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Abstract: This paper is concerned with the stability analysis of networked control systems with
communication constraints, variable delays and variable sampling intervals. The scheduling of
sensor communication is defined by a stochastic protocol. The activation probability of each
sensor node is a given constant, whereas it is assumed that collisions occur with a certain
probability. The resulting closed-loop system is a stochastic impulsive system with delays in the
continuous dynamics and in the reset equations. The system matrices have stochastic parameters
with Bernoulli distributions. Sufficient conditions for the exponential mean-square stability are
derived via a Lyapunov-Krasovskii-based method. The efficiency of the method is illustrated on
the example of a batch reactor. It is demonstrated how our time-delay approach allows treating
network-induced delays larger than the sampling intervals.
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1. INTRODUCTION

Networked Control Systems (NCSs) are systems with the
control loops closed over networks, where sensors, con-
trollers and actuators can be distributed over a wide ge-
ographical area (see e.g., Antsaklis and Baillieul [2007]).
In many such systems, only one node is allowed to use
the communication channel at once. The communication
along the data channel is then orchestrated by a scheduling
rule called protocol. Three recent approaches for NCSs
are based on discrete-time systems (Fujioka [2009]), impul-
sive/hybrid systems (Heemels et al. [2010])and time-delay
systems (Fridman et al. [2004], Gao and Chen [2008]).

The time-delay approach has been introduced recently
for the stabilization of NCSs under the Round-Robin
(RR) protocol in Liu et al. [2012b] and under a weighted
Try-Once-Discard (TOD) protocol in Liu et al. [2012a].
The closed-loop system is modeled as a switched system
with multiple and ordered time-varying delays under RR
scheduling or as a hybrid system with time-varying delays
in the dynamics and in the reset equations under the TOD
scheduling. Differently from the existing results on NCSs in
the presence of scheduling protocols (in the frameworks of
hybrid and discrete-time systems), the transmission delay
is allowed to be larger than the sampling interval, but a
crucial point is that data packet dropout is not allowed for
large delays in Liu et al. [2012b] and Liu et al. [2012a].

A stochastic protocol was introduced in Tabbara and Nesic
[2008] and analyzed for the input-output stability of NCSs
in the presence of data packet dropouts or collisions based
⋆ This work has been supported by the Knut and Alice Wallenberg
Foundation and the Swedish Research Council.

on hybrid systems. An i.i.d (independent and identically-
distributed) sequence of Bernoulli random variables is ap-
plied to describe the stochastic protocol. Communication
delays, however, are not included in the analysis. The
stability of NCSs under a stochastic protocol, where the
activated node is modeled by a Markov chain, has been
studied in Donkers et al. [2012] by applying the discrete-
time modeling framework. In Donkers et al. [2012], data
packet dropouts can be regarded as prolongations of the
sampling interval for small delays.

In the present paper, to overcome the gap between the
data packet dropouts phenomenon and the large commu-
nication delays for scheduling protocols (e.g., deterministic
protocols: RR and TOD), we develop the time-delay ap-
proach to the stability analysis of NCSs under a stochastic
protocol. As in Liu et al. [2012b] and Liu et al. [2012a],
differently from the hybrid and discrete-time approaches,
we allow the transmission delays to be larger than the
sampling intervals in the presence of scheduling protocols.
For the simplicity of technical development, we consider a
system with only two sensor nodes. A Remark 4 is given for
extension to the case of more sensors nodes. The activation
probability of each node is a given constant, whereas it
is assumed that the collisions occur with a certain prob-
ability. The resulting closed-loop system is a stochastic
impulsive system with delays in the continuous dynamics
and in the reset equations. The system matrices have
stochastic parameters with Bernoulli distributions. By de-
veloping appropriate Lyapunov-Krasovskii techniques, we
derive Linear Matrix Inequalities (LMIs) conditions for the
exponential mean-square stability of closed-loop system.



The efficiency and advantages of the presented approach
are illustrated by one example.

Notation: Throughout the paper, the space of functions
ϕ : [−τM , 0] → Rn, which are absolutely continuous on
[−τM , 0], and have square integrable first-order deriva-
tives is denoted by W [−τM , 0] with the norm ∥ϕ∥W =

maxθ∈[−τM ,0] |ϕ(θ)|+
[∫ 0

−τM
|ϕ̇(s)|2ds

] 1
2

. Z≥0 denotes the

set of non-negative integers.

2. SYSTEM MODEL

2.1 NCS model

Consider the system architecture in Fig.1 with plant

ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the
control input and A, B are system matrices of appropriate
dimensions. The initial condition is given by x(0) = x0.

The NCS has two sensors, a controller and an actuator
connected via two networks. For the sake of simplicity,
we limit the presentation to two sensor nodes. Their
measurements are given by yi(t) = Cix(t), i = 1, 2. Let

C =
[

C1

C2

]
, y(t) =

[
y1(t)

y2(t)

]
∈ Rny . We denote by sk

the unbounded and monotonously increasing sequence of
sampling instants

0 = s0 < s1 < . . . < sk < . . . , k ∈ Z≥0, lim
k→∞

sk = ∞.
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Fig. 1. NCS architecture

At each sampling instant sk, at most one of the outputs
yi(sk) ∈ Rni(n1 + n2 = ny) is transmitted over the
network. We suppose that the transmissions over the two
networks are subject to a variable total delay ηk. Denote
sk + ηk by tk.

Differently from Donkers et al. [2011], Heemels et al.
[2010], we do not restrict the network delays to be small.
Following Liu et al. [2012a] and Liu et al. [2012b], we allow
the delay to be large provided that the previous sample
cannot reach the destination (to the controller or to the
actuator) after the current one. Assume that the network-
induced delay ηk and the time span between the next
updating instant tk+1 and the current sampling instant
sk are bounded:

tk+1 − tk +ηk ≤ τM , 0 ≤ ηm ≤ ηk ≤ ηM , k ∈ Z≥0, (2)

where ηm and ηM are known bounds and τM =MATI +
ηM , whereMATI denotes the Maximum Allowable Trans-
mission Interval. Since MATI = τM − ηM ≤ τM − ηm,
ηm > τM

2 implies that the network delays are non-small
due to ηk ≥ ηm > τM − ηm. For the given examples in
Section 4, we will show that when ηm > τM

2 our method
is feasible.

Remark 1. Differently from Naghshtabrizi et al. [2010],
where subscript k in tk corresponds to the measurements
that are not lost, in our paper k corresponds to the
sampling time. This is because we consider the probability
of collisions (see further details below).

Remark 2. We follow a commonly used assumption on the
boundedness of the network-induced delays, e.g., Donkers
et al. [2011], Gao and Chen [2008]. Another possibility is
the Markov chain model of the network-induced delays in
NCSs e.g., Huang and Nguang [2008], Nilsson [1998].

2.2 Stochastic scheduling protocol

Denote by ŷ(sk) =
[

ŷ1(sk)

ŷ2(sk)

]
∈ Rny the sensor output

submitted to the scheduling protocol. At each sampling
instant at most one of the system nodes i ∈ {1, 2} is active,
that is at most one of ŷi(sk) values is updated with the
recent output yi(sk). The choice of the active output node
is defined by a stochastic scheduling protocol. In some
cases, collisions may occur when nodes access the network
(Tabbara and Nesic [2008]). If this happens, then packet
with sensor data is dropped. The updating process ŷ(sk)
is assumed to be i.i.d with the probabilities given by

Prob
{
ŷ(sk) =

[
ŷ1(sk−1)
ŷ2(sk−1)

]}
= β0, (3)

Prob
{
ŷ(sk) =

[
y1(sk)
ŷ2(sk−1)

]}
= β1, (4)

Prob
{
ŷ(sk) =

[
ŷ1(sk−1)
y2(sk)

]}
= β2, (5)

where βi, i = 0, 1, 2 are non-negative scalars and∑2
i=0 βi = 1.

2.3 Stochastic impulsive time-delay model

Following Liu et al. [2012a], we consider the error between
the system output y(sk) and the last available information
ŷ(sk−1):

e(t) = col{e1(t), e2(t)} ≡ ŷ(sk−1)− y(sk),

t ∈ [tk, tk+1), k ∈ Z≥0, ŷ(s−1)
∆
= 0, e(t) ∈ Rny .

(6)

We suppose that the controller and the actuator are event-

driven. ŷ(sk) =
[

ŷ1(sk)

ŷ2(sk)

]
∈ Rny (k ∈ Z≥0) is the current

output information at the controller.

Static output feedback control Assume that there exists
a matrix K = [K1 K2 ], K1 ∈ Rm×n1 ,K2 ∈ Rm×n2 such
that A + BKC is Hurwitz. The static output feedback
controller has the form

u(t) = uk = Kŷ(tk − ηk), t ∈ [tk, tk+1), k ∈ Z≥0. (7)

Thus, (3), (4) and (5) are equivalent to

Prob
{
uk = K1ŷ1(sk−1) +K2ŷ2(sk−1)

∆
= u0

}
= β0, (8)



Prob
{
uk = K1y1(sk) +K2ŷ2(sk−1)

∆
= u1

}
= β1, (9)

Prob
{
uk = K1ŷ1(sk−1) +K2y2(sk)

∆
= u2

}
= β2, (10)

respectively. Following Yue et al. [2009], we introduce the
indicator functions

π{uk=ui} =

{
1, uk = ui

0, uk ̸= ui,
i = 0, 1, 2, k ∈ Z≥0. (11)

Thus, we have

E{π{uk=ui}}=E{[π{uk=ui}]
2}=Prob{uk = ui} = βi,

E{[π{uk=ui}−βi][π{uk=uj}−βj ]}=
{
−βiβj , i ̸= j,
βi(1−βi), i = j.

(12)

Therefore, we obtain the stochastic impulsive closed-loop
system:

ẋ(t)=Ax(t)+A1x(tk−ηk)+
2∑

i=1

(1−π{uk=ui})Biei(t),

ė(t) = 0, t ∈ [tk, tk+1)

(13)

where A1 = BKC, Bi = BKi, i = 1, 2.

Next, taking into account (4), (5) and (11), we obtain

ŷ(sk) =

[
ŷ1(sk)
ŷ2(sk)

]
=

[
π{uk=u1}y1(sk) + (1− π{uk=u1})ŷ1(sk−1)
π{uk=u2}y2(sk) + (1− π{uk=u2})ŷ2(sk−1)

]
= y(sk) +

[
(1− π{uk=u1})e1(tk)
(1− π{uk=u2})e2(tk)

]
,

which gives

e(tk+1) = ŷ(sk)− y(sk+1)

=

[
(1−π{uk=u1})e1(t

−
k+1)

(1−π{uk=u2})e2(t
−
k+1)

]
+y(sk)−y(sk+1).

Thus, the delayed reset system is given by

x(tk+1) = x(t−k+1),

e(tk+1) =

[
(1− π{uk=u1})e1(t

−
k+1)

(1− π{uk=u2})e2(t
−
k+1)

]
+Cx(tk − ηk)−Cx(tk+1 − ηk+1).

(14)

Since x(tk − ηk) = x(t − τ(t)) for t ∈ [tk, tk+1) with
τ(t) = t − tk + ηk ∈ [ηm, τM ] (cf. (2)), the impulsive
system model (13)-(14) contains the piecewise-continuous
delay τ(t) in the continuous-time dynamics (13). Even
for ηk = 0, we have the delayed state x(tk) = x(t −
τ(t)) with τ(t) = t − tk. The initial condition for (13)-
(14) has the form of x(t) = ϕ(t), t ∈ [t0 − τM , t0] and
e(t0) = −Cx(t0 − η0) = −Cx0, where ϕ(t) is a continuous
function on [t0 − τM , t0].

Remark 3. Applying the Bernoulli-distributed stochastic
variables π{uk=ui}, i = 0, 1, 2, the closed-loop system is
given by an impulsive time-delay system with stochastic
parameters in the system matrices. Note that the Bernoulli
distribution has been applied to NCS with probabilistic
measurements missing (Wang et al. [2006]), random packet
losses (Wang et al. [2007]), stochastic sampling intervals
(Gao et al. [2009]) and time-delay system with stochastic
interval delays (Yue et al. [2009]).

Remark 4. Our results can be extended to the case of
any N ≥ 3 sensor nodes yi(t) = Cix(t) ∈ Rni , i =

1, . . . , N,
∑N

i=1 ni = ny. We denote C̃T =
[
CT

1 . . . CT
N

]
,

K̃ = [K1 . . . KN ] and ẽ(t) = col{e1(t), . . . , eN (t)} ≡
ŷ(sk−1)− y(sk), t ∈ [tk, tk+1), k ∈ Z≥0. At each sampling
instant sk, the probabilities that ŷi(sk) is updated with
the recent output yi(sk) and collisions happen are denoted
by βi ≥ 0, i = 1, . . . , N and β0 ≥ 0, respectively, where∑N

i=0 βi = 1. Then the static output feedback controller
has the form

u(t) = uk = Kŷ(tk − ηk)

=



N∑
j=1

Kj ŷj(sk−1)
∆
= u0,

N∑
j=1,j ̸=i

Kj ŷj(sk−1) +Kiyi(sk)
∆
= ui,

i = 1, . . . , N, t ∈ [tk, tk+1), k ∈ Z≥0,

(15)

with Prob{uk = ui} = βi, i = 0, 1, . . . , N . Thus, the
continuous dynamics of the stochastic impulsive closed-
loop model (1), (15) with N sensor nodes can be expressed
as

ẋ(t) = Ax(t) + Ã1x(tk − ηk) +
N∑
i=1

(1− π̃{uk=ui})B̃iẽi(t),

˙̃e(t) = 0, t ∈ [tk, tk+1)

where Ã1 = BK̃C̃, B̃i = BKi, i = 1, . . . , N and

π̃{uk=ui} =

{
1, uk = ui

0, uk ̸= ui,
i = 0, 1, . . . , N, k ∈ Z≥0. The

delayed reset system is given by

x(tk+1) = x(t−k+1),
ei(tk+1) = (1− π̃{uk=ui})ei(t

−
k+1) + Cix(tk − ηk)

−Cix(tk+1 − ηk+1), i = 1, . . . , N.

Dynamic output feedback We consider the dynamic out-
put feedback of (1) under the assumption that the con-
troller is directly connected to the actuator. The controller
is assumed to be given by

ẋc(t) = Acxc(t) +Bcŷ(sk),
u(t) = Ccxc(t) +Dcŷ(sk), t ∈ [tk, tk+1), k ∈ Z≥0,

(16)

where xc(t) ∈ Rnc is the state of the controller, Ac, Bc, Cc

and Dc are matrices of appropriate dimensions. Let
ei(t)(i = 1, 2) be defined by (6). The closed-loop system
(1), (16) with (3)-(5) can be presented in the form of (13)-
(14), where x, e and matrices are replaced by the ones with
bars as follows:

x̄ = [xT xTc ]
T , Ā =

[
A BCc

0 Ac

]
, Ā1 =

BDc

[
C1

C2

]
0

Bc

[
C1

C2

]
0

 ,
C̄ =

[
C̄1

C̄2

]
=

[
C1 0

0 0

0 0

C2 0

]
, B̄1 = B̄2 =

[
BDc

Bc

]
,

ē(t) =

[
ē1(t)
ē2(t)

]
, ē1(t) =

[
e1(t)
0

]
, ē2(t) =

[
0

e2(t)

]
.

3. EXPONENTIAL MEAN-SQUARE STABILITY OF
STOCHASTIC IMPULSIVE DELAYED SYSTEM

Definition 1. The impulsive system (13)-(14) is said to be
exponentially mean-square stable with respect to x if there



exist constants b > 0, κ > 0 such that

E{|x(t)|2} ≤ be−2κ(t−t0)E{∥xt0∥2W + |e(t0)|2}, t ≥ t0

for the solutions of the stochastic impulsive system (13)-
(14) initialized with e(t0) ∈ Rny and x(t) = ϕ(t), t ∈ [t0−
τM , t0].

Our objective of this section is to derive LMI conditions
for the exponential mean-square stability of the impul-
sive system (13)-(14) with respect to x. We extend the
Lyapunov-Krasovskii Functional (LKF) introduced in Liu
et al. [2012a] to the following form:

Ve(t) = V (t, xt, ẋt) +

2∑
i=1

eTi (t)Qiei(t),

V (t, xt, ẋt) = Ṽ (t, xt, ẋt)

+(τM − ηm)

t∫
tk−ηk

e2α(s−t)ẋT (s)Qẋ(s)ds,

Ṽ (t, xt, ẋt)=x
T (t)Px(t)

+

t∫
t−ηm

e2α(s−t)xT (s)S0x(s)ds

+

t−ηm∫
t−τM

e2α(s−t)xT (s)S1x(s)ds

+ηm

0∫
−ηm

t∫
t+θ

e2α(s−t)ẋT (s)R0ẋ(s)dsdθ

+(τM − ηm)

−ηm∫
−τM

t∫
t+θ

e2α(s−t)ẋT (s)R1ẋ(s)dsdθ,

P > 0, Si > 0, Ri > 0, Q > 0, Qj > 0, α > 0,
i = 0, 1, j = 1, 2, t ∈ [tk, tk+1), k ∈ Z≥0,

(17)

where xt(θ)
∆
= x(t+ θ), θ ∈ [−τM , 0]. Here the term

eTi (t)Qiei(t) ≡ eTi (tk)Qiei(tk), t ∈ [tk, tk+1), i = 1, 2 (18)

is piecewise-constant. The term Ṽ (t, xt, ẋt) represents
the standard Lyapunov functional for systems with a
time-varying delay τ(t) ∈ [ηm, τM ]. The term (τM −
ηm)

∫ t

tk−ηk
e2α(s−t)ẋT (s)Qẋ(s)ds is borrowed from Liu

et al. [2012a] and is inserted to cope with the delays in the
reset conditions. It is continuous on [tk, tk+1) and does not
grow at the jumps t = tk+1, since

(τM − ηm)

tk+1∫
tk+1−ηk+1

e2α(s−tk+1)E{|
√
Qẋ(s)|2}ds

−(τM − ηm)

t−
k+1∫

tk−ηk

e2α(s−tk+1)E{|
√
Qẋ(s)|2}ds

≤ −(τM − ηm)e−2ατM

tk+1−ηk+1∫
tk−ηk

E{|
√
Qẋ(s)|2}ds

≤ −e−2ατME{|
√
Q[x(tk − ηk)− x(tk+1 − ηk+1)]|2},

(19)

where we applied Jensen’s inequality (Gu et al. [2003]).
The infinitesimal operator L of Ve(t) is defined as

LVe(t) = lim∆→0+
1

∆
{E{Ve(t+∆)|t} − Ve(t)}. (20)

The following lemma gives sufficient conditions for the
exponential stability of (13)-(14) with respect to x in the
mean-square sense:

Lemma 1. If there exist positive constant α, matrices Ui >
0, i = 1, 2 and Ve(t) of (17) such that along (13)-(14) for
t ∈ [tk, tk+1)

E{LVe(t)+2αVe(t)−
1

τM−ηm

2∑
i=1

eTi (t)(Qi−Ui)ei(t)}≤0, (21)

with

Ω =

[
Ω11 (β0 + β2)C

T
1 Q1 (β0 + β1)C

T
2 Q2

∗ Ω22 0
∗ ∗ Ω33

]
≤ 0 (22)

holds, where

Ω11 =

2∑
i=1

CT
i QiCi −Qe−2ατM ,

Ω22 = (β0 + β2)Q1 − U1,
Ω33 = (β0 + β1)Q2 − U2.

Then Ve(t) satisfies

E{Ve(tk+1)−Ve(t−k+1)+
2∑

i=1

eTi (tk)(Qi−Ui)ei(tk)}≤0. (23)

Moreover, the following bound is valid for the solution of
(13)-(14) with the initial condition xt0 , e(t0):

E{V (t, xt, ẋt)} ≤ e−2α(t−t0)E{Ve(t0)}, t ≥ t0,

Ve(t0) = V (t0, xt0 , ẋt0) +
2∑

i=1

eTi (t0)Qiei(t0),
(24)

implying the exponential mean-square stability of (13)-
(14) with respect to x.

Proof: Since

t∫
tk

e−2α(t−s)ds ≤ τM − ηm, t ∈ [tk, tk+1) and

L[e2αtVe(t)] = e2αt[2αVe(t) + LVe(t)], α > 0, (21) implies

E{Ve(t)} ≤ e−2α(t−tk)E{Ve(tk)}

+

2∑
i=1

E{eTi (tk)(Qi − Ui)ei(tk)}, t ∈ [tk, tk+1).
(25)

Therefore,

E{V (t, xt, ẋt)} ≤ e−2α(t−tk)E{Ve(tk)}, t ∈ [tk, tk+1). (26)

Note that

E{Ve(tk+1)} = E{Ṽ|t=tk+1
+

2∑
i=1

eTi (tk+1)Qiei(tk+1)

+(τM − ηm)

tk+1∫
tk+1−ηk+1

e2α(s−tk+1)ẋT (s)Qẋ(s)ds}

and
E{eTi (tk+1)Qiei(tk+1)}
= E{(1− βi)e

T
i (tk)Qiei(tk)

+2(1− βi)e
T
i (tk)QiCi[x(tk − ηk)− x(tk+1 − ηk+1)]

+|
√
QiCi[x(tk − ηk)− x(tk+1 − ηk+1)]|2}, i = 1, 2.



Taking (19) and (22) into account, we obtain

E{Ve(tk+1)− Ve(t
−
k+1) +

2∑
i=1

eTi (tk)(Qi−Ui)ei(tk)}

≤E
{ 2∑

i=1

eTi (tk+1)Qiei(tk+1)−
2∑

i=1

eTi (tk)Qiei(tk)

+
2∑

i=1

eTi (tk)(Qi − Ui)ei(tk)

−e−2ατM |
√
Q[x(tk − ηk)− x(tk+1 − ηk+1)]|2

}
= E

{ 2∑
i=1

{eTi (tk)[(1− βi)Qi − Ui]ei(tk)

+2(1− βi)e
T
i (tk)QiCi[x(tk − ηk)− x(tk+1 − ηk+1)]

+|
√
QiCi[x(tk − ηk)− x(tk+1 − ηk+1)]|2}

−e−2ατM |
√
Q[x(tk − ηk)− x(tk+1 − ηk+1)]|2

}
= E{ζ(t)TΩζ(t)} ≤ 0,

where ζ(t) = col{x(tk − ηk)−x(tk+1 − ηk+1), e1(tk), e2(tk)}
and Ω is given by (22).

Therefore, (23) is valid and, together with (25) for t =
t−k+1, implies

E{Ve(tk+1)} ≤ e−2α(tk+1−tk)E{Ve(tk)}
≤ e−2α(tk+1−tk−1)E{Ve(tk−1)}
≤ e−2α(tk+1−t0)E{Ve(t0)}.

The latter inequality, with k + 1 replaced by k and (26)
give (24). The inequality (24) implies exponential mean-
square stability of (13)-(14) with respect to x because
λmin(P )E{|x(t)|2} ≤ E{V (t, xt, ẋt)},E{V (t0, xt0 , ẋt0)} ≤
vE{∥xt0∥2W } for some scalar v > 0. 2

By using Lemma 1 and the standard arguments for the
delay-dependent analysis, we derive LMI conditions for the
exponential mean-square stability of (13)-(14) with respect
to x:

Theorem 1. Given 0 ≤ ηm < τM , α > 0, βi ≥ 0, i = 0, 1, 2,∑2
i=0 βi = 1 and K1,K2. Suppose there exist n × n

matrices P > 0, Q > 0, Sj > 0, Rj > 0, j = 0, 1, S12

and nl × nl matrices Ql > 0, Ul > 0, l = 1, 2 such that
(22) and [

R1 S12

∗ R1

]
≥ 0,

[
Σ11 ΣT

12
∗ Σ22

]
< 0,

are feasible, where

Σ11 =


φ11 R0e

−2αηm PA1 0 φ51 φ52

∗ φ22 φ23 S12e
−2ατM 0 0

∗ ∗ φ33 φ23 0 0
∗ ∗ ∗ φ44 0 0
∗ ∗ ∗ ∗ ψ1 0
∗ ∗ ∗ ∗ ∗ ψ2

 ,

Σ12=

[
H

T
A 0 H

T
A1 0 (β0 + β2)H

T
B1 (β0 + β1)H

T
B2

0 0 0 0 −β1H
T
B1 0

0 0 0 0 0 −β2H
T
B2

]
,

Σ22 = diag{−H, −β1H, −β2H},
φ11 = PA+ATP +S0−R0e

−2αηm + 2αP,
φ22 = (−S0 + S1 −R0)e

−2αηm −R1e
−2ατM ,

φ23 = (R1 − S12)e
−2ατM ,

φ33 = (−2R1 + S12 + ST
12)e

−2ατM ,
φ44 = −(S1 +R1)e

−2ατM ,
φ5i = (β0 + β3−i)PBi,

ψi = − 1

τM − ηm
(Qi − Ui) + 2αQi,

H = η2mR0 + (τM − ηm)2R1 + (τM − ηm)Q, i = 1, 2.

Then, the solutions of (13)-(14) satisfy the bound (24).
Hence, the closed-loop system with initial condition
xt0 , e(t0) is exponentially mean-square stable with respect
to x. If the above LMIs are feasible with α = 0, then the
bound (24) holds with a small enough α0 > 0.

Remark 5. Compare the number of scalar decision vari-
ables in the LMIs under the RR protocol in Liu et al.
[2012b] and under the stochastic protocol in Theorem 1.
The LMIs (two of 6n×6n and two of 3n×3n) under the RR
protocol have 8.5n2 + 2.5n variables, which is bigger than
the number 4.5n2 + 4n of variables (for yi(sk) ∈ Rn/2(i =
1, 2)) in the LMIs (one of 8n × 8n and two of 2n × 2n)
under the stochastic protocol in Theorem 1. Under the
TOD protocol in Liu et al. [2012a], the number of variables
is 4.25n2 + 3.5n, but in two of 5.5n × 5.5n LMIs and one
of 2n× 2n LMI.

4. EXAMPLE: BATCH REACTOR

We illustrate the efficiency of the given conditions on a
benchmark example of a batch reactor under the dynamic
output feedback (Donkers et al. [2011], Heemels et al.
[2010]), where

A =

 1.380 −0.208 6.715 −5.676
−0.581 −4.2902 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 ,
B =

 0 0
5.679 0
1.136 −3.146
1.136 0

 , C =
[

C1

C2

]
=

[
1 0 1 −1

0 1 0 0

]
,

[
Ac Bc

Cc Dc

]
=

 0 0
0 0

0 1
1 0

−2 0
0 8

0 −2
5 0

 .
Assume that β0 = 0, which means that the event of
collision does not occur. Let β1 = 0.6. For the values of
ηm given in Table 1, we apply Theorem 1 with α = 0
and find the maximum values of τM = MATI + ηM that
preserve the mean-square stability of the impulsive system
(13)-(14) with respect to x (see Table 1). From Table
1 it is seen that the results of our method essentially
improve the results in Heemels et al. [2010] in terms of
both TOD and RR protocols. Moreover, we can find that
the introduced stochastic protocol stabilizes the system
for smaller τM than the RR and TOD, which have been
developed based on the time-delay approach in Liu et al.
[2012b] and Liu et al. [2012a], respectively. When ηm >
τM
2 (ηm = 0.03, 0.04), our method is applicable. Choosing
ηm = 0.02, by Theorem 1 with α = 0, we obtain the
corresponding maximum values of τM shown in Fig. 2 for
different β1.

Choosing ηm = 0.02, τM = 0.025, by applying Theorem 1,
we obtain the maximum values of the decay rate α shown
in Fig. 3 for different β1.

Remark 6. Simulations in the example above show that
our stochastic protocol is conservative compared to the
TOD protocol in Liu et al. [2012a] and RR protocol in Liu



Table 1. Example: max. value of τM =
MATI + ηM for different ηm

τM \ ηm 0 0.004 0.02 0.03 0.04

Heemels et al. [2010] 0.0108 0.0133 - - -

(ηM = 0.004, TOD)

Heemels et al. [2010] 0.0088 0.0088 - - -

(ηM = 0.004, RR)

Donkers et al. [2011] 0.069 0.069 0.069 0.069 -

(ηM = 0.03, TOD)

Donkers et al. [2011] 0.068 0.068 0.068 0.068 -

(ηM = 0.03, RR)

Liu et al. [2012a](TOD) 0.035 0.037 0.047 0.053 0.059

Liu et al. [2012b] (RR) 0.042 0.044 0.053 0.058 0.063

Theorem 1 (β1 = 0.6) 0.025 0.028 0.041 0.050 0.058
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Fig. 2. Example: effect of β1 on the τM for β0 = 0 and
ηm = 0.02
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Fig. 3. Example: effect of β1 on the decay rate α for β0 = 0,
ηm = 0.02 and τM = 0.025

et al. [2012b]. However, we cannot immediately conclude
that among the scheduling protocols based on time-delay
approach, TOD and RR are superior to stochastic proto-
col. The results in this paper could be further improved in
terms of other stochastic protocols.

5. CONCLUSIONS

In this paper, a time-delay approach was developed for
the stabilization of NCSs under a stochastic protocol,
variable delays and variable sampling intervals. By de-
veloping appropriate Lyapunov-Krasovskii-based method,
the exponential mean-square stability conditions for the
delayed impulsive system were derived in terms of LMIs.
Future work will involve consideration of more general
NCS models, including stochastic communication delays
and scheduling protocols for the actuator nodes.
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