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Summary
A novel distributed model predictive control algorithm for continuous-time non-

linear systems is proposed in this paper. Contraction theory is used to estimate

the prediction error in the algorithm, leading to new feasibility and stability con-

ditions. Compared to existing analysis based on Lipschitz continuity, the proposed

approach gives a distributed model predictive control algorithm under less con-

servative conditions, allowing stronger couplings between subsystems and a larger

sampling interval when the subsystems satisfy the specified contraction conditions.

A numerical example is given to illustrate the effectiveness and advantage of the

proposed approach.
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1 INTRODUCTION

Model predictive control (MPC) has attracted intensive research efforts because of its ability in handling control input and state

constraints while optimizing some performance index.1 In centralized MPC, at every sampling time instant, the controller needs

to solve a finite-horizon constrained optimal control problem. However, for large-scale systems such as traffic networks2 and

building systems,3 centralized implementation is often impractical. Firstly, it is usually not possible to collect full information

of the whole system to realize a centralized controller. Secondly, as the dimension of the system grows, the corresponding

optimal control problem becomes intractable and cannot be solved within a reasonable period. To overcome these difficulties,

distributed MPC schemes have been proposed. Compared with the centralized MPC, distributed MPC solves subproblems of

smaller size in parallel based only on local information. Therefore, the communication burden and computational complexity

can be largely reduced.

Distributed MPC has been studied extensively in recent literature. For dynamically coupled linear discrete-time systems,

inspired by the approach in Mayne et al,4 a non-iterative tube-based MPC algorithm is proposed in Farina and Scattolini.5

In Giselsson and Rantzer,6 an iterative approach based on relaxed dynamic programming7 is designed. It requires controllers

to exchange information iteratively with their neighbours in every sampling time interval. An iterative MPC algorithm for

dynamically coupled nonlinear discrete-time systems is proposed in Stewart et al.8 For continuous-time systems, a dynam-

ically decoupled nonlinear model is considered in Li and Shi9 where robustness constraints are used to bound the future

behaviour of each subsystem. In Farina et al,10 a continuous-time algorithm is proposed for dynamically coupled linear sys-

tems. A Lyapunov-based algorithm is given in Liu et al11 for nonlinear dynamically coupled systems. This algorithm requires

controllers to know the model of the whole plant and a feasible Lyapnunov-based controller must be provided before the design

of the MPC algorithm. A continuous-time distributed algorithm for nonlinear dynamically coupled systems based on partial

state information is developed in Dunbar,12 where each controller informs neighbours about its predicted future behaviour and a
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consistent constraint is used to bound the difference between the evolution of the real state and the predicted one. More recently,

an algorithm based on partial state information is provided in Liu et al,13 which assumes that the coupling is weak enough so

that the error caused by ignoring the coupling can be compensated by properly designed constraints.

The aim of this paper is to develop a novel distributed MPC algorithm for continuous-time nonlinear systems based on partial

state information with reduced conservativeness of feasibility and stability conditions. In Dunbar12 and Liu et al,13 the recursive

feasibility and stability conditions are rather conservative. Instead of using Lipschitz continuity argument as in Dunbar12 and

Liu et al,13 in this paper, contraction theory14 is adopted to estimate the state prediction error.

The main contributions of this paper are summarized as follows: (1) Compared with the robust MPC using contraction

theory,15 our MPC algorithm is distributed and asymptotic stability of the whole system can be achieved; (2) Compared with

the algorithms proposed in Dunbar12 and Liu et al,13 our result is less conservative; (3) The online optimization problem in our

algorithm does not require a terminal cost function. Indeed, the objective function in our algorithm can be chosen freely. Two

constraints are instead used to guarantee feasibility and stability. In particular, the objective function is not used as a Lyapunov

functional candidate in our approach as in conventional MPC settings.1 Therefore, we have more flexibility on the choice of

objective function. It should be noted that also in Liu et al,11 the terminal conditions are not required, but in that work, the

controllers are assumed to know the model of the whole plant while we assume each controller only knows the model of the

corresponding subsystem. In Li and Shi,9 another type of contraction constraint is used in the online optimization problem,

but the objective function still needs to be designed carefully. In Magni and Scattolini,16 the contraction constraint proposed in

Kothare and Morari17 is used to ensure stability, but couplings are considered as bounded disturbances, while in our work, we

allow information exchange among subsystems so that the dynamical couplings can be handled in a more efficient way.

The remainder of this paper is organized as follows. In Section 2, the system model and control objective are stated together

with some necessary assumptions and preliminaries. In Section 3, the new distributed MPC algorithm is proposed. In Section 4,

recursive feasibility and stability of the proposed algorithm are analysed. In Section 5, a numerical example is given to illustrate

the effectiveness and advantages of the proposed algorithm. In Section 6, conclusions are drawn.

Some remarks on notation are as follows. R represents the set of real numbers and Rn represents the n-dimensional Euclidean

space. 0 is used to denote the zero matrix of appropriate dimension. For a matrix P, PT denotes its transpose. For a vector x,||x|| denotes its 2-norm and ||x||P the P-norm, ie, ||x||2P = xTPx, where P is a positive definite matrix. λmax(P) and λmin(P) are

the largest and the smallest eigenvalue of P = PT, respectively.

2 PRELIMINARIES AND PROBLEM FORMULATION

In this section, some preliminaries on graph theory and contraction analysis will be introduced. Then, the system model will be

given, and the control problem under investigation will be formulated.

2.1 Preliminaries
Consider a digraph defined as  = { , }, where  = {1, … ,N} is the set of nodes, each of which represents a subsystem.

 ⊆  ×  is the set of edges. If pair (i, j) ∈ , the state of subsystem i is in the dynamics of subsystem j and subsystem i is

referred to as an upstream neighbour of subsystem j while j is referred to as a downstream neighbour of i. The sets  u
i = { j ∈

| j is an upstream neighbour of i} and  d
i = { j ∈ | j is a downstream neighbour of i} collect all upstream neighbours and

downstream neighbours of subsystem i, respectively.

Contraction analysis is a powerful tool to analyze the stability of a class of nonlinear systems. A brief introduction to con-

traction analysis will be given in the following. More detailed discussions can be found in Lohmiller and Slotine,14 and Forni

and Sepulchre,18 and references therein. Consider an autonomous system ẋ(t) = f (x(t), t) where f is a n × 1 nonlinear vector

function continuously differentiable with respect to x and continuous in t, and x ∈ Rn is the state vector. Suppose that we have

2 state trajectories starting from different initial conditions. The virtual displacement δx is an infinitesimal displacement at a

fixed time and defines a linear tangent differential form differentiable with respect to time. The virtual velocity δẋ can be written

as δẋ = 𝜕f
𝜕x
(x, t)δx. The virtual displacement can also be expressed under the differential coordinate transformation

δz = Θ(x, t)δx,

where Θ(x, t) is a square matrix. The squared length is

δzTδz = δxTM(x, t)δx,
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where M(x, t) = ΘT(x, t)Θ(x, t). Hence,
d
dt
(δzTδz) = 2δzTFδz, (1)

where F = (Θ̇ + Θ 𝜕f
𝜕x
)Θ−1 is the generalized Jacobian, which represents the co-variant derivative of f in δz coordinates. We can

also rewrite (1) in δx coordinates as

d
dt
(δxTMδx) = δxT

(
𝜕f
𝜕x

T
M + Ṁ + M

𝜕f
𝜕x

)
δx.

It is easy to see that the exponential convergence of δzTδz or δxTMδx can be concluded in regions where
𝜕f
𝜕x

T
M + Ṁ + M 𝜕f

𝜕x
≤

−βMM holds with βM a strictly positive constant. The definition of contraction region is then consequently given as follows:

Definition 1. Lohmiller and Slotine19 Given the system equation ẋ = f (x, t), a region of the state space is called a contraction

region with respect to a uniformly positive definite metric M(x, t) = ΘT(x, t)Θ(x, t), if in that region F in (1) is uniformly

negative definite or
𝜕f
𝜕x

T
M + Ṁ + M 𝜕f

𝜕x
≤ −βMM for some βM > 0.

Convergence in the contraction region is summarized as follows:

Theorem 1. Lohmiller and Slotine19 Given the system ẋ = f (x, t), any trajectory x(t), which starts in a ball of constant
radius with respect to the metric M(x, t), centered at a given trajectory and contained at all times in a contraction region
with respect to M(x, t), remains in that ball and converges exponentially to this trajectory. Furthermore, global exponen-
tial convergence to the given trajectory is guaranteed if the whole state space is a contraction region with respect to the
metric M(x, t).

In the rest part of this paper, we assume that M(x, t) = M is a constant matrix.

2.2 Problem formulation
Without loss of generality, we assume that the states as well as control inputs of all the subsystems have the same dimension.

Subsystem i has the following dynamics:

ẋi(t) = fi(xi(t), x−i(t), ui(t)), t ≥ t0, (2)

where xi ∈ Rn is its state, ui ∈ Ui ⊆ Rm the control input, and x−i = {xj, j ∈  u
i } denotes the concatenated vector of the

states of the upstream neighbours of subsystem i. Denote x = (xT
1
, … , xT

N)
T , u = (uT

1
, … , uT

N)
T so that the whole system can be

written as

ẋ(t) = f (x(t), u(t)), t ≥ t0, (3)

where f (x, u) = ( f T
1
(x1, x−1, u1), … , f T

N (xN , x−N , uN))T . Our objective is to design a distributed control algorithm to stabilize

system (3) while enforcing the input constraints ui ∈ Ui,∀i ∈  .

To facilitate the controller design, we need the following assumptions.12

Assumption 1. (a) The function f ∶ RnN × RmN → RnN is twice continuously differentiable and satisfies f(0, 0) = 0; (b)

System (3) has a unique, absolutely continuous solution for any initial condition x(t0) and any piecewise right-continuous

control u ∶ [t0,∞) → U ≜ U1 × … ×UN ; (c) Sets Ui,∀i ∈  are compact subsets of Rm with the origin as their interior.

Consider the linearization of (2) around the origin as

ẋi(t) = Aiixi(t) +
∑

j∈ u
i

Aijxj(t) + Biui(t), (4)

where Aij =
𝜕fi
𝜕xj

|||(0,0) and Bi =
𝜕fi
𝜕ui

|||(0,0) and let the decentralized model be

ẋ d
i (t) = fi

(
xd

i (t), 0, ui(t)
)
, t ≥ t0.

We need the following decentralized stabilizability assumption:

Assumption 2. There exists a decentralized linear feedback controller gain K = diag(K1, … ,KN) such that (4) is stabilized

with ui(t) = Kixi(t) and Aii + BiKi is Hurwitz, ∀i ∈  .

Assumption 2 is used to construct a terminal controller that is critical for proving recursive feasibility and stability. It is a

standard approach, see, eg, Dunbar,12 Farina et al,10 and Farina and Scattolini.5 Based on this assumption, we have the following

lemma.
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Lemma 1. Chen and Allgöwer,20 Dunbar12 Under Assumption 2, there exist positive constants ϵ, r and positive definite
matrix M = diag(M1,… ,MN) such that

Ωϵ ≜ {
x ∈ R

nN|||x||M ≤ ϵ
}

is a positively invariant set of ẋ = f (x,Kx), ||x(t)||M and ||xd
i (t)||Mi exponentially decay to zero with decay rate not less than

r, and Kx ∈ U for all x ∈ Ωϵ.

We also need Lipschitz continuity of fi:

Assumption 3. The functions fi,∀i ∈  satisfy‖‖ fi(xi, x−i, ui) − fi(xi, x′−i, ui)‖‖ ≤ ∑
j∈ u

i

Lij
‖‖‖xj − x′j

‖‖‖ ,
where x′−i = {x′j , j ∈  u

i } and Lij are positive constants.

Remark 1. In most of the nonlinear MPC, the Lipschitz constant of fi with respect to xi is used. This approach creates

conservativeness. In our work, however, we use only the Lipschitz constants of the couplings, which give less conservative

results.

3 CONTROLLER DESIGN AND IMPLEMENTATION

3.1 Offline design
In the offline phase, we assume that a feasible control input can be found. This control input should satisfy Assumption 4 below

such that the corresponding state trajectory has a contraction property:

Assumption 4. A feasible open-loop control input u0(t) = (u0T
1
(t), … , u0T

N (t))T ∈ U, t ∈ [t0, t0 + T] exists, where T > 0 is

the prediction horizon, ie, the corresponding state trajectory of system (3) x0(t) = (x0T
1
(t), … , x0T

N (t))T satisfies

x0(t0) = x0,

𝜕fi
𝜕xi

T
Mi + Mi

𝜕fi
𝜕xi

≤ −βiMi,∀xi ∈ Θi, (5)

x0
i (t0 + T) ∈ Ωi(αϵ) ≜

{
xi|||xi||Mi ≤ αϵ√

N

}
,

i = 1, … ,N,

where

Θi ≜
{

xi| infzi∈Γi
||xi − zi||Mi ≤ l̄i

}
, (6)

βi > 0, l̄i > 0, 0 < α < 1 and Γi ≜ {x0
i (t), t ∈ [t0, t0 + T]} ∪ Ωi(αϵ).

Inequality (5) replaces the commonly used Lipschitz continuity condition. It guarantees that 2 trajectories starting from

different initial conditions with the same control input converge to each other exponentially. This condition is also used in

process control,19 networked system,21 Kalman filter,22 and so on.

Suppose that for each subsystem, the same prediction horizon T and sampling period δ are used. Denote ci ≜
2
∑

j∈ u
i

λmax(M
1
2

i )Lijlj

λmin(M
1
2

j )
, li < l̄i, di = 2

∑
j∈ u

i

Lijαϵλmax(M
1
2

i )√
Nβiλmin(M

1
2

j )
. We need to choose parameters ξi, T, δ, li, and γi such that the following

inequalities hold, which will be used later to prove stability of the proposed algorithm:

ci

βi
+ di − li ≤ 0, (7)

γ ≜
N∑

i=1

γi < 1, (8)

ξiT + 2

βi

(
li − di −

ci

βi

)(
1 − e−

1

2
βiδ
)
<

(
γi ϵ − di −

ci

βi

)
δ. (9)
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These parameters can be found numerically as follows. Since Mi,Lij, di are constants determined by the system parameters, we

only need to determine li of inequality (7). Therefore, the first step is to choose the smallest li such that (7) holds. Then we fix

γi = 1

N+1
and choose small enough ξi and T and large enough δ such that (9) holds.

In the offline design phase, we need to find u0, x0, Mi, βi, l̄i,T , δ, γi, which should satisfy Assumption 4 and (7) to (9). In

particular, x0 serves as reference trajectory for the online optimization, Mi and βi are determined by the contraction property of

the corresponding subsystem, and l̄i is a parameter that provides a margin of freedom. In general, u0 can be found by solving

a constrained problem satisfy Assumption 4. However, due to the dynamical coupling and the nonlinearity, how to solve this

problem in a distributed way is still under study. In this paper, we therefore assume that these parameters are known. Indeed,

to have an initial feasible solution is necessary for most optimization problems and a lot of centralized implementations of

MPC also assume that an initial feasible solution is available.1,23 This assumption can also be found in Trodden and Richards,24

Richards and How,25 and Dunbar12 for the distributed case.

3.2 Initialization
Given initial state x0, at time t0, and initial feasible control input u0(t), t ∈ [t0, t0 +T], for t > t0 +T, x0

i (t) and u0
i (t), i = 1, … ,N

are defined by the following subsystem:

ẋ0
i (t) = fi

(
x0

i (t), 0,Kix0
i (t)

)
, (10)

u0
i (t) = Kix0

i (t), t ∈ (t0 + T ,∞),

where Ki satisfies Assumption 2.

Denote tk = t0 + kδ, k = 1, 2, … . Then the control algorithm is stated as follows:

At initial time t0, given initial state x0, if x0 ∈ Ωϵ, apply u = u0 = Kx0 where K = diag(K1, … ,KN); otherwise send

x0
i (s), s ∈ [t0, t0 + T] to subsystem i and its downstream neighbours.

For any subsystem i over time interval [t0, t1],

1. apply u0
i (s), s ∈ [t0, t1];

2. compute x0
i (s), s ∈ [t0 + T , t1 + T] according to Equation 10;

3. transmit x0
i (s), s ∈ [t0 + T , t1 + T] to its downstream neighbours;

4. receive x0
j (s), s ∈ [t0 + T , t1 + T] from its upstream neighbours.

After introducing the offline design phase, we next describe the online implementation of our distributed MPC algorithm.

3.3 Online implementation
For any subsystem i at time instant tk, k ≥ 1, if x(tk) ∈ Ωϵ, apply ui = Kixi; otherwise solve the following problem.

Subproblem i
min

ûi(·;tk)∈Ui

Ji(xi(tk), ûi(·; tk))

subject to

x̂i(tk; tk) = xi(tk),
̇̂xi(s; tk) = fi

(
x̂i(s; tk), x0

−i(s), ûi(s; tk)
)
, (11)

‖‖‖x̂i(s; tk) − x0
i (s)

‖‖‖Mi
≤ li −

ci

βi

(
1 − e−

1

2
βi(s−tk)

)
, (12)

||x̂i(s; tk) − x̃i(s; tk)||Mi ≤ ξi, (13)

s ∈ [tk, tk + T],

where x̃i(s; tk) is defined as x̃i(tk; tk) = xi(tk), ̇̃xi(s; tk) = fi(x̃i(s; tk), x0
−i(s), ũi(s; tk)), ũi(s; tk) ≜ u∗

i (s; tk−1) when s ∈ [tk, tk−1 + T),
ũi(s; tk) ≜ Kix0

i (s) when s ∈ [tk−1 + T, tk + T] and u∗
i (s; tk−1) is the optimal solution of Subproblem i obtained at tk−1 and with

u∗
i (s; t0) = u0

i (s), ξi > 0.

Denote x∗i (s; tk), s ∈ [tk, tk +T] as the state trajectory of (11) with initial condition x∗i (tk; tk) = xi(tk) and control input u∗
i (s; tk).

For any subsystem i over time interval [tk, tk+1], k ≥ 1,

1. apply u∗
i (s; tk), s ∈ [tk, tk+1];
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2. compute x0
i (s), s ∈ [tk + T , tk+1 + T] according to Equation 10;

3. transmit x0
i (s), s ∈ [tk + T , tk+1 + T] to downstream neighbours;

4. receive x0
j (s), s ∈ [tk + T , tk+1 + T] from upstream neighbours.

In Subproblem i, continuous-time system models, constraints, and control inputs are considered. In practice, however, the

MPC control algorithm is usually to be implemented in discrete time. In the numerical example in Section 5, approximate

discrete-time problems are solved with integration time much smaller than the sampling interval δ. See Magni and Scattolini26

for detailed discussion.

In this proposed control algorithm, a dual mode strategy,23 which uses MPC algorithm when the state is outside of the ter-

minal region and uses terminal controller after the state enters the terminal region, is applied, since if x ∈ Ωϵ, according to

Lemma 1, the linear feedback controller u = Kx stabilizes the system to the origin. However, this requires that every subsystem

knows the full state information x(tk). In the simulation given in Section 5, the MPC algorithm is used even after x(t) enters Ωϵ
but the system is still stabilized to the origin.

In Subproblem i, constraints (12) and (13) are used to guarantee recursive feasibility and stability. In particular, constraint (12)

is used to make sure that the real trajectory is not far away from x0 so that the nominal model (11) is a reasonable approximation.

Constraint (13) is used to guarantee that the solution of the current time instant is not far away from that obtained at the previous

time instant, which is critical for stability. Therefore, the objective function Ji can be chosen as any performance index and the

commonly used assumptions on the objective function in Mayne et al1 are not required in our approach.

In Dunbar,12 each subsystem i needs to transmit the whole predicted state trajectory x∗i (s; tk), s ∈ [tk, tk +T] to its downstream

neighbours. In our algorithm, however, only the incremental part x0
i (t), t ∈ [tk + T , tk+1 + T] needs to be transmitted.

4 ANALYSIS

In this section, recursive feasibility and stability of the system under the proposed MPC algorithm are established.

4.1 Feasibility
Since the receding horizon algorithm is optimization based, one may wonder if there exists some future time instant, say tk,

when Subproblem i becomes infeasible. Recursive feasibility is an important property to be established. It means that given an

initial feasible solution at time t0, for all tk, k = 1, … , every Subproblem i is feasible.

In Subproblem i, x0
−i is used to predict the future behaviour of subsystem i. There is a discrepancy between x∗i (s; tk), s ∈

[tk, tk +T] and the real trajectory xi(s), s ∈ [tk, tk +T]. We introduce the following lemmas to estimate the discrepancy. The first

lemma is similar to Theorem 5 in Russo et al.27

Lemma 2. Consider 2 systems ẋ0 = f (x0, 0, t) and ẋ1 = f (x1,w, t), where w ∈ W is a bounded disturbance. Suppose that
𝜕f
𝜕x

T
M+M 𝜕f

𝜕x
≤ −βM holds for some positive number β and positive definite matrix M in some region C where the 2 systems

evolve. Then V(t) ≤ 2Ldλmax(M
1
2 )

βλmin(M
1
2 )

+
(

V(0) − 2Ldλmax(M
1
2 )

βλmin(M
1
2 )

)
e−

1

2
βt, where V(t) = ||x0(t) − x1(t)||M, L is a positive constant that

satisfies || f (x, y, z) − f (x, y′, z)|| ≤ L||y − y′||, d = supw∈W||w||M.

Proof. Similar to the proof of Theorem 5 in Russo et al,27 pick γ(r) = x0(0) + r(x1(0) − x0(0)). Consider an auxiliary

trajectory ẋr = f (xr, rw, t) that starts from xr(0) = γ(r), r ∈ [0, 1]. Define p(t, r) = 𝜕xr
𝜕r
(t, r). Then it follows that

𝜕p
𝜕t
(t, r) =

𝜕

𝜕t
( 𝜕xr
𝜕r
) = 𝜕

𝜕r
( 𝜕xr
𝜕t
) = 𝜕

𝜕r
f (xr, rw, t) = 𝜕f

𝜕xr
p + 𝜕f

𝜕rw
w.

Consider Φ(t, r) = p(t, r)TMp(t, r). Then by the contraction property, we have
𝜕

𝜕t
Φ(t, r) ≤ −βΦ(t, r)+2

√
Φ(t, r)L dλmax(M

1
2 )

λmin(M
1
2 )

.

Note that
√
Φ(0, r) = V(0) and by comparison principle√

Φ(t, r) ≤ μ + (V(0) − μ)e−
1

2
βt
, (14)

where μ = 2Ldλmax(M
1
2 )

βλmin(M
1
2 )

, ∀x ∈ C, t ≥ 0, and ∀r ∈ [0, 1].
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According to the fundamental theorem of calculus, one can write that x1(t) − x0(t) = ∫ 1

0
p(t, r)dr and by inequality (14),

V(t) ≤ ∫ 1

0
||p(t, r)||Mdr = 2Ldλmax(M

1
2 )

βλmin(M
1
2 )

+ (V(0) − 2Ldλmax(M
1
2 )

βλmin(M
1
2 )

)e−
1

2
βt.

The following lemma provides an estimate of the discrepancy.

Lemma 3. If over time interval [tk, tk + T], the real state trajectory xi(s) and the predicted state trajectory x∗i (s) are both
in Θi defined in (6), i = 1, … ,N, then the inequality ||xi(s) − x∗i (s; tk)||Mi ≤ ci

βi
(1 − e−

1

2
βi(s−tk)), s ∈ [tk; tk + T] holds for

i = 1, … ,N.

Proof. Given the initial condition xi(tk), the real state trajectory is determined by

ẋi(s) = fi
(
xi(s), x−i(s), u∗

i (s; tk)
)
, s ∈ [tk; tk + T].

The predicted state trajectory is given by ẋ∗i (s; tk) = fi(x∗i (s; tk), x0
−i(s), u

∗
i (s; tk)), s ∈ [tk; tk + T].

Since xi(s) is in Θi, ||xi(s) − x0
i (s)||Mi ≤ li. Define Vi(s) = ||xi(s) − x∗i (s; tk)||Mi . By considering w = x−i(s) − x0

−i(s) and

noting that Vi(tk) = 0, the result directly follows from Lemma 2.

On the basis of the above lemmas, we now establish the recursive feasibility of the proposed control algorithm.

Theorem 2. Suppose that Assumptions 1 to 4 hold, initial feasible control u0(t), t ∈ [t0, t0 + T] is available at time instant
t0 and Subproblem i is feasible for i = 1, … ,N at time instant tk. Then Subproblem i, i = 1, … ,N, are feasible at time
instant tk+1 with the feasible solution ũi(s; tk+1) defined as{

u∗
i (s; tk), s ∈ [tk+1, tk + T)

Kix0
i (s), s ∈ [tk + T , tk+1 + T]

provided that Equation 7 holds.

Proof. Firstly, we show that ũi(s; tk+1) ∈ Ui, s ∈ [tk+1, tk+1 + T]. When s ∈ [tk+1, tk + T), ũi(s; tk+1) = u∗
i (s; tk) ∈ Ui since

u∗
i (s; tk) is the optimal solution of Subproblem i at time instant tk. When s ∈ (tk+T, tk+1+T], by Lemma 1 and Assumption 4,

we know that Kix0
i (s) ∈ Ui. Therefore, ũi(s; tk+1) ∈ Ui, s ∈ [tk+1, tk+1 + T].

In the following of this proof, it will be shown that the state trajectory given by

̇̃xi(s; tk+1) = fi
(
x̃i(s; tk+1), x0

−i(s), ũi(s; tk+1)
)

with initial condition x̃i(tk+1, tk+1) = xi(tk+1) satisfies the constraints in Subproblem i. The optimal state trajectory computed

at time instant tk over time interval [tk+1, tk + T) is given by ẋ∗i (s; tk) = fi(x∗i (s; tk), x0
−i(s), u

∗
i (s; tk)) with initial condition

x∗i (tk+1; tk).
Consider Vi(s) = ||x∗i (s; tk) − x̃i(s; tk+1)||Mi . According to Lemma 3, we know that Vi(tk+1) = ||xi(tk+1) − x∗i (tk+1; tk)||Mi ≤

ci

βi
(1 − e−

1

2
βiδ). By constraint (12), ||x∗(tk+1; tk) − x0

i (tk+1)||Mi ≤ li −
ci

βi
(1 − e−

1

2
βiδ). Therefore, we obtain that ||x̃i(tk+1; tk+1) −

x0
i (tk+1)||Mi ≤ ||xi(tk+1) − x∗i (tk+1; tk)||Mi + ||x∗(tk+1; tk) − x0

i (tk+1)||Mi ≤ li that implies that at time instant tk+1, the feasible

state trajectory is in the contraction region Θi and the contraction property holds. Then by Lemma 2, one can obtain that||x̃i(s; tk+1) − x∗i (s; tk)||Mi ≤ ci

βi
(1 − e−

1

2
βiδ)e−

1

2
βi(s−tk+1).

According to constraint (12), ||x∗i (s; tk) − x0
i (s)||Mi ≤ li −

ci

βi
(1 − e−

1

2
βi(s−tk)), which leads to

‖‖‖x̃i(s; tk+1) − x0
i (s)

‖‖‖Mi
≤ li −

ci

βi

(
1 − e−

1

2
βi(s−tk)

)
+ ci

βi

(
1 − e−

1

2
βiδ
)

e−
1

2
βi(s−tk+1) ≜ Ci.

By some simple calculation, we have Ci = li−
ci

βi
(1−e−

1

2
βi(s−tk+1))+ ci

βi
e−

1

2
βi(s−tk) − ci

βi
e−

1

2
βiδ−

1

2
βi(s−tk+1) = li−

ci

βi
(1−e−

1

2
βi(s−tk+1)),

which implies that ||x̃i(s; tk+1) − x0
i (s)||Mi ≤ li −

ci

βi
(1 − e−

1

2
βi(s−tk+1)) when s ∈ [tk+1, tk + T].

When s ∈ [tk + T, tk+1 + T], consider the state trajectory given by

̇̃xi(s; tk+1) = fi
(
x̃i(s; tk+1), x0

−i(s),Kix0
i (s)

)
,

where x0
i (s) is defined by (10).
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Define Ei(s) = ||x̃i(s; tk+1) − x0
i (s)||Mi with initial condition Ei(tk + T) = li −

ci

βi
(1 − e−

1

2
βi(T−δ)) and s ∈ [tk + T, tk+1 + T].

It follows from Lemma 2 that Ei(s) ≤ di + (Ei(tk + T) − di)e−
1

2
βi(s−tk−T). By letting di + (Ei(tk + T) − di)e−

1

2
βi(s−tk−T) ≤

li −
ci

βi
(1 − e−

1

2
βi(s−tk+1)) and rearranging this inequality, we obtain that[

(Ei(tk + T) − di)e
1

2
βiT − ci

βi
e

1

2
βiδ
]

e−
1

2
β(s−tk) ≤ li −

ci

βi
− di. (15)

Note that the equality is achieved when s = tk+T. Therefore, (15) holds ∀s ∈ (tk+T, tk+1+T] if (Ei(tk+T)−di)e
1

2
βiT− ci

βi
e

1

2
βiδ ≥

0, which is true if li ≥ ci

βi
+ di.

Finally, constraint (13) trivially holds. Therefore, x̃i(s; tk+1), s ∈ [tk+1, tk+1 + T] is a feasible trajectory.

4.2 Stability
In this subsection, stability of system (3) under the proposed control algorithm is analysed.

Theorem 3. Suppose that Assumptions 1 to 4 hold, initial feasible control u0(t), t ∈ [t0, t0 + T] is available at time instant
t0 and inequalities (7) to (9) are satisfied. Then system (3) is asymptotically stable under the proposed MPC algorithm.

Proof. Since by assumption, after x enters the terminal region Ωϵ, the terminal controller stabilizes the system, we only

need to show that x will enter the terminal region in finite time.

Consider nonnegative function Vk = ∫ tk+T
tk

||x∗(s; tk) − x0(s)||Mds. Then according to constraint (13), we know that Vk ≤
Ṽk +∫ tk+T

tk
||x∗(s; tk)− x̃(s; tk)||Mds ≤ Ṽk +

∑N
i=1 ξiT , where Ṽk ≜ ∫ tk+T

tk
||x̃(s; tk)−x0(s)||Mds. Therefore, we have Vk+1 −Vk ≤

Ṽk+1 +
∑N

i=1 ξiT − Vk.

By using triangle inequality and noticing that

∫
tk+T

tk+1

||x∗(s; tk) − x0(s)||Mds − Vk = −∫
tk+1

tk
||x∗(s; tk) − x0(s)||Mds,

it can be obtained that

Ṽk+1 − Vk ≤ − ∫
tk+1

tk
||x∗(s; tk) − x0(s)||Mds + ∫

tk+T

tk+1

||x̃(s; tk+1) − x∗(s; tk)||Mds

+ ∫
tk+1+T

tk+T
||x̃(s; tk+1) − x0(s)||Mds. (16)

In the proof of Theorem 2, we have shown that ||x̃i(s; tk+1) − x∗i (s; tk)||Mi ≤ ci

βi
(1 − e−

1

2
βiδ)e−

1

2
βi(s−tk+1).

From

∫
tk+T

tk+1

||x̃(s; tk+1) − x∗(s; tk)||Mds ≤
N∑

i=1
∫

tk+T

tk+1

||x̃i(s; tk+1) − x∗i (s; tk)||Mi ds

and some simple calculation, one can write

∫
tk+T

tk+1

||x̃(s; tk+1) − x∗(s; tk)||Mds ≤
N∑

i=1
∫

tk+T

tk+1

||x̃i(s; tk+1) − x∗i (s; tk)||Mi ds

≤
N∑

i=1
∫

tk+T

tk+1

ci

βi

(
1 − e−

1

2
βiδ
)

e−
1

2
βi(s−tk+1)ds

=
N∑

i=1

2ci

β2
i

(
1 − e−

1

2
βiδ
)(

1 − e−
1

2
βi(T−δ)

)
and similarly ∫ tk+1+T

tk+T ||x̃(s; tk+1) − x0(s)||Mds ≤ ∑N
i=1 diδ + 2

βi
(li −

ci

βi
(1 − e−

1

2
βi(T−δ)) − di)(1 − e−

1

2
βiδ).

Suppose that over time interval [tk, tk+1], ||x(s) − x0(s)||M ≥ γϵ. Then by Lemma 3, over this time interval, ||x∗(s; tk) −
x0(s)||M ≥ ||x(s) − x0(s)||M − ||x(s) − x∗(s; tk)||M ≥ γϵ −

∑N
i=1

ci

βi
(1 − e−

1

2
βi(s−tk)).
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Substituting the above inequalities into (16) leads to Ṽk+1 −Vk ≤ −γϵδ+
∑N

i=1(
ci

βi
+ di)δ+

∑N
i=1

2

βi
(li − di −

ci

βi
)(1− e−

1

2
βiδ)

and then it follows from inequality (9) that there exists a positive constant ρi such that ξiT + 2

βi
(li − di −

ci

βi
)(1 − e−

1

2
βiδ) ≤

γiϵδ − (di +
ci

βi
)δ − ρi, which implies that Vk+1 − Vk ≤ ∑N

i=1 ξiT + Ṽk+1 − Vk ≤ −
∑N

i=1 ρi.

Similar to Theorem 2 in Dunbar,12 we can now claim that x(s) converges to Ωx0(s)(γϵ) ≜ {x|||x − x0(s)||M ≤ γϵ} in finite

time. On the other hand, by (10) and Lemma 1, x0(s) asymptotically converges to the origin. Therefore, x0(s) converges

to Ω(1−r)ϵ in finite time and stays in it thereafter, which implies that x(s) converges to Ωϵ in finite time. This completes

the proof.

5 NUMERICAL EXAMPLE

In this section, the proposed algorithm is applied to a building heating ventilation and air-conditioning system with

4 neighbouring rooms, see Ma et al3 and Betti et al.28 The system dynamics is given by

Ṫ1 = 60

C

(
ṁ1

s cp(Ts − T1) +
T2 − T1

R
+ T3 − T1

R
+ Te − T1

Re

)
Ṫ2 = 60

C

(
ṁ2

s cp(Ts − T2) +
T1 − T2

R
+ T4 − T2

R
+ Te − T2

Re

)
Ṫ3 = 60

C

(
ṁ3

s cp(Ts − T3) +
T1 − T3

R
+ T4 − T3

R
+ Te − T3

Re

)
Ṫ4 = 60

C

(
ṁ4

s cp(Ts − T4) +
T2 − T4

R
+ T3 − T4

R
+ Te − T4

Re

)
where Tj is the temperature of room j, C = 9163 kJ/K is the lumped mass of each room, cp = 1012 J/kg·K is the heat capacity

of air, R = 1 K/kW is the heat resistance between neighbouring rooms, Re = 30 K/kW is the heat resistance between rooms

and the outside environment, Te = 30◦C is the outside temperature, Ts = 16◦C is the temperature of the supply air, ṁ j
s is the air

flow rate of room j. Our aim is to regulate the temperature of each room to the desired set point Td = 22◦C by adjusting air flow

rate ṁ j
s ∈ [0.005 3] kg/s. The partitions of the states and inputs are x1 = [T1 − Td T2 − Td]T , x2 = [T3 − Td T4 − Td]T , u1 =

[ṁ1
s − ̄̇ms ṁ2

s − ̄̇ms]T and u2 = [ṁ3
s − ̄̇ms ṁ4

s − ̄̇ms]T where ̄̇ms =
Te−Td

(Td−Ts)Recp
. Then the whole system can be rewritten as

ẋ1 = f1(x1, x2, u1)
ẋ2 = f2(x2, x1, u2).

The matrices M1 and M2 are chosen as identity matrix. Since the system is stable around the equilibrium, the terminal

controller is chosen as K = 0. The parameters ϵ and r in Lemma 1 are, respectively, calculated as 0.5 and 0.4 according

to Lemma 1 in Dunbar.12 βi is calculated as 0.0267. The design parameters are chosen as: α = 0.3, li = 3, δ = 5,T =
30, ξi = 0.5, γi = 0.49, i = 1, 2 to satisfy conditions (7) to (9). The objective functions are chosen as Ji(xi(tk), ûi(·, tk)) =
∫ tk+T

tk
(||x̂i(s; tk)||2 +0.01||ûi(s; tk)+ ̄̇ms||3)ds, i = 1, 2, where the quadratic term represents the tracking error while the cubic term

represents the power consumed by the supply fan.29 The initial condition is given by x1(0) = (4, 3), x2(0) = (2, 1). Note that

under these given parameters, a Lipschitz constant of fi with respect to xi is 0.0332, and no feasible parameters can be found to

satisfy those sufficient conditions in Dunbar12 and Liu and Shi.13 However, by using the proposed method, we are able to obtain

an optimal solution. Therefore, compared with the proposed algorithms in Dunbar12 and Liu and Shi,13 our algorithm is less

conservative. In the case that both Dunbar12 and Liu and Shi13 and the proposed method are feasible, it is not clear which one

will give better control performance. However, our method allows larger sampling interval. Since the communications among

agents and calculations of new control input are executed at each sampling time instant, the communication and computational

burden could then be reduced.

The initial feasible state trajectory and control input are shown in Figure 1. The state responses and control inputs under

the proposed distributed and centralized algorithms are shown in Figure 2, where the solid line denotes the state response

and control input under the distributed control while the dashed line represents those under centralized control. It can be

observed that the temperature response under the distributed algorithm is close to that under centralized control. The fan power

∫ 50

0

∑4
i=1 (ṁi

s(τ))3dτ are 11.25× 104, 9.15× 104, and 9.08× 104 for the initial feasible guess and the distributed and the central-

ized algorithms, respectively. Therefore, by using the proposed algorithm, around 19% energy saving can be achieved compared

to the initial feasible control.
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FIGURE 1 Initial feasible state trajectory and control profile [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Comparison of the state trajectories and control profiles under centralized and distributed algorithms [Colour figure can be viewed at

wileyonlinelibrary.com]

Finally, the average computational time with respect to different discretization steps and algorithms is compared in Table 1.

The algorithms used in this section are coded in Matlab and run on a PC with Intel Core Duo i5-2400 CPU 3.10 GHz. The

optimization problems are described using ICLOCS30 and solved by IPOPT.31

wileyonlinelibrary.com
wileyonlinelibrary.com
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TABLE 1 Average computational time of distributed

and centralized algorithm

Steps 120 240 360 480 600

Distributed, s 1.37 1.80 2.14 2.67 3.02

Centralized, s 5.63 8.09 11.62 14.62 18.29

6 CONCLUSION

A novel distributed nonlinear continuous-time MPC algorithm has been proposed. In this algorithm, the traditional Lipschitz

continuity condition is replaced by a contraction condition, which implies that there is a contractive tube around the nominal state

trajectory. By leveraging the contraction condition, sufficient conditions were derived to guarantee feasibility and asymptotic

stability of the closed-loop control system. A numerical example showed that the proposed MPC algorithm is less conservative

than those proposed algorithms in the literature.
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