each i = 1, ..., r, Q∆i
(·) is defined by

Q∆i
(x) = j∆i for j∆i − ∆i

2 ≤ x < j∆i +
∆i

2

where ∆i is the quantizer step size such that
∆2

i

12 = Vii (the i-th diagonal entry of V ).
(b) ξt is an Rr-valued i.i.d. dither signal (an artificial noise)

such that its i-th entry ξt,i has a uniform distribution
U [−∆i

2 , ∆i

2 ].
(c) qt = (qt,1, ...,qt,r) with qt,i = Q∆i(θt,i + ξt,i) is a

quantized signal taking values in
Z̃r � {(j1∆1, ..., jr∆r) : (j1, ..., jr) ∈ Zr},

(d) (E(ξt), D(ξt)) is a Shannon-Fano encoder-decoder pair
for a countably infinite alphabet Z̃r, adjusted to the condi-
tional probability distribution p(qt|ξt = ξt).

(e) the “Kalman filter” represents a recursive process
x̂t|t−1 = Ax̂t−1 +But−1

x̂t = x̂t|t−1 + Lqt

with L = Y C�(CY C� + V )−1 where Y is the unique
positive definite solution to the algebraic Riccati equation
AY A�−Y +FF�−AY C�(CY C�+V )−1CY A�= 0.

Theorem 1. For every γ > Tr(F�XF ), DI(γ) defined by (5)
can be computed by (6) and provides a lower bound of the
achievable rate R(γ) defined by (4a). Moreover, the control
architecture in Figure 3 designed by steps (1)-(4) achieves
the control performance γ and the average data rate R̄(γ)

strictly smaller than DI(γ) + r
2 log

4πe
12 + 1, where r �

rank(SNR(γ)) ≤ n. In particular, we have

DI(γ) ≤ R(γ) ≤ R̄(γ) < DI(γ) +
r

2
log

4πe

12
+ 1. (7)

Proof. See Tanaka et al. (2016). Basic form of this result is
attributed to Silva et al. (2011).
4 In Tanaka et al. (2016), SDP (6) is written in a different form. It can be shown
that the expressions are equivalent if detA �= 0 and W � FF� has full-rank.
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Fig. 3. Proposed architecture for LQG control.

Remark 1. In Figure 3, encoder and controller must share the
same realization of the dither signal ξt. This is a common diffi-
culty in the implementation of subtractive dithered quantizers
(see, e.g., Gray and Stockham (1993)). In practice, pseudo-
random number generators with shared seeds are used by both
parties.
Remark 2. Step (4)-(d) cannot be performed in practice, since
this step requires different codebooks for different realizations
of ξt (there are infinite possibilities). Moreover, for a fixed ξt,
true distribution p(qt|ξt = ξt) is difficult to obtain and thus
Shannon-Fano code cannot be designed optimally. In our sim-
ulation study in Section 6, we make a modification to this step.
First, we obtain the probability distribution p(qt) empirically
by means of simulation. Then, we design the Huffman encoder-
decoder pair (E,D) adapted to the obtained probability distri-
bution p(qt), and the same (E,D) pair is used for all realiza-
tions of ξt. After this modification, the result of Theorem 1
cannot be guaranteed. However, our simulation study shows
that Theorem 1 predicts the performance of the controller well
even if these modifications are applied.

4. OPTIMAL BLOCK-LENGTH

As in Borkar and Mitter (1997), we design a control strategy
with block-length k by simply applying control design scheme
presented in Section 3 to the k-lifted state space model. Then
we analyze the performance of k-lifted design using Theorem 1.

4.1 k-lifted system

Given a positive integer k, the k-lifted system corresponding to
the original system (1) has x(k)

τ � xkτ as the state vector, where
τ = 0, 1, 2, ... is a new time index. For each τ = 0, 1, 2, ..., new
control and noise inputs are defined by

u(k)
τ �




ukτ

ukτ+1

...
ukτ+k−1


 ,w(k)

τ �




wkτ

wkτ+1

...
wkτ+k−1


 .

Introducing new matrices A(i), B(i), F (i) for i = 0, ..., k and
E(i) for i = 0, ..., k − 1, 5 the state space model of the k-lifted
system corresponding to the original system (1) is

x
(k)
τ+1 = A(k)x(k)

τ +B(k)u(k)
τ + F (k)w(k)

τ . (8)

5 We define A(i) � Ai, B(i) �
[
Ai−1B · · · AB B 0n×m(k−i)

]
,

F (i) �
[
Ai−1F · · · AF F 0n×p(k−i)

]
for each i = 0, 1, 2, · · · , k. We

consider A(0) = In, B(0) = 0n×mk and F (0) = 0n×pk . We also define
E(i) �

[
0m×mi Im×m 0m×m(k−i−1)

]
for i = 0, 1, 2, · · · , k − 1.
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The original state and control inputs are related to x
(k)
τ ,u

(k)
τ

and w
(k)
τ by

xkτ+i = A(i)x(k)
τ +B(i)u(k)

τ + F (i)w(k)
τ

ukτ+i = E(i)u(k)
τ

where i = 0, 1, ..., k−1. We also introduce a new cost function

c(k)(x(k)
τ ,u(k)

τ )

�

[
x
(k)
τ

u
(k)
τ

]�[
Q(k) S(k)

S(k)�R(k)

][
x
(k)
τ

u
(k)
τ

]
+

k−1∑
i=0

Tr(F (i)�QF (i)) (9)

where[
Q(k) S(k)

S(k)�R(k)

]
=

k−1∑
i=0

[
A(i)B(i)

0 E(i)

]�[
Q S
S�R

][
A(i)B(i)

0 E(i)

]
.

We have selected a new cost function so that (9) is equal to the
value of the original cost function aggregated over t = kτ, kτ+
1, ..., kτ + k − 1. It is easy to verify that

k−1∑
i=0

Ec(xkτ+i,ukτ+i) = Ec(k)(x(k)
τ ,u(k)

τ )

holds under the condition that (x(k)
τ ,u

(k)
τ ) and w

(k)
τ are mu-

tually independent. This condition is satisfied by all k-lifted
designs, which will be defined next. 6

4.2 k-lifted design

Let A(k)
τ be the set of prefix-free variable-length binary code-

words a(k)τ transmitted at time t = kτ . The length of a(k)τ is a
random variable �(k)τ . Note that we require At = {φ} for all t
such that t mod k �= 0. Hence the encoder and decoder policies
are adequately modified to

{E(k)}∞0 � {e(k)τ (a(k)τ |{x(k)}τ0 , {a(k)}τ−1
0 )}τ=0,1,...

{D(k)}∞0 � {d(k)τ (u(k)
τ |{a(k)}τ0 , {u(k)}τ−1

0 )}τ=0,1,....

The space of k-lifted design ({A(k)}∞0 , {E(k)}∞0 , {D(k)}∞0 ) is
denoted by Γ(k). The minimum average rate per time step is
defined by

R(k)(γ) � min
Γ(k)

lim sup
T→+∞

1

kT

T−1∑
τ=0

E(�(k)τ ) (10)

s.t. lim sup
T→+∞

1

kT

T−1∑
τ=0

Ec(k)(x(k)
τ ,u(k)

τ ) ≤ γ.

Notice that the factor k in the denominator is introduced so that
rate and control cost are evaluated per time step in the original
time scale. If k = 1, (10) is equivalent to (4). Similarly, we
define

DI(k)(γ)� min
Γ̃(k)

lim sup
T→+∞

1

kT
I({x(k)}T−1

0 →{u(k)}T−1
0 ) (11)

s.t. lim sup
T→+∞

1

kT

T−1∑
τ=0

Ec(k)(x(k)
τ ,u(k)

τ ) ≤ γ.

for the k-lifted state space model (8). Minimization in (11) is
over the space Γ̃(k) of the sequences of stochastic kernels

{p(k)τ (u(k)
τ |{x(k)}τ0 , {u(k)}τ−1

0 )}τ=0,1,....

6 For instance, in Figure 2 (right), (x2,u2,u3) and (w2,w3) are mutually
independent.

The function DI(k)(γ) has a semidefinite representation similar
to (6), except that matrices A,B, F,Q,R and S are replaced by
A(k), B(k), F (k), Q(k), R(k) and S(k).

Let R̄(k)(γ) be the average rate of the k-lifted design obtained
by applying the design procedure in Section 3 to the control
problem (10). It follows from Theorem 1 that for every γ > 0,

DI(k)(γ)≤R(k)(γ)≤R̄(k)(γ)<DI(k)(γ)+
r

2k
log

4πe

12
+
1

k
.

(12)

4.3 Block-length selection

The inequality (12) has the following implications. First, ob-
serve that DI(γ) ≤ DI(k)(γ) holds for every γ > 0. 7 This
means that the lower bound of the best achievable rate increases
by choosing k > 1, and as a result some rate-performance re-
gion becomes theoretically unattainable. This is a disadvantage
of choosing k > 1, which is related to the item (A) mentioned in
Section 1. Second, the effect of space-filling loss r

2k log 4πe
12 and

the entropy coding loss 1
k can be suppressed by selecting a large

k. This is an advantage corresponds to the item (B) in Section 1.
Also, large k helps to tighten the gap between the lower and
upper bounds in (12). This means that the rate performance of
the proposed control design can be made more predictable by
selecting large block-lengths.

Although (12) roughly estimates how R(k)(γ) and R̄(k)(γ)
depend on k, it is still difficult determine the optimal k that
minimizes these quantities. Thus, in Section 6, we numerically
demonstrate that selecting k > 1 can indeed reduce R̄(k)(γ) in
certain occasions, and that the optimal k also depends on γ.

5. DATA-RATE THEOREM FOR STABILIZATION

Another interesting result is obtained by taking the limit k →
+∞ in (12). This leads to an achievability proof of the data-
rate for mean-square stability similar to Nair and Evans (2004).
Denote by σ(A) the collection of eigenvalues of A counted with
multiplicity. Introduce a quantity

H(A) �
∑

λi∈σ(A)

max{log |λi|, 0}. (13)

From the semidefinite representation (6), it can be directly
shown (Tanaka et al., 2015, Corollary 1) that

lim
γ→+∞

DI(γ) = H(A).

Since DI(k)(γ) has a semidefinite representation similar to (6),
it can be easily shown that

lim
γ→+∞

DI(k)(γ) =
1

k
H(Ak) = H(A). (14)

With this observation, we obtain the next Theorem.
Theorem 2. Define R(k)(γ) by (10) and H(A) by (13). Then

lim
k→+∞

lim
γ→+∞

R(k)(γ) = H(A). (15)

Moreover, for every ε > 0, there exists a k-lifted design with
sufficiently large block-length k such that the average rate is at
most H(A) + ε and the mean-square stability is attained.
7 To prove DI(γ) ≤ DI(k)(γ), use the fact that for every policy in Γ̃(k),
equalities I({x(k)}T−1

0 → {u(k)}T−1
0 ) = I(xkT−1 → ukT−1) and∑T−1

τ=0
Ec(k)(x(k)

τ ,u
(k)
τ ) =

∑kT−1

t=0
Ec(xt,ut) hold. This means that (5)

and (11) are equivalent optimization problems when the domain is restricted to
Γ̃(k). Next, observe that Γ̃(k) can be considered as a subset of Γ̃.
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Fig. 4. Networked LQG control of inverted pendulum on cart.

Proof. Due to (12) and (14), for every k, we have

H(A) ≤ lim
γ→+∞

R(k)(γ) < H(A) +
n

2k
log

4πe

12
+

1

k
from which (15) follows. Given ε > 0, choose sufficiently large
k such that

n

2k
log

4πe

12
+

1

k
≤ ε

2
.

For such k, choose sufficiently large γ such that

DI(k)(γ) ≤ H(A) +
ε

2
.

Due to (12), the rate of the controller constructed by the
procedure presented in this paper with selected k and γ satisfies

R̄(k)(γ) < DI(k)(γ) +
n

2k
log

4πe

12
+

1

k
≤ H(A) + ε.

Since the constructed controller stabilizes the closed-loop sys-
tem in the mean-square sense, the proof is complete.

In Nair and Evans (2004), a discrete noiseless channel model
is considered and the rate is measured by the log-cardinality
of the channel alphabet. Theorem 2 shows a slightly different
result, as it shows that the same rate is achievable by a noiseless
binary channel, even under the prefix-free restriction. However,
currently our proof relies on the use of subtractive dither and
the optimal Shannon-Fano code (Remarks 1 and 2), and thus
the value of Theorem 2 is more theoretical rather than practical.

6. NUMERICAL EXAMPLE

In this section, we consider the optimal block-length k that
minimizes the average rate R̄(k)(γ) for a given γ by means of
numerical simulation. We consider a state space model with

A =




1.000 0.0498 0.0028 0.0001
0.000 0.9913 0.1116 0.0028
0.000 −0.0005 1.0327 0.0508
0.000 −0.0189 1.3062 1.0327


, B =




.0098

.3908

.0212

.8485




F =




.1000 .0009 .0001 .0020

.0009 .1371 .0020 .0805

.0001 .0020 .1001 .0044

.0020 .0805 .0044 .2748


, Q = 2I, R = 1, S = 0.

This is a state space model of an inverted pendulum on a cart
linearized around its unstable equilibrium (Figure 4). 8 The
state space (x, ẋ, φ, φ̇) is four dimensional, where x is the
position of the cart and φ is the angle of the inverted pendulum.
Discrete time model is obtained with sampling frequency 20Hz.
8 Online resource “Control Tutorials for MATLAB and Simulink (CTMS)”
available at http://ctms.engin.umich.edu/CTMS/index.php?
example=InvertedPendulum&section=SystemModeling.

0 5 10 15 20 25
-0.2

0

0.2

P
os

iti
on

 
x t [m

]

State Kalman estimate

0 5 10 15 20 25
-0.1

0

0.1

A
ng

le
?

t [r
ad

]

0 5 10 15 20 25
Time [sec]

-0.04

-0.02

0

0.02

0.04

Q
ua

nt
iz

ed
 fe

ed
ba

ck
q

t

Fig. 5. Simulated state trajectory and quantized feedback signal.

Table 1. Quantized feedback signal qt, its empiri-
cal probability distribution, and Huffman codes.

Source qt Empirical Probability Huffman code
.0460 0.0006 11010100

.0345 0.0106 11011

.0230 0.0748 111

.0115 0.2388 01

0 0.3507 00

-.0115 0.2388 10

-.0230 0.0748 1100

-.0345 0.0106 110100

-.0460 0.0006 1101011

6.1 Quantized LQG control design

We first consider a basic design with block-length k = 1.
Control architecture shown in Figure 3 is constructed by the
procedure explained in Section 3. Pseudo-random numbers
are used for dither signals, which are shared by encoder and
controller (Remark 1). Huffman codes are constructed based
on the empirical probability distribution p(qt) (Remark 2).
Figure 5 shows simulated trajectories of the cart position xt,
angle of the pendulum φt, and the quantized feedback qt.
Notice that qt takes discrete values. Table 1 shows codewords
assigned to the quantized source qt.

6.2 Block-length

In Figure 6 (left), empirical performances of k-lifted designs are
shown for k = 1, 2, 3, 4. From this plot, it can be seen that for
γ = 15, the average rate is minimized by block-length k = 3.
Figure 6 (right) shows theoretical lower and upper bounds of
R(k)(γ) obtained in (12). It can be seen that better upper bounds
are available with larger block-lengths if control performance
requirements are not very stringent.
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Yüksel, S. (2014). Jointly optimal LQG quantization and con-
trol policies for multi-dimensional systems. IEEE Transac-
tions on Automatic Control, 59(6).
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